
Sequential Analysis, 33: 318–344, 2014
Copyright © Taylor & Francis Group, LLC
ISSN: 0747-4946 print/1532-4176 online
DOI: 10.1080/07474946.2014.916927

Multiple Optimality Properties of the Shewhart Test
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Abstract: For the problem of sequential detection of changes, we adopt the probability
maximizing approach in place of the classical minimization of the average detection delay
and propose modified versions of the Shiryaev, Lorden, and Pollak performance measures.
For these alternative formulations, we demonstrate that the optimum sequential detection
scheme is the simple Shewhart rule. Interestingly, we can also solve problems that under
the classical setup have been open for many years, as optimum change detection with
time-varying observations or with multiple postchange probability measures. For the latter,
we also offer the exact solution for Lorden’s original setup involving average detection
delays, for the case where the average false alarm period is within certain limits.
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1. INTRODUCTION

Suppose !"t#t>0 is a discrete-time process that becomes available sequentially and
define !!t#t≥0 to be the associated filtration with !t = $!"1% & & & % "t# the $-algebra
generated by the observations up to time t. Let ' ∈ !& & & %−1% 0% 1% & & & # denote a
change time and assume that the observations follow the probability measure P$
up to and including ', while after ' the probability measure switches to P0. If the
change in statistics takes place at ' = t then this induces a probability measure that
we denote with Pt while Et(·) is reserved for the corresponding expectation. We
would like to stress that, here, ' denotes the last time instant under the nominal
regime and not the first under the alternative, which is the usual practice. This
slight difference allows to view ' as a stopping time (the time the observations stop
following the nominal statistics), a property that can be analytically very appealing
(see Moustakides, 2008).
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We are interested in detecting the occurrence of the change time ' with the
help of a stopping time T adapted to the filtration !!t# that will signal the change
as soon as possible avoiding, at the same time, making frequent false alarms. The
effectiveness of a detection scheme is commonly quantified through the average
detection delay. There are, of course, various possibilities depending on the prior
knowledge we have and the model we adopt for the change time. In particular,
assuming ' to be random, independent from the observations, with a known prior,
Shiryaev (1963) proposed the following measure:

"S*T+ = E(T − '%T >')& (1.1)

If we consider ' = t to be deterministic and unknown, we can then follow a worst-
case analysis and consider the performance measure proposed by Lorden (1971)

"L*T+ = sup
t≥0

ess supEt(T − t%!t%T > t)& (1.2)

Finally, assuming again that ' = t is deterministic and unknown we can alternatively
define

"P*T+ = sup
t≥0

Et(T − t%T > t)% (1.3)

which is the criterion introduced by Pollak (1985). The three measures depicted in
(1.1), (1.2), (1.3) are the most common criteria encountered in the literature and,
as noted in Moustakides (2008), they can be recovered from a general definition
that treats ' as a stopping time. An optimum stopping rule T is then specified by
minimizing these performance measures subject to suitable false alarm constraints.

1.1. Criteria Based on Detection Probability

We observe from (1.1), (1.2), (1.3) that no hard limit is imposed on the detection
delay; consequently, this quantity can become arbitrarily large. As reported in
Guépié et al. (2012) and references therein there are several applications in practice
where unbounded delays can be undesirable and one would rather detect the change
within a prespecified time window, after the change has occurred.1 In other words,
we like to have ' < T ≤ '+m, for given m ≥ 1. Stopping within the prescribed
interval constitutes a desirable event while if T > '+m this is not considered as
successful detection.

Similarly to (1.1), (1.2), (1.3), we can now propose the following alternatives of
the three classical performance measures:

"S*T+ = P*' < T ≤ '+m%T >'+ (1.4)

"L*T+ = inf
t≥0

ess inf Pt*t < T ≤ t +m%!t%T > t+ (1.5)

"P*T+ = inf
t≥0

Pt*t < T ≤ t +m%T > t+& (1.6)

1According to our definition, stopping before or at ' corresponds to false alarm.
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As we can see, instead of focusing on the average detection delay, we now pay
attention to the detection probability. Consequently, here, we need to replace the
minimization of the worst-case average detection delay of the classical approach
with the maximization of the worst-case detection probability.

Bojdecki (1979) was the first to adopt this probability maximizing idea by
considering the maximization of the probability P*%'+ 1− T % ≤ M+. The complete
solution to this problem was offered for the case M = 0 and for the Bayesian
formulation with the change time ' following a geometric prior. The optimum
stopping time turned out to be the simple test introduced by Shewhart (1931) and
will also become our main focus in the analysis that follows. We should mention
that M = 0 corresponds to the maximization of the probability of the event !T =
'+ 1#, namely, that detection is achieved by using just the first observation under
the alternative regime. A point we need to make is that Bojdecki, in his approach,
did not attempt to control false alarms in any sense. Following similar ideas,
Sarnowski and Szajowski (2011) extended this result to the dependent observations
case, and very recently Pollak and Krieger (2013) considered the independent and
identically distributed (i.i.d.) case but with the data after the change distributed
according to a parametric family of probability density functions (pdfs) and the
parameters following a known prior. Pollak and Krieger (2013) also adopted a
semi-Bayesian approach where the change time ' is deterministic and unknown
while the postchange density, as before, is a parametric family with the parameters
distributed according to a known prior. In the current work, unlike Bojdecki (1979)
and Sarnowski and Szajowski (2011), we follow the common practice of the classical
formulation and, as in the semi-Bayesian approach of Pollak and Krieger (2013),
we impose suitable constraints for false alarm control.

Before continuing with the detailed presentation of the various formulations,
it is necessary to first recall the Shewhart test. Consider observations !"t# that are
independent but not necessarily identically distributed before and after the change
and denote with !,t# the corresponding sequence of likelihood ratios. We are then
interested in the following version of the Shewhart test2:

# = inf!t > 0 - ,t ≥ .t#& (1.7)

The threshold sequence !.t# is deterministic and its exact form depends on the
criterion we adopt and the statistics of the observations.

Having defined the Shewhart stopping time, we briefly recall an optimality result
for this test that has already been established in Moustakides (1986). In particular,
in the next subsection we discuss the fact that the Shewhart test matches Cumulative
Sum (CUSUM) as long as the average false alarm period does not exceed a specific
value.

1.2. Optimality with Respect to Lorden’s Classical Criterion

In the case of i.i.d. observations before and after the change with corresponding
pdfs f$*"+ and f0*"+, in Moustakides (1986) it was proved that CUSUM solves the

2To avoid unnecessary technical complications, throughout our work we are going to
assume that the cumulative distribution functions (cdfs) of all likelihood ratios ,t, under
both probability measures, are continuous and strictly increasing functions.

 



Shewhart Optimality 321

following constrained optimization problem proposed by Lorden (1986):

inf
T

sup
t≥0

ess sup Et(T − t%!t%T > t)/ over all T - E$(T) ≥ 0 ≥ 1& (1.8)

The CUSUM stopping time TC is defined in Moustakides (1986) as follows: For
t > 0 let

Yt = max!Yt−1% 1#,t% Y0 = 0/ TC = inf!t > 0 - Yt ≥ .#% (1.9)

where !Yt# is the CUSUM statistic, while the constant threshold . ≥ 0 is selected so
that the false alarm constraint is satisfied with equality.

It is interesting to note that, customarily, the CUSUM statistic Yt is specified in
the literature slightly differently, namely, Yt = max!Yt−1,t% 1#. When . > 1, the two
statistics give rise to exactly the same stopping time TC. When, however, 0 ≤ . ≤ 1,
by adopting the classical definition we are forced to stop at T = 1, while (1.9) results
in a nontrivial stopping time. It is in fact for these values of the threshold—that is,
. ∈ (0% 1)—that CUSUM is reduced to the Shewhart test. Indeed, note from (1.9)
that, as long as we do not stop at t − 1, we have Yt−1 < .. Consequently, when . ≤ 1
this immediately implies that Yt = max!Yt−1% 1#,t = ,t, suggesting that CUSUM is
reduced to the Shewhart rule (1.7) with constant threshold ..

Let us identify the range of false alarm rates for which CUSUM is equivalent to
the Shewhart test. Since under each probability measure the sequence !,t# is i.i.d. we
can conclude

Ei(# ) =
$∑

t=0

Pi*# > t+ =
$∑

t=0

Pi*,1 < ./ ,2 <./ · · · / ,t <.+

=
$∑

t=0

(
Pi*,1 <.+

)t = 1
Pi*,1 ≥ .+

% i = 0%$& (1.10)

From the previous equality we deduce that the largest value of the false alarm rate 0,
for which TC = # , is achieved when . = 1. This implies that for 0 ∈ (1%P−1

$ *,1 ≥ 1+)
we can find a threshold . ∈ (0% 1) such that CUSUM is reduced to the Shewhart
rule. It is also clear that the classical definition of CUSUM cannot accommodate
any false alarm rate within the same interval.

