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SEQUENTIAL JOINT DETECTION AND ESTIMATION"

Y. YILMAZ!, . V. MOUSTAKIDES!, AND X. WANG!

Abstract. We consider the problem of simultaneous detection and estimation under a sequential
framework. In particular, we are interested in sequential tests that distinguish between the null and
the alternative hypothesis, and every time the decision is in favor of the alternative they provide an
estimate of a random parameter. As we demonstrate with our analysis, treating the two subproblems
separately with the corresponding optimal strategies does not result in the best possible performance.
To enjoy optimality one needs to take into account the optimmum estimator during the hypothesis
testing phase.
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1. Introduction. Suppose we are observing sequentially two processes {w:},
{hs} which are related through the following model:

(1) Yo = the 4w,  t=1,2,....

Process {w:} is a noise sequence; z is a random variable described by the following
two hypotheses:

Ho: z =0, Hi: z~p(z),

where ¢ ~ ©(z) means that the random variable z follows the probability density
function @(x); and {h:} is a second observed process that affects in a time-varying
and random way the value of the random variable z. In other words, under the null
hypothesis, the observed sequence {y:} is pure noise, whereas under the alternative
hypothesis, it contains a mean which is related to the random parameter z and scaled
through the second measured sequence {A;}. Sequences of this form arise in several
applications in practice, with the most notable being digital communications, where
z denotes the information to be transmitted. Under hypothesis Hy no transmission
takes place, and consequently the receiver measures pure noise. Under hypothesis Hy
information x is transmitted and the sequence {h;} models the attenuation inflicted on
this variable by a lossy and time-varying communication channel. We should mention
that in digital communications it is customary to consider that the channel sequence
{h:} can be measured and, consequently, assuming that this process is available, is
realistic (see [16]).

The mathematical challenge we would like to consider in this work consists (a) in
deciding as soon as possible between the two hypotheses, and (b) every time a decision
is made in favor of Hy, in providing an estimate of the random variable x. As we
realize, we have a joint detection and estimation problem, where both subproblems
are of equal importance. Indeed, we note that we like to have a reliable estimate of
every time we detect its presence.
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A key element In our formulation is the fact that we are interested In performing
the joint detection/estimation task as soon as possible, suggesting that we intend
to focus on sequential schemes to solve the joint problem. Finally, we would like to
emphasize that our analysis is going to demonstrate that solving the joint problem by
treating each subproblem separately with the corresponding optimal procedure does
not yield an overall optimum performance. As we shall see, the detection part needs
to take Into account the fact that we are also Interested In parameter estimation in
order for the combined scheme to perform optimally.

Sequential joint detection/estimation differs from sequential composite hypothe-
gis testing, where parameters are either marginalized or treated as nuisance (see [9],
[14]). Actually, joint detection/estimation resembles sequential multihypothesis test-
ing, where there is a discrete set of possible probability measures that describe the
observations and we need to select one of the existing possibilities. Characteristic
papers treating this problem are [1], [10], [17], [3]. The joint case studied in this work
differs from the previous approaches in the sense that we have a parametric family
of measures (parametrized by z) and we need to select the correct parameter value
after establishing that this value is not 0. Existing literature related to joint detec-
tion/estimation is very limited and addresses only the fixed sample size case. The
papers [11], [5], [12], [13] offer different formulation possibilities for the fixed sample
gize version. In the current work, we focus on the setup proposed in [12] and extend
the corresponding result to the sequential case.

Let us now become more technical by introducing the detection/estimation strate-
gles we are interested in. Assuming observations become available sequentially in pairs
T(ye, he) }, let {F¢},»o dencte the corresponding filtration with F = ¢{(y1,h1),. ..,
(2, he) F and Fo the trivial o-algebra. We also define two additional filtrations {V; }exq
and {Hetyo with Vi = o{w1,.. ., v} and Hy = ¢{ka,. .., ke, that is, the accumu-
lated history pertinent to the first and second observed sequence, respectively, and
Vo, Ho being, again, trivial #-algebras. We clearly have /F; = V; 1U H;, and therefore
He © T