The previous range of false alarm rates can become more pronounced if we
consider the exponential penalty criterion proposed by Poor (1998); that is,

"̂L*T+ = sup
t≥0

ess sup Et

[
1− cT−t

1− c

∣∣∣T > t%!t

]
% 0 < c%c '= 1&

It is easy to see from the previous criterion that we can recover (1.2) by letting
c → 1. As in (1.8) we are interested in minimizing "̂L*T+ over all stopping times that
satisfy the same false alarm constraint E$(T) ≥ 0 ≥ 1. The optimum stopping time
(see Poor, 1998) has the following CUSUM-like form:

Ŷt = max!Ŷt−1% 1#c,t% Ŷ0 = 0/ T̂C = inf!t > 0 - Ŷt ≥ .#&

We can then verify that T̂C is reduced to the Shewhart test when 0 ∈ (1%P−1
$ *,1 ≥

1/c+). If 0 < c < 1, the previous interval is clearly larger than the one obtained in
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the classical c = 1 case. The range of false alarm rates just specified can be quite
significant if the two pdfs differ drastically, namely, when we have “large changes.”
Let us demonstrate this fact with a simple example.

Example 1.1. Consider the detection of a change in the mean of a Gaussian
i.i.d. process of unit variance, from 0 to 1 > 0. We can then see that when

1 ≤ 0 ≤ 1
2*−0&51+

%

where 2*x+ is the c.d.f. of a standard Gaussian, CUSUM is reduced to Shewhart
with corresponding maximal average detection delay satisfying

1 ≤ "L*# + ≤ 1
2*0&51+

&

If we select 1 such that 2*−0&51+ = 0&001, resulting in 1 = 6&1805, this allows for
average false alarm periods in the interval 1 ≤ 0 ≤ 1000, when the corresponding
detection delay is, at worst, equal to 1.001, performance that, undoubtedly, can
satisfy any exigent user.

Our previous discussion corroborates what is already known in the literature,
namely, that the Shewhart test behaves extremely well when changes are “large,”
whereas in the case of “small” changes one needs to resort to CUSUM. Actually, it is
clear that this optimal behavior of the Shewhart test is inherited from the optimality
of CUSUM.

Even though the previous result concerning the Shewhart test is interesting, it
is nevertheless theoretically restricted since it covers only a limited range of false
alarm rates. In the next section we will demonstrate that this simple detection rule
is in fact optimum according to a number of intriguing criteria. We would also like
to mention that in Section4.1 we will return to this optimality property of Shewhart
and extend it to the case of multiple possibilities under the post-change regime.

2. THE PROBABILITY MAXIMIZING APPROACH

Let us now adopt the alternative performance measures introduced in Section 1.1
and analyze the special case m = 1. As mentioned, this corresponds to the
probability of the event that detection will be achieved with the first observation
under the alternative regime. Therefore, we consider

"S*T+ = P
(
T = *'+ 1++%T > '

)
(2.1)

"L*T+ = inf
t≥0

ess inf Pt*T = t + 1%!t%T > t+ (2.2)

"P*T+ = inf
t≥0

Pt*T = t + 1%T > t+% (2.3)

corresponding to (1.4), (1.5), (1.6), respectively, with x+ = max!x% 0#. In the previous
measures we define the value of the conditional probability to be 1 when !T >'#
or !T > t# (hence also !T = '+ 1# or !T = t + 1#, respectively) is the empty set.
Additionally, we note that in the case of Shiryaev’s modified measure (2.1), due to
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the existence of the prior probability, it is possible to distinguish between the events
' ≤ −1 and ' = 0. In the former case, the soonest we can hope to detect the change
is at time 0. This is the reason why in our criterion we use *'+ 1++ instead of *'+ 1+.
In the other two measures this modification is unnecessary since, due to lack of prior
information, a change before 0 cannot be distinguished from a change at 0.

Regarding now the stopping time T , we need to properly enrich the $-algebra
!0 so randomization is permitted at time 0. In particular, at time 0, with probability
3 we decide to stop at 0 and take no samples and with probability *1− 3+ to
employ a standard stopping time that requires sampling. Probability 3 is selected
independently from the observations. This slight modification in the definition of
our stopping time is absolutely necessary for Shiryaev’s formulation, whereas for
the Lorden and Pollak setup it is needed only for technical reasons.

We continue our presentation by examining various optimality problems
defined with the help of the previous performance measures in combination with
proper false alarm constraints. We start with Shiryaev’s Bayesian setup.

2.1. Modified Shiryaev Criterion

Shiryaev (1963) considered the change time ' to be random, independent from the
observations, with a zero modified exponential prior of the form3: P*' ≤ −1+ = 4
and P*' = t+ = *1− 4+p*1− p+t% t ≥ 0, where 4 ∈ (0% 1) and p ∈ *0% 1). Combining
(2.1) with the classical constraint on the false alarm probability used in Baysian
approaches, we propose the following constrained optimization problem:

sup
T

"S*T+ = sup
T

P
(
T = *'+ 1++%T > '

)
/ over all T - P*T ≤ '+ ≤ 5% (2.4)

where 5 ∈ *0% 1+ is a prescribed false alarm level. The next theorem identifies the
optimum scheme that solves (2.4).

Theorem 2.1. The optimum detection rule that solves (2.4) is defined as follows:

i) 5 ≥ *1− 4+: With probability 3 = 1 stop at 0 without taking any samples.
ii) *1− 4+ >5 ≥ *1− 4+ *1−p+P$*,1≥.∗+

1−*1−p+P$*,1<.∗+ where .∗ = 4
1−4

1−p
p
: With probability

3 = 5

p*1− 4+
(1− *1− p+P$*,1 < .∗+)− 1− p

p
P$*,1 ≥ .∗+%

decide between stopping at 0 and using Shewhart with constant threshold .∗.
iii) *1− 4+ *1−p+P$*,1≥.∗+

1−*1−p+P$*,1<.∗+ > 5: The optimum is the Shewhart stopping time with
constant threshold . computed from

P$*,1 ≥ .+ = 5p

*1− 4− 5+*1− p+
(2.5)

and with randomization probability 3 = 0.

3There is a slight difference between the current definition of the prior and the one
encountered in the literature. This is because in our approach, ' is the last time instant
under the nominal regime, whereas in the literature ' is conventionally considered as the
first instant under the alternative.
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Proof. The proof of Theorem 2.1 is presented in the Appendix. !

The exponential prior model is theoretically very appealing because it leads to
well-defined optimal stopping problems. However, one of its key weaknesses is the
need to properly specify the parameter pair *4%p+ . If the two quantities are unknown
and cannot be defined explicitly, a possible means to overcome this problem is to
adopt a worst-case analysis with respect to these two parameters. We should point
out that this idea, detailed in the next subsection, has no equivalent in the existing
literature for the classical Shiryaev criterion.

2.2. Max–Min Version of the Modified Shiryaev Criterion

Consider, as before, ' to be distributed according to a zero modified exponential
with unknown parameters 4%p . Let us denote our performance measure as

"S*T% 4%p+ = P
(
T = *'+ 1++%T > '

)
%

making explicit its dependence on the parameter pair *4%p+ . Adopting a max–min
approach, we are interested in the following constrained optimization problem:

sup
T

inf
4%p

"S*T% 4%p+ = sup
T

inf
4%p

P
(
T = *'+ 1++%T > '

)
/ over all T - E$(T) ≥ 0 ≥ 1&

(2.6)

As we can see, we have replaced the false alarm probability constraint, used in
the previous formulation, with a constraint on the average period between false
alarms, commonly encountered in min-max approaches. The next theorem presents
the optimum detection rule.

Theorem 2.2. Let . be the solution of the equation

P0*,1 <.+

P$*,1 ≥ .+
= 0% (2.7)

then (2.6) is solved by randomizing with probability 3 = P0*,1 ≥ .+ between stopping at
0 and using the Shewhart stopping time with constant threshold .. The resulting stopping
rule is an equalizer over all parameter pairs *4%p+ ; while the worst-case zero modified
exponential prior is the degenerate uniform obtained by selecting 4*p+=.p/*.p+1−p+
and letting p → 0.

Proof. The proof of Theorem 2.2 can be found in the appendix. !

It is surprising that a worst-case analysis results in an optimum stopping rule
that requires non trivial randomization at 0. This is quite uncommon in min–max
approaches. It is basically due to the fact that, even though we follow a worst-
case approach with respect to the two parameters, the underlying setup is still
Bayesian, thus accepting randomized optimum solutions, as was demonstrated in
Theorem 2.1. Let us now continue our presentation with the max–min criteria
introduced in (2.2), (2.3).
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2.3. Modified Lorden and Pollak Criterion

We propose the following optimization problem:

sup
T

"L*T+ = sup
T

inf
t≥0

ess inf Pt*T = t + 1%!t%T > t+/ over all T - E$(T) ≥ 0 ≥ 1%

(2.8)

where we maximize Lorden’s modified measure (2.2) under the classical constraint
on the average false alarm period. Similarly, for Pollak’s modified criterion (2.3), we
have

sup
T

"P*T+ = sup
T

inf
t≥0

Pt*T = t + 1%T > t+/ over all T - E$(T) ≥ 0 ≥ 1& (2.9)

The following theorem offers the solution to both problems.

Theorem 2.3. The optimum stopping time that solves the max–min problems in (2.8)
and (2.9) is the Shewhart test with constant threshold . computed from the equation
P$*,1 ≥ .+ = 1/0.

Proof. The proof for (2.9) (actually under a more general semi-Bayesian setting)
is given in Pollak and Krieger (2013), while the one for (2.8) is detailed in the
appendix. !

We note that in the case of Pollak’s modified measure we have an exact
optimality result. This should be compared with the original criterion "P*T+ in
(1.3) where (third-order) asymptotically optimum detection rules are available (see
Pollak, 1985; Tartakovsky et al., 2012).

The simplicity of the probability maximizing approach allows for the
straightforward analysis of problems that, in the classical change-point literature
(involving expected delays), have been open for many years. It is worth considering
two such characteristic cases in detail and develop the corresponding optimal
solutions.

3. INDEPENDENT, NON-IDENTICALLY DISTRIBUTED OBSERVATIONS

Let !f$%t*x+#, !f0%t*x+# denote two pdf sequences and consider the case where the
observation process !"t# is independent but not identically distributed, following the
first pdf sequence up to some change time ' and switching to the second after '. We
are interested in detecting the change optimally following the max–min approach
proposed in (2.8) or (2.9). We recall that the likelihood ratio ,t = f0%t*"t+/f$%t*"t+
now has time-varying statistics. We have the following theorem that provides the
optimum solution to both problems.

Theorem 3.1. The optimum stopping time that solves (2.8) and (2.9) for the case of
independent and non-identically distributed observations is the Shewhart stopping time
# = inf!t > 0 - ,t ≥ .t*6+#, where the sequence of thresholds !.t*6+# is obtained by
solving the equations

P0%t

(
,t ≥ .t*6+

)
= 6/ ∀t > 0% (3.1)
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with parameter 6 ∈ *0% 1+. Assuming for each 6 that

sup
t>0

P$%t

(
,t < .t*6+

)
< 1% (3.2)

this parameter is specified by requiring the false alarm constraint to be satisfied with
equality; that is,

E$(# ) = 1+
$∑

t=1

t∏

l=1

P$%l

(
,l < .l*6+

)
= 0& (3.3)

Proof. The proof of Theorem 3.1 can be found in the appendix. !

Due to the time-varying statistics, the threshold sequence needs to be
time-varying as well. With (3.1) we assure that the Shewhart test is an equalizer
over time, a very important property for proving its optimality. This is indeed
true since Pt*# = t + 1%!t%# > t+ = Pt*# = t + 1%# > t+ = P0%t*,t ≥ .t*6++ = 6. Of
course, this condition still generates an ambiguity since 6 is unknown. This last
parameter is then specified by forcing the Shewhart stopping time to satisfy the
false alarm constraint with equality through (3.3). Condition (3.2) guarantees
summability of the series in (3.3) and also simplifies, considerably, the proof of our
theorem. It can be relaxed but at the expense of a far more involved analysis.

Example 3.1. Consider the case where f$%t*x+ is time invariant Gaussian with mean
0 and variance 1, while f0%t*x+ is Gaussian with mean 1t > 0 and variance 1.
The sequence of thresholds then becomes

.t*6+ = e0&51
2
t +1t s*6+/ where s*6+ = 2−1*1− 6+%

and 2−1*x+ denotes the inverse cdf of a standard Gaussian. Assumption (3.2) is valid
if the sequence of means !1t# is upper bounded by a finite constant. To find 6, we
observe that P$*,t ≤ .t+ = 2*1t + s*6++. Since there is a one-to-one correspondence
between 6 ∈ *0% 1+ and s*6+ ∈ $, we can instead solve (3.3) for s; that is,

1+
$∑

t=1

t∏

l=1

2*1l + s+ = 0

and compute the optimum performance as 6 = 1−2*s+ = 2*−s+.

4. MULTIPLE POSTCHANGE PROBABILITY MEASURES

Consider now the change detection problem with more than one postchange
possibility. Our observation sequence !"t# is i.i.d. before and after the change
with a common pdf f$*"+ before the change and two4 different pdf possibilities
f 1
0 *"+%f

2
0 *"+ after the change. Following a pure non-Bayesian approach (see

Pollak and Krieger, 2013, for semi-Bayesian formulations) we extend the definition

4Extension to more than two pdfs is straightforward.
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of our performance measures in order to account for the multiple postchange
distributions. Define

"L*T+ = min
i=1%2

inf
t≥0

ess inf Pi
t*t < T ≤ t +m%!t%T > t+

"P*T+ = min
i=1%2

inf
t≥0

Pi
t*t < T ≤ t +m%T > t+%

where Pi
t is the measure induced by a change at time t with the alternative pdf being

f i
0*"+. Consequently, in our criterion we include an additional minimization over the
possible alternative measures.

Limiting, again, ourselves to the special case m = 1, we are interested in solving
the following constrained optimization problems:

sup
T

"L*T+ = sup
T

min
i=1%2

inf
t≥0

ess inf Pi
t*T = t + 1%!t%T > t+/ over all T - E$(T) ≥ 0 ≥ 1%

(4.1)

for the Lorden and

sup
T

"P*T+ = sup
T

min
i=1%2

inf
t≥0

Pi
t*T = t + 1%T > t+/ over all T - E$(T) ≥ 0 ≥ 1% (4.2)

for the Pollak criterion. We note that we have two sequences of likelihood ratios,
namely, !,1t # and !,2t # defined as ,it = f i

0*"t+/f$*"t+%i = 1% 2. For each q ∈ (0% 1) we
define a threshold .*q+ ≥ 0, so that the following version of the Shewhart test

# *q+ = inf!t > 0 - *1− q+,1t + q,2t ≥ .*q+# (4.3)

satisfies the equation

P$
(
*1− q+,11 + q,21 ≥ .*q+

)
= 1

0
& (4.4)

The next theorem demonstrates that by proper selection of the parameter q, the
corresponding stopping time solves both optimization problems.

Theorem 4.1. For the solution of (4.1) and (4.2) we distinguish three cases:

(i) If P2
0*,

1
1 ≥ .*0++ ≥ P1

0*,
1
1 ≥ .*0++, then the optimum test is # *0+.

(ii) If P1
0*,

2
1 ≥ .*1++ ≥ P2

0*,
2
1 ≥ .*1++ then the optimum test is # *1+.

(iii) If there is q ∈ *0% 1+ such that

P1
0

(
*1− q+,11 + q,21 ≥ .*q+

)
= P2

0

(
*1− q+,11 + q,21 ≥ .*q+

)
% (4.5)

then the optimum test is # *q+. For each 0 ≥ 1, only one of (i), (ii) and (iii) applies.

Proof. The proof of Theorem 4.1 can be found in the appendix. !

We can use the previous outcome to find solutions for Lorden’s original
criterion involving average detection delays when there are multiple postchange
probabilities. The goal is to obtain a result that is similar to the one presented in
Section1.2 for the Shewhart rule of Theorem 4.1.
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4.1. Multiple Postchange Measures with Lorden’s Original Criterion

Consider the Lorden criterion in (1.2) properly extended to cover multiple
postchange probability distributions

"L*T+ = max
i=1%2

sup
t≥0

ess sup Ei
t(T − t%!t%T > t)&

We are then interested in the following min–max constrained optimization problem:

inf
T

"L*T+ = inf
T

max
i=1%2

sup
t≥0

ess sup Ei
t(T − t%!t%T > t)/ over all T - E$(T) ≥ 0 ≥ 1&

(4.6)

This problem has been open for many years. Existing results typically
refer to the two-sided CUSUM (2-CUSUM) and demonstrate that this rule
exhibits different levels of asymptotic optimality. For example, in Hadjiliadis and
Moustakides (2006) and Hadjiliadis and Poor (2009), it is proved that specially
designed 2-CUSUM tests enjoy second- and third-order asymptotic optimality
when detecting changes in the constant drift of a Brownian motion. Dragalin
(1997) provides first-order asymptotically optimum 2-CUSUM rules for the case of
single-parameter exponential families.

With the next theorem we present the analog of Section 1.2 for the case of two
postchange probability measures. In particular, we demonstrate that the Shewhart
test of Theorem 4.1 can be the exact solution to (4.6) provided threshold . (hence
parameter 0) takes values within a specific range. The next theorem presents the
precise form of our claim. We recall that the two likelihood ratios ,it are known
functions of the observation "t.