According to what we menticned, we are locking for a triplet (7', dp, Tr), where T
ig a stopping time, dr a decizion rule that distinguishes between the two hypotheses,
and T7 an estimator for z. The detector dr and the estimator T are F7-measurable
functions, namely, they use all available information acquired up to stopping time T
for deciding between the two hypotheses and for providing an estimate for z every
time this is deemed necessary (i.e., whenever the detector decides in favor of Hy). For
the stopping time 7', the obvicus choice would be to ask this quantity to be {F;}-
adapted, namely, at each time ¢ to use all available information to decide whether to
stop or continue sampling. Unfortunately, imposing this requirement induces serious
analytical complications. This fact 1s already known for the two separate subproblems
of detection and estimation. For instance, if we assume that we always have y, =
zhy + wy and we are interested in estimating z, then, as mentioned in [6] and in [7],
finding the optimum sequential estimator of x is nol a tractable problem if T is
adapted to the complete ohservation history {F;}. Instead, Grambsch [8] and, more
recently, Fellouris [4] proposed to limit ' to {H; }-adapted strategies, an assumption
that leads to a simple and interesting optimal solution.

Similar analytical difficulties arise in the pure sequential hypothesis testing prob-
lem of distinguishing between Hy and H;. If we require 1' to be {F;}-adapted and
attempt to solve this problem following, for example, the classical approach of Wald
and Wollowitz [18], then the optimum scheme is not the usual sequential probability
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ratio test (SPRT) as one would expect. This is because by observing the pair process
{(4, hs) } we end up with a two-dimensional optimal stopping problem, which is im-
possible to solve (analytically) since the thresholds for the running likelihood ratio will
depend on the sequence {h:}. Only if the sequence {h;} is constant, or not observed
(or even ignored) and, additicnally, we assume it is independent and identically dis-
tributed (1i.d.) with known probability density function, then the detection problem
can be reduced to the one considered in [18], accepting as solution the classical SPRT.
In this case the stopping time 7' becomes {); }-adapted, and the decision function dr
must be selected to be Vyp-measurable.

An alternative direction would be to consider, as in the pure estimation problem,
{H¢ }-adapted stopping times but, as we suggested above, allow the decision function
dp to have access to the complete information, that is, be Fp-meagurable. This ig
the approach we intend to adopt in this work. In fact we are going to apply this idea
directly to the more general joint detection/estimation problem. As we shall see, our
analysis will also offer the solution to the pure detection problem by proper parameter
selection. Further we summarize our assumptions.

Assumptions. (1) The two processes {w; |, {h:} are independent and independent
from the random variable z with the noise process {w; } beingi.i.d. with w; ~ N(0,2),
where A/(a,b?) denotes Gaussian probability density function, with mean a and vari-
ance b2,

(ii) For x, under Hy, we assume that = ~ A (py,02), in other words the prior
@(z) is the Gaussian probability density function, while under Hy we assume z = 0.
Parameters p.,;,s are considered known.

(iii) For the second observation process {h:} we only make the very mild assump-
tion

(2) P(ihf-oo) ~ 1

that is, with probability 1, each realization of this process has infinite energy over the
infinite time horizon. No other condition is imposed on {h;}; consequently, for this
process no dependency or time vartability model is specified, and the actual statistical
description is not required to be known.

(iv) The stopping time T is {#;}-adapted, while the decision function d7 and the
estimator Ty are Fpr-measurable functions having access to the complete observation
history up to the stopping time.

In the rest of our paper, by Py, Eg we denote probability measure and expectation
under hypothesiz Hy; by P1, Eq probability measure and expectation under hypothesis
Hi, including the statistical description of the random variable z; and, finally, by
P1,E; probability measure and expectation under hypothesis Hy but with = being
marginalized.