Theorem 4.2. With # *q+ defined in (4.3), (4.4), we distinguish three cases that can
provide partial solution to (4.6):

(i) If P2
0

(
,11 ≥ .*0+

)
≥ P1

0

(
,11 ≥ .*0+

)
with 1 ≥ .*0+ ≥ 0, then the optimum test is # *0+.

(ii) If P1
0

(
,21 ≥ .*1+

)
≥ P2

0

(
,21 ≥ .*1+

)
with 1 ≥ .*1+ ≥ 0, then the optimum test is # *1+.

(iii) If there is q ∈ *0% 1+ such that

P1
0

(
*1− q+,11 + q,21 ≥ .*q+

)
= P2

0

(
*1− q+,11 + q,21 ≥ .*q+

)
% (4.7)

and

min!q+ *1− q+ inf
"1∈%1∩%c

2

,11% *1− q++ q inf
"1∈%c

1∩%2

,21#≥ .*q+≥ inf
"1∈%1∩%2

!*1− q+,11 + q,21#

(4.8)

where %i = !"1 - ,
i
1 ≤ 1# and %c

i its complement, then the optimum test is # *q+.

Proof. The proof of Theorem 4.1 can be found in the appendix. !

Even though the extent of this result is clearly limited, it is nonetheless the
first time we have a nonasymptotic solution for Lorden’s formulation when there
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are multiple distributions under the alternative regime. Theorem 4.2 also establishes
that 2-CUSUM is not strictly optimum (at least not in the sense of 4.6) despite
its very strong asymptotic optimality properties. Finally, we need to mention that
it is not possible to recover the same nonasymptotic result by assigning specific
prior probabilities to the postchange measures (i.e., following the semi-Baysian
idea in Pollak and Krieger, 2013). The extra freedom enjoyed by considering each
probability measure separately is critical in demonstrating the optimality of the
Shewhart test in the sense of Lorden.

Example 4.1. Consider the Gaussian case where under the nominal regime the
samples are i.i.d. with mean 0 and variance 1, whereas under the alternative they
can have two possible means ±1% 1> 0 with unit variance. Let us apply case (iii)
of Theorem 4.2. Due to symmetry it is sufficient to select q = 0&5 to satisfy (4.7).

The two likelihood ratios ,i1 as functions of the observation "1 are
equal to e−0&512±1"1 and the sets of interest are %1 = !"1 - "1 ≤ 0&51# and %2 =
!"1 - "1 ≥ −0&51#. We can now compute the critical range for threshold . from
(4.8). Since inf"1<−0&51 ,

1
1 = inf"1>0&51 ,

2
1 = 0 and inf−0&51≤"1≤0&51 0&5*,11 + ,21+ = e−0&512 ,

we have 0&5 ≥ . ≥ e−0&512 . This interval is nonempty when 1 >
√
2 log 2 = 1&1774

and gives rise to the following range for 0:

1 ≤ 0 ≤ 1
22*−0&51 + 7+

% where 7 = − 1
1
log

(
1+

√
1− 4e−12

2

)

%

with the corresponding worst-case average detection delay satisfying

1 ≤ "L*# + ≤ 1
2*0&51 + 7++2*−1&51 + 7+

&

Using the same numerical value we adopted in Example1.1 for the one-sided
case, namely, 1 = 6&1805, we obtain 1 ≤ 0 ≤ 500 while the optimum detection delay
becomes, at worst, 1.001. Compared to Example1.1, as we can see, the range of 0
where the Shewhart test is optimum is reduced to half.

Remark 4.1. Because with the maximizing probability approach we focus on a
single sample after the change, it turns out that Shewhart is optimum for transient
changes as well. Specifically, the same proofs go through for any type of change
provided that it lasts at least one sample (which is necessary for a change to exist).
Clearly, this is an additional distinct optimality characteristic enjoyed by this simple
detection rule. As we know, the Shiryaev, CUSUM, and Shiryaev-Roberts tests lose
their optimality if the change does not last indefinitely after its occurrence.

APPENDIX: PROOFS

Proof of Theorem 2.1. We begin our analysis by writing the performance measure
in a more detailed form. We have

"S*T+ = P*T = *'+ 1++%T >'+ = P*T = *'+ 1+++
P*T >'+

& (A.1)
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Since T ≥ 0, for the numerator we can write

P*T = *'+ 1+++ = P*' ≤ −1+P*T = 0++
$∑

t=0

P*' = t+Pt*T = t + 1+

= 43 + *1− 4+p
$∑

t=0

*1− p+tPt*T = t + 1+

= 43 + *1− 4+p
$∑

t=0

*1− p+tE$(,t+1&!T=t+1#)

= 43 + *1− 4+p

*1− p+
E$(*1− p+T,T&!T>0#)

= 43 + *1− 4+p

*1− p+
E$(*1− p+T,T %T > 0)P*T > 0+

= 43 + *1− 4+p

*1− p+
E$(*1− p+T,T %T > 0)*1− 3+& (A.2)

Similarly, for the denominator, since !T > t# ∈ !t and T ≥ 0, we have

P*T >'+ = P*' ≤ −1+P*T > −1++
$∑

t=0

P*' = t+P$*T > t+

= 4+ *1− 4+p
$∑

t=0

*1− p+tP$*T > t+ = 4+ *1− 4+pE$

[
T−1∑

t=0

*1− p+t
]

= 4+ *1− 4+E$(1− *1− p+T ) = 4+ *1− 4+E$
[(
1− *1− p+T

)
&!T>0#

]

= 4+ *1− 4+E$(1− *1− p+T %T > 0)P*T > 0+

= 4+ *1− 4+!1− E$(*1− p+T %T > 0)#*1− 3+% (A.3)

with the third last equality being true because 1− *1− p+0 = 0. Combining (A.2)
and (A.3) we have the following form for the modified Shiryaev measure:

"S*T+ =
43 + *1−4+p

1−p
E$(*1− p+T,T %T > 0)*1− 3+

4+ *1− 4+!1− E$(*1− p+T %T > 0)#*1− 3+
& (A.4)

Next, we distinguish different possibilities depending on the value of 5. For
case (i) where 5 ≥ 1− 4 by selecting 3 = 1, in other words stopping at 0 with
probability 1, as we can see from (A.4), yields "S*T+ = 1, which is the maximum
possible value for our criterion (since it is a probability). On the other hand, the
denominator, which is the complement of the false alarm probability, from (A.3) is
equal to 4. This means that the false alarm probability is 1− 4, thus satisfying the
constraint.

Let now 1− 4 > 5. Since the stopping time T must satisfy the false alarm
constraint, this suggests that the denominator, by being the complement of the false
alarm probability, is no smaller than 1− 5. We are going to show that in order
to maximize the performance measure it is sufficient to limit ourselves to stopping
times that satisfy the false alarm constraint with equality. This equality will be
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achieved by modifying the randomization probability 3 in a way that will improve
(increase) the value of the criterion "S*T+.

As we can see from (A.4), both the numerator and the denominator are linear
functions of 3 and the ratio takes its maximal value (equal to 1) for 3 = 1. We can
therefore conclude that the ratio is an increasing function of 3. If T is such that
the denominator is strictly greater than 1− 5 and since we are in the case where
4 < 1− 5, this suggests that, necessarily, we have 1− *1− 4+E$(*1− p+T %T > 0) >
1− 5. Consequently, by replacing 3 with a larger value 3′ > 3 we can make the
denominator exactly equal to 1− 5. Making the same change in the numerator, due
to the monotonicity with respect to 3, this will result in an overall increase of our
performance measure. Therefore, without loss of generality, we may limit ourselves
to stopping times that satisfy the false alarm constraint with equality.

The previous observation suggests that we can maximize the numerator in
(A.4) subject to the constraint that the denominator is equal to *1− 5+. Using the
Lagrange multiplier technique we define the following criterion '*T+ that combines
the numerator and the constraint:

'*T+ = 43 + *1− 4+p

1− p
E$(*1− p+T,T %T > 0)*1− 3+

+ 8
{
43 + !1− *1− 4+E$(*1− p+T %T > 0)#*1− 3+

}

= 4*1+ 8+3 +
{
8+ *1− 4+E$

[
*1− p+T

(
p

1− p
,T − 8

)
%T > 0

]}
*1− 3+%

with 8 being the corresponding Lagrange multiplier. The goal, now, is first to
maximize '*T+ over T > 0 and then over the randomization probability 3 ∈ (0% 1).
Fixing 3 and maximizing over T > 0 means that we need to maximize the expression

'̂*T+ = E$

[
*1− p+T

(
p

1− p
,T − 8

)
%T > 0

]
&

For . ≥ 0 consider the following specific value of the Lagrange multiplier:

8 = .

1− p
!1− *1− p+P$*,1 <.+# − P0*,1 ≥ .+&

Using standard optimal stopping theory it is then straightforward to show that '̂*T+
is maximized by the Shewhart stopping time defined in (1.7) with constant threshold
.. The corresponding optimum performance can then be computed as follows:

'̂*# + =
$∑

t=1

*1− p+t(P$*,1 <.+) t−1

{
p

1− p
P0*,1 ≥ .+− 8P$*,1 ≥ .+

}

= pP0*,1 ≥ .+− 8*1− p+P$*,1 ≥ .+

1− *1− p+P$*,1 <.+
= p

1− p
.− 8&

The last equality can be verified by directly substituting the definition of the
Lagrange multiplier 8. Using this result in the original measure, we end up with the
following inequality:

'*T+ ≤ 4*1+ 8+3 +
[
4*1+ 8++ *1− 4+

p

1− p
.− 4

]
*1− 3+& (A.5)
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From (A.3), we can also compute the corresponding false alarm probability, which
must be set to 5 (we must satisfy the constraint with equality):

*1− 4+

{
3 + *1− p+P$*,1 ≥ .+

1− *1− p+P$*,1 <.+
*1− 3+

}
= 5& (A.6)

We are now left with the definition of the randomization probability 3.
Selecting 3 optimally amounts to maximizing the right-hand side in (A.5) over
3. We observe that the corresponding expression is a convex combination of the
value 4*1+ 8+, which is the gain obtained when stopping at 0, and 4*1+ 8++
*1− 4+ p

1−p
.− 4, which is the gain resulting by employing # for t > 0. Clearly, we

are going to put all of the probability mass on the largest gain. Consequently, when
. > .∗ = 4

1−4
1−p
p

the gain provided by # exceeds the gain obtained by stopping
at 0; therefore, in this case we select 3 = 0. Of course, . must be such that the
Shewhart test satisfies the false alarm constraint with equality. From (A.6), by
substituting 3 = 0 we can see that the constraint is satisfied when . is computed
through equation (2.5). This equation always has a solution that exceeds .∗ as long
as 5 takes values in the interval specified in case (iii). When . = .∗, stopping at 0
provides exactly the same gain as the Shewhart test # with threshold .∗. Therefore,
we can randomize between the two possibilities with any probability 3. However,
since we need to satisfy the false alarm constraint with equality, from (A.6) with
. = .∗ we can solve for 3 and obtain the optimum 3 depicted in case (ii). The
resulting value corresponds to a legitimate probability 3 ∈ (0% 1) when 5 is within
the limits prescribed for this case. This concludes our proof. !

Proof of Theorem 2.2. The proof will rely on the analysis developed for the proof
of Theorem 2.1. In order to solve the max–min problem defined in our theorem
it is sufficient to show the existence of a triple *T ∗% 4∗%p∗+ such that the following
saddle-point relation holds

"S*T% 4
∗%p∗+ ≤ "S*T

∗% 4∗%p∗+ ≤ "S*T
∗% 4%p+% (A.7)

for all stopping times T that satisfy the false alarm constraint. It is well known that
whenever a saddle-point solution exists it is also max–min optimum. Indeed, note
that if T ∗ satisfies (A.7) then we can write

inf
4%p

"S*T% 4%p+ ≤ "S*T% 4
∗%p∗+ ≤ "S*T

∗% 4∗%p∗+ = inf
4%p

"S*T
∗% 4%p+%

where the first inequality is obvious; The second corresponds to the left-hand
side inequality in (A.7) and the last equality is equivalent to the right-hand
side inequality in (A.7). Consequently, T ∗ solves the max–min problem and the
parameter pair *4∗%p∗+ corresponds to the worst-case (least-favorable) exponential
prior.

To show (A.7), let us first define our candidate optimum stopping time T ∗.
Consider (2.7) and observe that for . → 0 the left-hand side tends to 0, whereas
for . → $ the same expression tends to $. Furthermore, the ratio is a strictly
increasing and continuous function of . (see Footnote 2). Due to this continuity
and strict monotonicity, the equation has a unique solution .. With the help of
this threshold value our candidate detection rule T ∗ consists in randomizing with
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probability 3∗ = P0*,1 ≥ .+ between stopping at 0 and using the Shewhart test
# with constant threshold .. For T ∗ we observe that E$(T

∗) = *1− 3∗+E$(# ) =
P0*,1 <.+/ P$*,1 ≥ .+ = 0, suggesting that it satisfies the false alarm constraint with
equality.

We first demonstrate that T ∗ satisfies the right-hand side in (A.7). For any
parameter pair *4%p+ , after recalling that on !T ∗ > 0# we have T ∗ = # , we can verify
using (A.4) that

"S*T
∗% 4%p+ =

43∗ + *1−4+p
1−p

E$(*1− p+#,# )*1− 3∗+

43∗ + !1− *1− 4+E$(*1− p+# )#*1− 3∗+
= P0*,1 ≥ .+&

The last equality is true since we can immediately compute E$(*1− p+#,# ) =
*1− p+P0*,1 ≥ .+/!1− *1− p+P$*,1 <.+# and E$(*1− p+# ) = *1− p+P$*,1 ≥ .+/
!1− *1− p+P$*,1 <.+# . As we realize, the resulting performance of T ∗ is
independent from *4%p+ ; therefore, the stopping rule is an equalizer with respect
to the two parameters. This, in turn, suggests that the right-hand side in (A.7) is
trivially satisfied with equality.

Showing the left-hand side inequality requires more work. Note that we need to
define the worst-case parameter pair *4∗%p∗+. Unfortunately, this pair turns out to
be a limiting case corresponding to an exponential prior that tends to a degenerate
uniform. More specifically, for p > 0 we solve for 4 the following equation:

4

1− 4

1− p

p
= .%

resulting in 4*p+ = .p/*1− p+ .p+. The parameter pair *4*p+%p+ with p → 0 yields
the worst-case exponential prior we are interested in. Consequently, for the left-hand
side inequality we need to prove that

lim
p→0

"S*T% 4*p+%p+ ≤ lim
p→0

"S*T
∗% 4*p+%p+ = P0*,1 ≥ .+% (A.8)

over all T satisfying the false alarm constraint E$(T) = *1− 3+E$(T %T > 0) ≥ 0.
Fix a sufficiently small 9 > 0 so that 3∗

9 = P0*,1 ≥ .++ 9 < 1. Define the false
alarm level

59*p+ =
(
1− 4*p+

)p3∗
9 + *1− p+P$*,1 ≥ .+

p+ *1− p+P$*,1 ≥ .+

and the class of stopping rules

%9*p+ = !T- P*T ≤ '+ ≤ 59*p+#& (A.9)

It is then straightforward to verify that 59*p+ ∈ *0% 1+ and for any probability p, the
quantities 4*p+%p % 59*p+ are such that case (ii) of Theorem 2.1 applies. This suggests
that when "S*T% 4*p+%p+ is maximized over the class %9*p+, the optimum stopping
time is to randomize between stopping at 0 and the Shewhart test # with threshold
. using the randomization probability 3∗

9 . The latter is a direct consequence of
the specific definition of 4*p+, and 59*p+. Call the resulting optimal stopping time
T ∗
9 . Note also that this optimality property is true for all 1 > p > 0. Using the
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definitions of 4*p+, 59*p+ and (A.3), we can verify that the class %9*p+ in (A.9) can
be equivalently written as

%9*p+ =
{

T - *1− 3+E$

[
1− *1− p+T

p
%T > 0

]
≥

0− 9
P$*,1≥.+

1+ p0

}

% (A.10)

where we also used (2.7).
Fix a T that satisfies the false alarm constraint E$(T) =*1− 3+E$(T %T > 0) ≥0.

As we argued before, our goal is to prove (A.8). From monotone convergence we
have

lim
p→0

*1− 3+E$

[
1− *1− p+T

p
%T > 0

]
= *1− 3+E$(T %T > 0) ≥ 0&

Consequently, for any p ∈ *0%p9), where p9 sufficiently small, we can write

*1− 3+E$

[
1− *1− p+T

p
%T > 0

]
≥ 0− 9

P$*,1 ≥ .+
&

The previous inequality, comparing with (A.10), suggests that T ∈ %9*p+ for all
0 < p ≤ p9. A direct consequence of this fact is that "S*T% 4*p+%p+ ≤ "S*T

∗
9 % 4*p+%p+

for all p ∈ *0%p9). Taking the limit as p → 0 and using monotone convergence, we
obtain

lim
p→0

"S*T% 4*p+%p+ ≤ lim
p→0

"S*T
∗
9 % 4*p+%p+ = 3∗

9.+ *1− 3∗
9 +E$(,# )

.+ *1− 3∗
9 +E$(# )

& (A.11)

Since E$(# ) = 1/P$*,1 ≥ .+, E$(,# ) = P0*,1 ≥ .+/P$*,1 ≥ .+ and 3∗
9 = P0*,1 ≥

.++ 9, we conclude that E$(,# ) ≤ 3∗
9E$(# ). Substituting in (A.11) yields

lim
p→0

"S*T% 4*p+%p+ ≤ 3∗
9 = P0*,1 ≥ .++ 9&

Because this inequality is true for any sufficiently small 9 > 0, we have validity of
(A.8). This concludes our proof. !