Before continuing with our problem formulation it Is worth mentioning the very
recent paper [2] that refers to the pure parameter estimation problem, treating a data
model very similar to the one introduced in (1). The basic difference between the
two data types is that in our case, as we have pointed out in our assumptions, the
two sequences {h:}, {w:} are in discrete time and are independent, whereas in [2] they
are continuous-time processes related through a diffusion type stochastic differential
equation. This difference allows for completely different mathematical setups, even
though the final optimum procedures turn out to be very similar.
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2. Problem formulation. In sequential detection and estimation we are usu-
ally interested in minimizing the average delay subject to suitable constraints. How-
ever, in order to free our formulation from the need to specify a probability measure
for the process {h:}, we will adopt the same idea employed in sequential estimation,
namely, consider expected delays, error probabilities, and average costs conditioned
on the sequence {h:}. This approach will give rise to a triplet (1, dp, 77}, which
will be optimum for each realization of {kh:} and not on average with respect to this
sequence, as is the usual case in classical sequential analysis.

Since we are interested in the two subproblems of detection and estimation, we
have a number of quantities that are pertinent to each case. For the detection part we
have the type-1 and type-ll error probabilities that accept the following conditional
form: Po{dr = 1| Hr) and Pi(dr = 0| H7). For the estimation problem we assume
that we are under hypothesis Hi and we adopt as cost function the mean squared error.
We recall that our estimate depends on the decision of cur detector; in particular,
whenever dr = 1 we provide an estimate T, which inflicts a squared estimation error
(#r —x)?, where x is the true value of our random parameter. Alternatively, when the
detector erronecusly decides in favor of Hg, that is, do = 0, then this is like estimating
our parameter as I = 0 (gince under Hy we have x = 0) generating a squared error
(0 — z)? = z%. Consequently, for the estimation subproblem there are the following
two conditional mean squared errors that are of interest: E1[(Zr — 2)* 14,213 | H7]
and Ey[z*14,_0) | Hr], where 1,4 denotes the indicator of the event A.

Now, we can use these four quantities to form the following combined cost function:

C(T, CET,ET) = C[)P[)(CET =1 ‘ %T) + Clpl(dT =0 | HT)
(3) + B | (@ — 2)* 111y + 28 1,00y | Hr |,

where g, ¢1, ¢ are nonnegative values selected by the statistician. The last term in the
right-hand side of (3), which refers to the estimation problem, as we can see, depends
on both parts, namely, our decision and our estimation strategy. Furthermore, we
note that if we set ¢, = 0, then the combined cost depends only on the decision rule
dr, suggesting that our joint problem ig reduced to a pure detection problem.

To define an optimum joint scheme, we will follow a constrained optimization
approach, and therefore we are going to consider triplets (I, dr,Zr) for which the
combined cost C(T,dr,Z7) iz upper hounded by some prescribed value. From the
class of triplet strategies that is generated through this constraint we will select the
one that minimizes the stopping time T'. More specifically, we would like to solve the
constrained optimization problem

4) inf T subject to C(T,dr,z7) < C,

T, dp, &
where C' > 0 is the maximal combined cost we are willing to tolerate. Note that since
T iz {Hs}-adapted, as we mentioned before and would like to emphasize once more,
the triplet we are going to develop will minimize T for each realization of the process
{hs} and not E[T], where the average is taken over all realizations of this process, ag
is the usual case in classical optimal stopping problems.

3. Optimum solution. The optimum triplet will be obtained in three steps.
First, we will propose a candidate estimator by solving a smaller auxiliary optimization
problem, then we are going to use this solution to propose a candidate detector that
takes into account the previous estimator by sclving a second auxiliary optimization
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problem and, finally, we will provide a candidate stopping time and show that all three
proposed parts constitute the triplet that solves the original constrained optimization
problem depicted in (4). Let us continue by first identifying our candidate estimator.

3.1. Optimum estimation. Fix the stopping time T, agsuming that it is finite
with probability 1 and the decision function dr. Consider the problem of minimizing
the conditional mean squared error Eqi[(Zp — 2)*1{gn_1y | Hr] with respect to the
estimator T7r. We have the following lemma, that gives the solution to this problem
and also provides a useful expression for the second term El[asgl{dT:[)} | Hr] of the
estimation cost.

LEMMA 1. The optimum estimator ¥r thalt mintmizes the conditional mean
squared error E1[(Fr — x)*1(ap_1) | Hy] with respect to T, on the event {T' = t},
is given by the following formula:

o Vitpeo®)o} < e
(5) Xy = W, whe?"e ‘/3 = ;yﬂhny Uz = ;hn’

while the corresponding mintmum value of the conditional mean squared error takes
the form

2
S TR R o o _
(6) g;fEl{(rT #)* 1 gy | Hr | = Uy g2z Paldr =11 Hr).
Additionally we con write
. |2 <2 a?
(7) E, {.’E ]—{dT:O} ‘/HT} =E; {XTl{dT:O} |7'[T} + = Pl(dT = 0‘ fHT)
Ur + 23

Proof. The proof is simple and based on the well-known result that the mean
squared error 1s minimized by the conditional mean of & given all avallable observation
history. The interesting detail is that this result is still valid even if the observation
history is dictated by an {H; }-adapted stopping time T' and an Fr-measurable deci-
sion rule dy. To demonstrate (6), using that 1" is {H; }-adapted, dr is Fr-measurable,
and Hy € F;, we can write

El (fT — ‘T)Ql{dT:l} ‘ HT} = E1 |:Z(ft - "T)Ql{df:ﬂ 1{T:t}

=0

74
= ZE]_ (Et — 55')21{0!{:1} |?‘£3:| ]—{T:t}

— Y B[ Bal(@ — 0)? | Bl Loy | He Lirmy

t=0

where for the last equality we used the tower property of expectation. From classical
estimation theory (see, e.g., [15, p. 151]) we know that

2
. - o~ a
o [ 21 7] - s

This minimal value is attained by the conditional expectation ¥, = E[x | 5| which,
due to the fact that x, given Fy, is Gaussian with mean (V; + p,0?/62) /(U + 02 /52)
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and variance o2/{Us + ¢%/c2), is equal to

/)E _ W+MIJQ/J§
v Ui+ a2/a2

Consequently, since U, iz H;-meagurable, we deduce

Lir—y

o0 2
E; (C/ET - 5'3)21{de1} |fHT} = ZEl {m {d:=1} ‘%t
t=0

2

> a
= Z W Pl(dz =1 ‘Ht)l{T:z}
t=

a2

= Wpl(di“ =1 |%T):

with equality, as we mentioned, when ¥y =%; on {T' = t}.
To prove (7), we can write

By |21,y | %T} =) Ey [igl{df:o} \?—.{3} 1ir—g

e 10

(8) Ea|Bala? | 7o —op | He| 1.

=
Il
o

Using again, ag we mentioned above, the fact that x conditioned on F; iz Gaussian
with mean %; and variance o2/ ({/; 4+ ¢%/c2), we compute

0.2

Bl | P =% g e

Substituting this equality in (8) and recalling that U7y is Hi-measurable yields the
desired result. Lemma 1 is proved.

3.2. Optimum detection. If we consider the combined cost C (T, d7,X7), where
the estimator T is replaced by the optimum X1 defined in (5), then, using (8) and
(T) we obtain

C(T, dT,SET) = Copo(dT =1 ‘ /HT) =+ Clpl(dT = 0| /HT)
2

0 g
+ceB1 |Xpliar—o) | Hr | +ce Ur +02/a2’

Due to the fact that X7 is the result of the minimization stated in Lemma 1, we
have C(1', dp,%r) < C{1,dr,T7). We note that the last term in the expression for
C(T,dr,%X7) does not depend on the decision function dr; therefore, let us consider
the sum of the first three terms of the right-hand side and define the auxiliary cost

C(T,d7) = cPoldy = 1| Hy) + ciP1({dr = 0| Hr)
(9) +ceEq S(\%]-{d;p:()} ‘/HT .
In what follows, our goal is, for fixed T, to identify the decision function d¢ that

minimizes C’V(Tj dr) with respect to dr. The solution to this problem is given in the
following lemma..
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_ LeMmma 2. The decision function dp that minimizes the auziliary cost function
C({1',dr) with respect to dr, on the event {1' = t}, is given by the formula

. < /\2
(10) dt _ { 1 Zf op = Lt{cl + Cext};

0 otherwise,

where L; is the conditional likelthood ratio of the probability density functions of the
two hypotheses given Hy, with the rendom variable x under Hy being marginalized,
spectfically

an L 1 o {(Vﬁpﬂa?/ag)? , 1I}_

JUs+ %02 ax P 202Uz + 0%/ a3) #e 502

The resulting minimum value of the auxiliary cost funciion takes the form
inf C(7,dr) = Bo | (co — Ly{er + o531~ | Hr |
T