Proof of Theorem 2.3. If T is such that E$(T) = $, then we can define a sufficiently
large integer M so that $ > E$(TM ) ≥ 0 where TM = min!T%M# . Since for t < M
we have !T = t + 1# = !TM = t + 1# and !T > t# = !TM > t#, we conclude Pt*TM =
t + 1%!t%TM > t+ = Pt*T = t + 1%!t%T > t+. On the other hand, for t ≥ M it is true
that !TM = t + 1# = !TM > t# = ., suggesting that Pt*TM = t + 1%!t%TM > t+ = 1 ≥
Pt*T = t + 1%!t%T > t+. This means that "L*T+ ≤ "L*TM+. The last inequality implies
that we can limit ourselves to stopping times T that satisfy $ > E$(T) ≥ 0.

From Lorden’s modified measure (2.8) we conclude that for all t ≥ 0 we can
write

"L*T+ ≤ Pt*T = t + 1%!t%T > t+&

Multiplying both sides with &!T>t# and taking expectation with respect to the
nominal measure yields

"L*T+P$*T > t+ ≤ Pt*T = t + 1+ = E$(,t+1&!T=t+1#)& (A.12)
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Summing over all t ≥ 0 we obtain

"L*T+E$(T) ≤ E$(,T )%

where we define ,0 = 0. From the previous inequality we conclude

"L*T+ ≤
E$(,T )

E$(T)
= *1− 3+E$(,T %T > 0)

*1− 3+E$(T %T > 0)
= E$(,T %T > 0)

E$(T %T > 0)
&

Let us examine the ratio E$(,T )/E$(T) over all T that satisfy the constraint.
Note that when $ > E$(T) = *1− 3+E$(T %T > 0) > 0 we can replace 3 with a
larger value 3′ so that *1− 3′+E$(T %T > 0) = 0 without changing the value of the
ratio (since it does not depend on 3). This in turn suggests that any value attained
by this ratio can also be achieved by a stopping time that satisfies the constraint
with equality. Using this observation we can write

sup
T-E$(T)≥0

"L*T+ ≤ sup
T-E$(T)=0

E$(,T )

E$(T)
= 0−1 sup

T-E$(T)=0

E$(,T )& (A.13)

To maximize E$(,T ) over all stopping times that satisfy the constraint with
equality, we reduce the optimization problem into an unconstrain one using the
Lagrange multiplier technique. In particular, we consider the maximization of

'*T+ = E$(,T − 8T) = *1− 3+E$(,T − 8T %T > 0)&

To find the optimum stopping time we will first optimize over T > 0 and then
identify the optimum randomization probability 3. Let . ≥ 0 be the solution of the
equation P$*,1 ≥ .+ = 1/0 and define 8 = P0*,1 ≥ .+− .P$*,1 ≥ .+. Using standard
optimal stopping theory we can then conclude that '*T+ for T > 0 is optimized by
the Shewhart test with threshold .. Since E$(# ) = 1/P$*,1 ≥ .+ = 0 and E$(,# ) =
P0*,1 ≥ .+/P$*,1 ≥ .+ = 0P0*,1 ≥ .+, if we also use the definition of 8 we conclude
that

'*T+ = *1− 3+E$(,T − 8T %T > 0) ≤ *1− 3+E$(,# − 8# ) = *1− 3+. ≤ .&

The last inequality suggests that the optimum randomization probability is 3 = 0.
From the previous result we have that for any T satisfying the false alarm constraint
with equality, we can write

E$(,T )− 80 = E$(,T − 8T) ≤ E$(,# − 8# ) = E$(,# )− 80%

which implies E$(,T ) ≤ E$(,# ) = 0P0*,1 ≥ .+. Observing also that for every t≥ 0
we have Pt*# = t + 1%!t%# > t+ = P0*,1 ≥ .+, this means that Shewhart is an
equalizer; consequently, "L*# + = P0*,1 ≥ .+. Using these two facts in (A.13) leads to

"L*# +≤ sup
T-E$(T)≥0

"L*T+ ≤ 0−1 sup
T-E$(T)=0

E$(,T ) ≤ 0−1!0P0*,1 ≥ .+#=P0*,1 ≥ .+="L*# +%

which proves optimality for # and concludes the proof. Exactly the same analysis
applies to (2.9). In fact, we can simply start the proof from (A.12), which is
immediately satisfied by Pollak’s modified measure. !
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Proof of Theorem 3.1. Let 6 and !.t*6+# be such that (3.1), (3.2), (3.3) are satisfied.
If we define :*6+ = supt>0 P$%t

(
,t < .t*6+

)
then assumption (3.2) is equivalent to

0 ≤ :*6+< 1& (A.14)

For simplicity, from now on, we drop the dependence of .t*6+ and :*6+ on 6. For
t ≥ 0 define the two sequences !;t#% !ct#

;t = E$(# − t%# > t) = 1+
$∑

n=t+1

n∏

l=t+1

P$%l*,l < .l+ and ct =
;t+1

.t+1
&

Also, set c−1 = 0 and ,0 = 0. From the definition of ;t and comparing with (3.3) we
conclude that ;0 = 0. Note that !;t# satisfies the backward recursion

;t−1 = 1+ P$%t*,t < .t+;t& (A.15)

From (A.14) we have P$%t*,t <.t+ ≤ :, suggesting that ;t ≤ 1/*1− :+. Furthermore,

1− 6 = P0%t*,t < .t+ = E$(,t&!,t<.t#
) ≤ .t%

from which we conclude that ct ≤ 1/*1− 6+*1− :+. In other words, both sequences
!;t#% !ct# are uniformly bounded from above by some finite constant.

Consider first (3.3). The function <*6+ = 1+∑$
t=1
∏t

l=1 P$%l

(
,l < .l*6+

)
is

decreasing in 6 with <*0+ = $ and <*1+ = 1. From assumption (3.2) we have
validity of (A.14), which allows for the use of bounded convergence to show that
<*6+ is continuous in 6. This suggests that (3.3) has a nonnegative solution.

As in the previous theorem, we can write

"L*T+P$*T > t+ ≤ E$(,t+1&!T=t+1#)&

Multiplying both sides with ct, which is nonnegative and summing over t ≥ 0, for
any T > 0 we have

"L*T+ ≤
E$(,T cT−1)

E$(
∑T−1

t=0 ct)
&

Recalling that ,0 = 0 and using similar arguments as in the proof of Theorem 2.3,
we can show that

sup
T-E$(T)≥0

"L*T+ ≤ sup
T-E$(T)=0

E$(,T cT−1)

E$(
∑T−1

t=0 ct)
% (A.16)

namely, to maximize the upper bound it suffices to limit ourselves to stopping times
that satisfy the false alarm constraint with equality. We will show that the upper
bound cannot exceed 6.

Fix T with E$(T) = *1− 3+E$(T %T > 0) = 0 and consider the expression

'*T+ = E$

[

,T cT−1 − 6
T−1∑

t=0

ct + T

]

= *1− 3+E$

[

,T cT−1 +
T−1∑

t=0

*1− 6ct+%T > 0

]

&

(A.17)
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Note that 3 = 1 is not an acceptable value since then T cannot satisfy the
false alarm constraint with equality. Therefore, 0 ≤ 3 < 1. This suggests that
E$(T %T > 0)=0/*1−3+<$. We first examine the part T >0, namely, the expression

'̂*T+ = E$

[

,T cT−1 +
T−1∑

t=0

*1− 6ct+%T > 0

]

&

We observe that

E$(,T %T > 0) =
$∑

t=1

E$(,t&!T=t#%T > 0) ≤
$∑

t=1

E$(,t&!T>t−1#%T > 0)

=
$∑

t=1

E$
[
E$(,t%!t−1)&!T>t−1#%T > 0

]
= E$(T %T > 0) < $&

Since !ct# is uniformly bounded and because of the previous observation, this
suggests that for every 9 > 0 we can find sufficiently large integer M so that %'̂*T+−
'̂*TM+% ≤ 9, where TM = min!T%M# . This implies

'̂*T+ ≤ '̂*TM++ 9& (A.18)

We can now maximize '̂*TM+ over TM with the optimization performed over the
finite time horizon (0%M) . From standard optimal stopping theory we can define the
sequence of optimal costs with the help of the backward recursion

Vt*,t+ = max!,tct−1% *1− 6ct++ E$(Vt+1*,t+1+)#/t = M − 1% & & & % 0%

starting with VM*,M+ = ,McM−1. Since VM*,M+ ≤ max!,McM−1% ;M#, using induction
we can show that Vt*,t+ ≤ max!,tct−1% ;t# for all t = M%M − 1% & & & % 0. Indeed, the
inequality is true for t = M . Assume it is true for t + 1 ≤ M , we will then prove it
for t. Note that