277
12 2, %aT
(12) +c1+ce{um+UT+JQ/ag},

where = = min{z,0}.
Proaf. The proof of this lemma. presents no special difficulty. We can write

(13) Po(dr = 1|Hr) = Bo[lig,—1y | He 1irey,
t=0

(14) Pi(dr = 0| Hr) = ZED [Lelig—o) | He|lirey-
=0

Similarly we have
(15) E1 S(\%ﬂl{dj..:o} ‘ %T} = ZEO {Ltggl{dt:()} | ?‘ft} l{T:t}:
t=0

where we used the fact that ¥; is F;-measurable and L; is the corresponding conditional
likelihcod ratio of the two hypotheses. Substituting (13)—(15) in the definition of the

auxiliary cost C(T,d7) in (9), we obtain
C(T,dr) = Eq {col{dle} + Lefer + e a,—0) I’H’z] Lir—s)
Eo [(CO — Lefer + e 1,1 | %4 Lir
+ > Eg [Lz{cl + et /Hz} Lir—g
t=0

=N o [(co — Lefer + a3 1) | ’Ht} Lir—y

0
+ ZEl[Cl + ek | Hi =g}
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We can easily verily that we have equality when the decision function Is according
to (10). In the last sum in the previous expression it can be shown that the corre-
sponding expectation is equal to e1 + co{p2 + o2Up/(Ur + 0?/02)}. Indeed, this is
true because Vr on the event {I' = ¢}, under H; and conditiocned on H;, is Gaussian
with mean p,U; and variance o2U2 + ¢2U, = o2U(U; + 02/52).

To show the validity of (11} we have that the likelihood ratic of the two hypothe-
ses, given x and H;, 1z equal to

S‘L‘Q x
exp{_MUt+0'2%}

Marginalizing & using the Gaussian prior yvields L, which can therefore be computed

as
o z? T 1 1
=[] U G| |~ g e e
Combining the two exponents and “completing the square” for z, it is straightforward
to prove (11). Lemma 2 is proved.

From (10}, if we set ¢, = 0, we end up with the pure detection problem, and the
optimum detector reduces to the usual likelihood ratio test, which is applied at the
stopping time T. However, when ¢, > 0, in the detection rule we take into account
the optimaum estimate, and our detector is no longer a likelihood ratio test. Actually,
this is exactly the point that discriminates our optimum joint detection/estimation
scheme from the approach that sclves the two problems separately by applying the
corresponding optimum strategies. Note that the latter method would have simply
applied the likelihood ratio test for detection and then the optimum estimator when-
ever the decision was in favor of Hy. Our scheme, on the other hand, makes a decision
by taking into account the square of the optimum estimate.

3.3. Optimum stopping time. Using the results of Lemma?2, in particular
substituting (12} in the combined cost function, we obtain

(16)  C(T,dp,%7) = Eo|(co — Lrder + eXp 1) ™ | Hr | + 1+ ce(u + 02).

From the way that dr, X were defined, we clearly deduce that any triplet (7', dr,ZT)
satisfles the following inequality:

(17) C(T,dr,x7) = C(T, dr,27).

Let us now make a more explicit computation of the conditional expectation appearing
in (16). For this reason, in the following lemma we define a suitable function G (U/) for
which we also prove a. monotonicity property that plays a crucial rele in specifying the
final term of our desired triplet, namely, the optimum stopping time. The lemma is
based on the observation that on the event {T' =t} and given H;, we have U; known
and, under Hy, V; ~ N (0,520,).