Vt*,t+ = max!,tct−1% *1− 6ct++ E$(Vt+1*,t+1+)#

≤ max!,tct−1% *1− 6ct++ E$(max!,t+1ct% ;t+1#)#

= max!,tct−1% *1− 6ct++ ctP0%t+1*,t+1 ≥ .t+1++ ;t+1P$%t+1*,t+1 < .t+1+#

= max!,tct−1% 1+ ;t+1P$%t+1*,t+1 < .t+1+# = max!,tct−1% ;t#&

The inequality above is due to the induction assumption; furthermore, in the last
three equalities we used the definition of ct, namely, ct = ;t+1/.t+1; the fact that
by construction of the sequence !.t# we have P0%t+1*,t+1 ≥ .t+1+ = 6; and we also
used recursion (A.15). We thus conclude that Vt*,t+ ≤ max!,tct−1% ;t#. Applying
it for t = 0 yields V0*,0+ ≤ max!,0c−1% ;0# = ;0 = 0, because ,0 is defined to be 0
and, as we argued, ;0 = 0. From optimal stopping theory we have '̂*TM+ ≤ V0*,0+;
consequently, '̂*TM+ ≤ 0. Using this in (A.18) we obtain

'̂*T+ ≤ '̂*TM++ 9 ≤ 0+ 9%

which implies '̂*T+ ≤ 0. Substituting in (A.17) and maximizing over 3, we have

'*T+ ≤ *1− 3+0 ≤ 0%
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with the optimum randomization becoming 3 = 0. Using the definition of '*T+
from (A.17) and the fact that we consider T with E$(T) = 0 we have

0 ≥ '*T+ = E$(,T cT−1)− 6E$

[
T−1∑

t=0

ct

]

+ E$(T)%

which directly implies

E$(,T cT−1)

E$
[∑T−1

t=0 ct
] ≤ 6&

Shewhart, by construction, is an equalizer; hence, we have "L*# + = 6. From (A.16)
and the previous inequality we can then write

"L*# + ≤ sup
T-E$(T)≥0

"L*T+ ≤ sup
T-E$(T)=0

E$(,T cT−1)

E$
[∑T−1

t=0 ct
] ≤ 6 = "L*# +%

thus proving the desired optimality for Lorden’s criterion. Similar proof applies in
the case of Pollak’s measure. !

Proof of Theorem 4.1. When q = 0 or 1 then P$*,
i
1 ≥ .+ is continuous and strictly

decreasing in . (see Footnote2). If q ∈ *0% 1+ we observe

P$
(
*1− q+,11 + q,21 ≥ .

)
=
∫ $

0
P$

(
,11 ≥

.− qs

1− q

)
P$*,

2
1 ∈ ds+& (A.19)

Consequently, if we use the continuity and strict monotonicity with respect to .
of the first probability under the integral and bounded convergence we can prove
continuity and strict monotonicity of P$**1− q+,11 + q,21 ≥ .+ as a function of . for
all q ∈ (0% 1). This probability is equal to 1 and 0 for . = 0 and . → $, respectively,
therefore there exists unique .*q+ ≥ 0 that satisfies the false alarm constraint (4.4)
with equality.

Consider now .*q+ as a function of q. We like to show that this function is
continuous. Fix q0 ∈ *0% 1+ then for q → q0± we will show .*q0±+ = .*q0+. Recall
that .*q+ is constructed so that for all q ∈ (0% 1) we have P$**1− q+,11 + q,21 ≥
.*q++ = 1/0. Taking the limit with respect to q → q0± and using (A.19) we have

1
0
= lim

q→q0±

∫ $

0
P$

(
,11 ≥

.*q+− qs

1− q

)
P$*,

2
1 ∈ ds+

=
∫ $

0
P$

(
,11 ≥

.*q0±+− q0s

1− q0

)
P$*,

2
1 ∈ ds+ = P$

(
*1− q0+,

1
1 + q0,

2
1 ≥ .*q0±+

)
%

where for the second equality we used bounded convergence and the continuity
of the c.d.f. of ,11. Since P$**1− q0+,

1
1 + q0,

2
1 ≥ .*q0±++ = 1/0, but also from the

definition of .*q0+ that P$**1− q0+,
1
1 + q0,

2
1 ≥ .*q0++ = 1/0, we can claim that

.*q0±+ = .*q0+. The claim is valid since for each q, as we argued before, the
threshold that satisfies the false alarm constraint with equality is unique. Similar
proof (with one-sided limits) applies for q0 = 0% 1.
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Let us now prove the validity of our theorem when the condition of case (i) is
true. We have

"L*T+ = min
i=1%2

inf
t≥0

ess inf Pi
t*T = t + 1%!t%T > t+ ≤ inf

t≥0
ess inf P1

t *T = t + 1%!t%T > t+

≤ inf
t≥0

ess inf P1
t *# *0+ = t + 1%!t%# *0+ > t+ = P1

0

(
,1 ≥ .*0+

)
% (A.20)

where the second inequality comes from the fact that # *0+ is optimum when the
postchange probability measure is P1

0, and the last equality is the result of # *0+
being an equalizer under P1

0. Note now that

P1
0

(
,1 ≥ .*0+

)
≤ P2

0

(
,1 ≥ .*0+

)
= inf

t≥0
ess inf P2

t

(
# *0+ = t + 1%!t%# *0+ > t

)
%

the inequality being the condition of case (i) and the equality that follows is the
result of # *0+ being an equalizer under P2

0 as well. Completing what was started in
(A.20), we can write

"L*T+ ≤ P1
0

(
,1 ≥ .*0+

)
= min

i=1%2
Pi
0

(
,1 ≥ .*0+

)

= min
i=1%2

inf
t≥0

ess inf Pi
t

(
# *0+%!t%# *0+ > t

)
= "L

(
# *0+

)
%

which proves the claim of case (i). Similar proof applies in case (ii).
Suppose now that neither the condition of case (i) nor of case (ii) is valid. This

suggests that we simultaneously have P2
0*,

1
1 ≥ .*0++< P1

0*,
1
1 ≥ .*0++ and P1

0*,
2
1 ≥

.*1++< P2
0*,

2
1 ≥ .*1++. Define the following difference as a function of q:

D*q+ = P1
0

(
*1− q+,11 + q,21 ≥ .*q+

)
− P2

0

(
*1− q+,11 + q,21 ≥ .*q+

)
&

We observe that D*0+ > 0 and D*1+ < 0; furthermore, D*q+ is continuous because
we can show using (A.19) and the continuity of .*q+ that the probabilities
Pi
0**1− q+,11 + q,21 ≥ .*q++ are continuous in q. Hence, there exists q ∈ *0% 1+ so

that D*q+ = 0. For this specific q the corresponding Shewhart stopping rule # *q+
is by construction an equalizer across time and across postchange probabilities.
Furthermore, for each T and t ≥ 0, as in (A.12), we have

"L*T+P$*T > t+ ≤ Pi
t*T = t + 1+/i = 1% 2

suggesting

"L*T+P$*T > t+ ≤ *1− q+P1
t *T = t + 1++ qP2

t *T = t + 1+

= E$(!*1− q+,1t+1 + q,2t+1#&!T=t+1#)&

Summing over t ≥ 0 we obtain the following upper bound:

"L*T+ ≤
E$(*1− q+,1T + q,2T )

E$(T)
&

The proof continues along the same lines of the proof of Theorem 2.3. Basically we
show that the upper bound is optimized by # *q+; furthermore, this optimal value
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is also attained by "L*# *q++ because # *q+ is an equalizer across time and across
postchange probabilities. This establishes the desired optimality for # *q+.

What is now left to demonstrate is that for each 0, only one of the three cases
can be valid. Call

" i
L*T+ = inf

t≥0
ess inf Pi

t*T = t + 1%!t%T > t+/i = 1% 2%

then we know that "1
L*T+ is maximized by # *0+ and "2

L*T+ by # *1+. In fact no other
stopping time can attain the same optimal value unless it is equal, with probability
1, to the corresponding Shewhart test. If case (i) applies then we will show that it
is not possible the condition of case (ii) to be true. Indeed, if both conditions were
valid simultaneously, then we could write

"1
L

(
# *0+

)
= P1

0

(
,11 ≥ .*0+

)
≤ P2

0

(
,11 ≥ .*0+

)
= "2

L

(
# *0+

)

≤ "2
L

(
# *1+

)
= P2

0

(
,12 ≥ .*1+

)
≤ P1

0

(
,12 ≥ .*1+

)
= "1

L

(
# *1+

)
%

where the first inequality comes from case (i), the second inequality from the fact
that # *1+ optimizes "2

L*T+, and the third inequality is the condition of case (ii).
From the above we conclude that # *1+ has a better "1

L*·+ performance than # *0+,
which optimizes "1

L*·+, leading to contradiction. Actually, since # *1+ is not equal to
# *0+ with probability 1, its corresponding performance is strictly smaller than the
optimum.

Similarly, it is not possible to have the conditions of case (i) and case (iii)
satisfied at the same time. Again, if this were true then

"1
L

(
# *0+

)
= P1

0

(
,11 ≥ .*0+

)
≤ *1− q+P1

0

(
,11 ≥ .*0+

)
+ qP2

0

(
,11 ≥ .*0+

)

= *1− q+"1
L

(
# *0+

)
+ q"2

L

(
# *0+

)

≤ *1− q+"1
L

(
# *q+

)
+ q"2

L

(
# *q+

)
= "1

L

(
# *q+

)
%

with the first inequality due to case (i) and the second due to the fact that the convex
combination of the two measures is maximized by # *q+. Finally, the last equality is
true because of case (iii), namely, that the stopping time # *q+ is an equalizer for the
two postchange measures. Again this is a contradiction since # *q+ has larger "1

L*·+
measure than # *0+, which is the optimum. Therefore, case (i) and case (iii) cannot
be valid at the same time. Similarly, we can show that case (ii) and case (iii) are
incompatible.

Since we have shown that when neither case (i) nor case (ii) is valid, we
necessarily have case (iii) being true; this suggests that, for each value of 0, exactly
one of the three cases applies. This concludes the proof for Lorden’s criterion.
Similar proof applies in the case of Pollak’s measure. !

Proof of Theorem 4.2. Let case (i) be true, then we can write

"L*T+ ≥ sup
t≥0

ess supE1
t (T − t%!t%T > t)

≥ sup
t≥0

ess supE1
t (# *0+− t%!t%# *0+ > t) = E1

0(# *0+) = 1
P1
0*,1 ≥ .*0++

%

(A.21)



Shewhart Optimality 341

where the first inequality is obvious and the second comes from the fact that if
.*0+ ≤ 1 then the Shewhart stopping time # *0+, according to Section1.2, optimizes
Lorden’s original criterion for the postchange probability measure P1

0. The second
last equality comes from the fact that Shewhart, exactly as CUSUM, is an equalizer
and the last equality is true due to (1.10). We also have

sup
t≥0

ess supE2
t (# *0+− t%!t%# *0+ > t) = E2

0(# *0+) = 1
P2
0

(
,1 ≥ .*0+

) %

because # *0+ is an equalizer under P2
0 as well. Since by assumption, P1

0*,1 ≥ .*0++ ≤
P2
0*,1 ≥ .*0++ this suggests that "L*# *0++ = maxi=1%2 1/Pi

0*,1 ≥ .*0++ = 1/P1
0*,1 ≥

.*0++. Using this last observation in (A.21) we conclude that "L*T+ ≥ "L*# *0++, thus
proving optimality of # *0+. In a similar way, we can prove optimality for # *1+
under the condition of case (ii).

Assume now that we are in case (iii), then

"L*T+ ≥ Ei
t(T − t%!t%T > t) = Ei

t

[
$∑

n=t

&!T>n#%!t%T > t

]

=
$∑

n=t

Ei
t(&!T>n#%!t%T > t)

=
$∑

n=t

E$

[

&!T>n#

n∏

m=t+1

,im%!t%T > t

]

= E$

[
T−1∑

n=t

n∏

m=t+1

,im%!t%T > t

]

%

where we applied a change of measures and used the fact that !T > n# is
!n-measurable. We also define

∏b
a = 1 and

∑b
a = 0 when b < a while we recall

that ,i0 is defined to be 0. Multiplying both sides of the previous inequality with
&!T>t#*1− ,it+

+, which is nonnegative and !t-measurable and taking expectation with
respect to the nominal measure, we obtain

"L*T+E$(&!T>t#*1− ,it+
+) ≥ E$

[
T−1∑

n=t

&!T>t#

n∏

m=t+1

,im*1− ,it+
+
]

≥ E$

[
T−1∑

n=t

&!T>t#

n∏

m=t+1

,im*1− ,it+

]

= E$

[
T−1∑

n=t

&!T>t#

(
n∏

m=t+1

,im −
n∏

m=t

,im

)]

&

Summing over all t ≥ 0 and recalling that ,i0 = 0,
∏n

n+1 = 1, yields

"L*T+E$

[
T−1∑

t=0

*1− ,it+
+
]

≥ E$

[
T−1∑

t=0

T−1∑

n=t

(
n∏

m=t+1

,im −
n∏

m=t

,im

)]

= E$

[
T−1∑

n=0

n∑

t=0

(
n∏

m=t+1

,im −
n∏

m=t

,im

)]

= E$

[
T−1∑

n=0

1

]

= E$(T)&

Finally, multiplying the previous inequality for i = 1 with *1− q+ and the one for
i = 2 with q and adding the resulting expressions we obtain the following lower
bound:

"L*T+ ≥
E$(T)

E$
[∑T−1

t=0 *1− q+*1− ,1t +
+ + q*1− ,2t +

+] &



342 Moustakides

Following the usual methodology we have adopted in the previous proofs, in
order to minimize the lower bound, with the help of the randomization probability
3 we can show that we can limit ourselves to stopping times that satisfy the false
alarm constraint with equality. Consequently,

inf
T-E$(T)≥0

"L*T+ ≥ inf
T-E$(T)=0

E$(T)

E$
[∑T−1

t=0 *1− q+*1− ,1t +
+ + q*1− ,2t +

+]

= 0

supT-E$(T)=0 E$
[∑T−1

t=0 *1− q+*1− ,1t +
+ + q*1− ,2t +

+] & (A.22)

For simplicity denote zt = *1− q+*1− ,1t +
+ + q*1− ,2t +

+, then maximizing the
denominator subject to the equality constraint is straightforward. Using a Lagrange
multiplier with value

8 = *1− .+P$*z1 < 1− .++ E$(z1&!z1≥1−.#)

and applying standard optimal stopping theory, we can conclude that the optimum
stopping time is

( = inf!t > 0 - zt ≤ 1− .#&

For . = .*q+ we will show that ( is in fact equivalent to # *q+ under condition
(4.8). Indeed, notice that when ( stops we have

1− .*q+ ≥ z( = *1− q+*1− ,1( +
+ + q*1− ,2( +

+ ≥ *1− q+*1− ,1( ++ q*1− ,2( +%

which implies

*1− q+,1( + q,2( ≥ .*q+%

suggesting # *q+ ≤ ( (because # *q+ is the first time instant the above inequality is
true). For any t < ( we have

1− .*q+ < zt = *1− q+*1− ,1t +
+ + q*1− ,2t +

+& (A.23)

Because .*q+ satisfies (4.8) we will show that the previous inequality can be true only
when "t ∈ %1 ∩ %2; that is, when the likelihood ratios ,1t and ,2t are simultaneously
no larger than 1. Indeed, from (4.8) we have that the upper bound of .*q+ is no
larger than 1; consequently, in (A.23) the two likelihood ratios cannot be larger
than 1 simultaneously. Let ,1t ≤ 1 and ,2t >1 then (A.23) becomes 1− .*q+ <* 1− q+
*1− ,1t + or q + *1− q+,1t <.*q+ . But the latter is again not possible because of the
left-hand side inequality of (4.8). The same is true when ,2t ≤ 1 and ,1t > 1. Hence,
(A.23) can be valid only when both likelihood ratios are smaller than 1. This means
that when t < ( , (A.23) is equivalent to

*1− q+,1t + q,2t <.*q+&

This observation suggests that t < ( combined with (4.8) implies t < # *q+;
therefore, ( − 1 < # *q+ or # *q+ ≥ ( . Consequently, # *q+ = ( , which means that
# *q+ optimizes the lower bound in (A.22).
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To compute the optimum value of the lower bound, since before stopping, as
we pointed out, both likelihood ratios are no larger than 1, we note

E$

[
# *q+−1∑

t=0

*1− q+*1− ,1t +
+ + q*1− ,2t +

+
]

= 0− E$

[
# *q+−1∑

t=0

*1− q+,1t + q,2t

]

= 0
{
*1− q+P1

0

(
*1− q+,1t + q,2t ≥ .*q+

)
+ qP2

0

(
*1− q+,1t + q,2t ≥ .*q+

)}

= 0P1
0

(
*1− q+,1t + q,2t ≥ .*q+

)
= 0P2

0

(
*1− q+,1t + q,2t ≥ .*q+

)
%

where we used the fact that 0 = E$(# *q+) = 1/P$**1− q+,1t + q,2t ≥ .*q++ and that
we are in case (iii) with condition (4.5) being valid. Consequently,

inf
T-E$(T)≥0

"L*T+ ≥
1

Pi
0

(
*1− q+,1t + q,2t ≥ .*q+

) &

Now it is straightforward to verify that the lower bound is attainable by the Lorden
measure of the Shewhart stopping time # *q+. This is clearly due to the fact that
# *q+ is an equalizer across time and across postchange measures. This concludes
our proof. !
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