LEMMA 3. For U 20, define the following function:

ﬂm—/mGr__L_Jaﬁﬁtﬁéi 21}

7 )
o U 4 <2 0= 202(U + 25) 202

V i 220\ 270~ o V3 @0°D) v
18 % Jext ool e 2 D
(18) {1 ( U+%§ ) v 2ma2lT
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Then G(U) is continuous, strictly decreasing in U = 0, with llmy .. G(U) = —c1 —
ce(pz +03) and G(0) = (co — c1 — i)™

Proof. Because the proof is very technical, we will not present all of the computa-
tional details. That G(U/) is continuous is obvious since the integrand is continuous in
7 and V. Let us now prove the desired monotonicity property of G(I7). For simplicity,
call 5 = ¢%/c2 and define the function G(U, V):

f (V +par)®  pgs

G, V) = - 2

(o.v) (CD VU +5 o {202(U+ K) 202

V o+ s =V /(2a70)
e (T }> Varo?0

e—V?3/(20°)

vema2l

{ (V + Mmﬁ> T e (V=2 Uy /(205U (Utx))
— |1+ e .

U4 s 2ra2U(U + &)

(19)

Denote by g({/) the solution of the equation

2
_ = g s 9
(20) €= U+ﬁeXp{20'2(U+ﬁ) 20’2} {Cljrce (UJFH)Q}j

where g replaces (V + pt,%)%. Even though the latter quantity is nonnegative we allow
g to also take negative values, thus guaranteeing that (20) always has a solution.
Indeed, note that the right-hand side in (20) is strictly decreasing in &/ = 0 and
strictly increasing in g. For fixed U, if we set g = — (U + #)%c1/ce, the right-hand side
becomes 0. On the other hand, by letting ¢ — oo, the right-hand side tends to oo as
well. Due to continuity and strict increase in g, there is a unique solution g{{/}.

Using g(I/) we can now deduce that the values of V, for which the integrand in (18)
and therefore G({/, V) 1s nonpesitive, are V e T(U) = (—co, —V1(U)] U [Va(U), o),
where V1 (U) = «/g+ V4 pers, Va(U) = /gt (U) — per, and T = max{z,0}. Note
that for values of U/ for which g{U/) = 0 we have —V1(U) = Va(l/) = —pigs, and
therefore both quantities coincide. When, however, g(l/} > 0, then G(U,-Vi(U}) =
G(U, Vo (L)) = 0. Using the previous definitions and observations we have the follow-
ing expressions for G{{/):

Wi (1) oe
G(U) :[ G(U,V) dV+/ G, V) dV
— X2 VQ(U)

(21) - f GU,VydV = f GU VYL (V) dV.
T oo
To show that G(I7) is decreasing, it suffices to show that its derivative is negative.
First, let U/ be such that the solution to (20) satisfies g{{/) = 0. In this case, as we

mentioned, we have —V1(U7) = Vo (/) = —ppr, suggesting that 7 (I7) becomes the
whole real line. Thus, substituting (19) in (21), we can write

G = OOGUVdvI— 2, U Y _ E g
()_</m ©.v) )‘(w_q_%%“+U+ﬁD'_ RS

and, therefore, G(I7) is strictly decreasing for all {7 2 0 for which g(I/) = 0.
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Now let U/ be such that the sclution to (20) satisfies g{{/) > 0. Substituting
again (19) in (21) and changing variables z = V/+/U/ we have

Va(l)

Vi) o _ _
G({n :/; G(U,z)der/ G(U,z)dz—/T(U) G(U,z)dz,

where

G(U, 2) = VUG, 2vT)

efzz/(ng) |: + (Z\/ﬁ‘F MIH>2} ef(zfﬂwﬁ)z/(ggi([j‘l’”’))

- — |e1+ce ,
V2re? ! U+t s V2ma2 (U + &)

and T(U) = (—co, V1IN U [Va(U),c0) with V(1) = Vi({T)/VU, i = 1,2, As

before, it is true that G(U, —V1(I7)) = G(U,V2(U)) = 0. Taking the derivative with
respect to [V yields

G'UY = —GU, -V ({UNWV U — GU, Vo (UNVL(U) + ﬁ? o AyG(U, ) dz

_ f By (U, ) da

)
n (z\/UJr MEKI>2:| e (71T /(257 (UJ,»H:)))
€1+ ce .
1 U+w 22 (U + 1)

[ af
T

The latter integral, after some tedious mathematical manipulations, can be computed
explicitly, yielding

7 _ C1+y Q(U)
G = 2U + &)/ 2mo2U (U + &) aw)
oot faf- \/g(mwz(mﬁ))
U+ r)? oo/ U U + &)

o )

cea4m Q(U)
B (U + 85)2/ 20270 (U + &) (QUgﬁ(U +5) i 1> ),

where

Q) = eXp{ Ve + pa (U + H)]Q} +exp{ - [\/m_,%(yﬂ)]z}

220U + &) 2020 (U + &)

and $(z) is the standard Gaussian distribution function. We realize that all parts
involving 1 and ¢, are negative, suggesting that G{IJ) is strictly decreasing. This is
still true even if we limit ourselves to the pure detection problem by enforcing ¢, = 0.

To conclude our proof we need to show the validity of the formulas for G(0) and
lim7_soo G(U). For U — 0, the term e~V /o) /375217 in (18), which corresponds
to a Gaussian prebability density function with mean 0 and variance 02U, tends to
a Dirac function at V' = 0. For this case it is straightforward to verify the expression
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for G(0). Computing the limit for I/ — oc needs more work. Note first that the
solution g{{/) of {20), for large [/, can be expressed in order of magnitude as g({/) =

(7 log V). This means that we can find two positive constants aq, ez independent
from €/ such that, for large enough U, we have a1 U logU < g(U) = asl/ log /. That

this is indeed possible can readily be seen because, for sufﬁcientlyjlarge U, we have
g(l/y 2 0and U + & = 1, and therefore we can upper and lower bound g({/} from (20)
by observing that

1 e+ ceﬁ < max{cy, 28602}89/(202(U+”)),

where for the upper bound we used the inequality ¢* = z + 1. These two bounds
generate, immediately, the corresponding desired upper and lower bounds for g(U/). A
direct consequence of the order of magnitude estimate of g{U7) is that, since V1 (U) =
ot (U) + ppr and Vo(U) = /gt (7) — pizx, we have that V1 (07, Va(7) are both
O(/Ulogl). Using (19) and (21) to compute G{U/} we can see that the first term

involving ¢ is equal to

i) Va(U)
d| — P — }
“\2(-o7) ¢~ o
This term tends to 0 as 7 — oo, since VZ(U)/\E — co. In the second term invelving
c1, Ce, let us make the change of variables z = (V — p,U) /{7, /U(U + &)); then we
( Vo Mmﬁ> T e— (V—u: U /(202 U(Ur))

can write
/T(U) 2mozU (U + &)

frn ot oo 5} |7
= c Cel fhp + 20 2,
Ty ! H U+ \/277T

where T(U7) = (—oc0, ~VA(I1)] U [Va(7),00) and we define T(I) = (—co, ~VA(I7)] U
Va(U),00) with T (U) = (A(U) + pall)/p(U), Va(U) = (Va(U) — )/ p(0), and
p(U)y = a.+/U(U + ). Note in the lagt integral that the integrand is nonnegative.
Furthermore, integration over 'T(U) can be regarded as integration over the whole real
line after multiplying the integrand by the indicator function of the set 'T(U) Because
the indicator is nonnegative and upper bounded by 1 and [p, + zo./U/ (U + &) =
2(p2 + 2%02), we can upper bound the integrand by a function which does not in-
volve U/ and is integrable. This allows for the application of bounded convergence,
which, combined with the observation that —Vi(U) — —p, /o, and Va(U) — —py/os,
meaning that ’T(U) tends to the whoele real line or Lran (z) — 1, implies

. o T \? e /2
L}gréo . {61 + Ce (.U«a: + 30, m) } 17"—(1;) (2) ﬁ dz
oo T 2 e—z2/2
:/;OO l}LI}I;O {ClJrce (Hw+20'm []—i—ﬁ,) :| lj-(U)(Z)WdZ
o0 8722/2
= / le1 + ce(pa + 20,)°] dz = ¢ + e (2 + o),

— O hYy 27

yielding the desired expression. This concludes the proof of Lemma. 3.
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The function G(U/) introduced in Lemma3 is very important and will simplify,
considerably, the representation of the combined cost C(1, dr,%7). Indeed, by recall-
ing the definition of ¥%; and L, from (5) and (11), respectively, we can identify the
conditional expectation appearing in {16) as G(Uz). This means that in C(Y, dr,T7),
if we replace T, dr with their optimum counterparts X, d7, then we have the follow-
ing simple expression for the resulting combined cost:

(22) C(T,dr,%7) = G(Ur) + o1 + ce (s + 03).

We are now in a position to reveal the optimum stopping time and finalize the de-
gired triplet that solves the constrained optimization problem introduced in (4). The
following theorem presents the complete solution.

THEOREM 1. In the constraint in (1), let the mazimal allowable cost C satisfy
min{cg, e1 + cepi2 t + c.02 = C = 0. Then, the optimum triplet (T,dT,%7) that solves
the corresponding constrained optimization problem is

(23) T=inf{t>0: U, = ~},

where threshold v > 0 is the solution of the equation
(24) G(y) = C —e1— colpi2 + o2).

The other two elements of the optimum triplet are given by (5) for the optimum
estimator and (10) for the optimum detector, and both detector and estimator need to
be applied at the stopping time T,

Proof. First, note that when min{cg, o1 + 2} + o2 > € > 0, then C —
c1 — ce(p2 + o2) takes values in the interior of the interval defined by the maximal
G(0) and minimal limg .., G(U) value of the function G (/). Consequently, because
of the strict monotonicity and continuity of G(I7), (24) always has a poesitive solution
v =G HC —e1—eo(p2+02)) > 0, which is unique. Given that U =0, U, = 52 k2
is increasing, and by assumption (iii) we have lim; .., U/; = co with probability 1, we
algo conclude that the stopping time T defined in (23) iz almost surely finite.

Let us now show the desired optimality of the proposed triplet. Consider any
alternative triplet (I',dr,Z7) that satisfies the constraint C = C(T,dr, T 7). Because
of (17) and (22) we conclude

C z (T, dr,7r) 2 C(T,dp,5%7) = G(UT) + o1 + e (i1 + 03).
The previous inequality combined with (24) suggesis that
G(Ur) £ C—e1—ce(p +02) = G(7)

which, due to the strict decrease of G(IU), implies Up 2 . From the latter we deduce
that ' = T, since, by definition, T is the smallest time instant for which this inequality
holds. This establishes the optimality of the triplet (T,d1,%T). Theorem 1 is proved.

Remark 1. For the completeness of our theorem we must also add that if &' =
min{co, €1 + cet2 } + cea2, then we can verify that the optimum stopping time is T = 0
(no observations are needed) and the optimum jeint detection/estimation structure
relies solely on prior information. In particular, if ¢ < ¢1 + c.u2, we decide in favor
of Hi and provide as estimate the mean, that is, Xo = 1o} whereas if cp > 1 + copi2,
we decide in favor of Hy and, of course, there iz no need for any estimate.
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Bemark 2.  Our theorem suggests that the optimal time to stop is when the
running energy {U/;} of the process {h:} exceeds the threshold + for the first time.
This will happen with probability 1, due to (2) in assumption (iii). This is the
only requirement imposed on {k;}, while no additional prior information is needed
regarding this observed process. As far as threshold « is concerned, it is clear that
the solution to (24} can be computed numerically.

Remark 3. The optimum estimate X7 must be computed when we stop at T.
However, initially, it is treated as an auxiliary quantity, which is necessary for the ap-
plication of the optimum decision rule d7. When the decision is in favor of hypothesis
Hi, only then iz %7 regarded as the actual estimate of z.

Remark 4. As we mentioned earlier, if we select ¢, = 0, then our jeint setup
reduces to a pure detection problem. What Is Interesting in our formulation is that
the optimum stopping time T is still defined through (23), while the optimum deci-
sion function d1 becomes a likelihood ratio test, where Lt is compared against the
threshold ¢p/e;. This ig in contrast with SPRT where, as we recall, we have a running
likelihcod ratic compared against two, time-varying and dependent on {h:}, thresh-
olds that are not possible to compute analytically. Furthermore, SPRT is optimum
only when the chservations are i.i.d., whereas our simple scheme enjoys optimality
even if the process {h;} is dependent and time varying with unknown distribution.
These interesting optimality properties of our joint detection/estimation strategy are
a consequence of defining the cost C(7, dr,Tr) under the conditional form depicted

in (3).
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