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ABSTRACT

The problem of detecting a change in the drift of a Brownian motion
is considered. The change point is assumed to have a modified
exponential prior distribution with unknown parameters. A worst-case
analysis with respect to these parameters is adopted leading to a min–
max problem formulation. Analytical and numerical justifications are
provided toward establishing that the Shiryaev-Roberts procedure with
a specially designed starting point is exactly optimal for the proposed
mathematical setup.
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1. Introduction

Consider a continuous-time stochastic process {ξt} of the form

dξt = µdt1{t≥τ } + dwt , t ≥ 0, ξ0 = 0, µ ̸= 0, (1.1)

where {wt} is a Wiener process and τ is a real-valued random variable independent of {wt}.
The variable τ is to be interpreted as the change-point at which there is a change in the drift:
for t ≤ τ , ξt is a standard Brownian motion, and for t > τ , it is a Brownian motion with a
known driftµ ∈ R. We consider the problem of detecting this change using a stopping time T
adapted to the filtration generated by the process {ξt}t≥0, withminimum possible delay T−τ ,
subject to a constraint on false alarms {T ≤ τ }. To simplify our presentation, from now on,
without loss of generality we assume that µ =

√
2. Indeed, any other value of µ ̸= 0 can be

reduced to
√
2 just by a simple change in time scale of the process {ξt} and a change in sign if

µ < 0.
When the random variable τ with τ ∈ R has a zero-modified exponential prior, the

Bayesian version of the quickest change detection problemwas studied by Shiryaev (1963) and
the corresponding optimum test is known as the Shiryaev test. In this work, we are interested
in the case where the parameters of the zero-modified exponential prior are unknown and
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we follow a worst-case analysis to cope with this lack of information. Our claim is that the
Shiryaev-Roberts procedure with a specially designed deterministic starting point, known
as the SR-r procedure (see Moustakides et al., 2011), is exactly optimal for the proposed
formulation. In fact, we provide analytical and numerical evidence to support this claim.

We now state the problem formulation and the main results of this article rigorously. The
observation process {ξt} is as in (1.1). The zero-modified exponential prior for the change-
point τ is such that

P(τ ≤ 0) = π , P(τ ∈ dt) = (1 − π)λe−λtdt, t ≥ 0, (1.2)

for some λ ≥ 0 and π ∈ [0, 1]. The assumption of a zero-modified exponential prior is
fundamental to our work, and will play a crucial role in what follows. However, for analytical
convenience, it is necessary to change the corresponding parametrization. In particular, we
define r = π

λ suggesting

P(τ ≤ 0) = rλ, P(τ ∈ dt) = (1 − rλ)λe−λtdt, t ≥ 0, (1.3)

with λ ≥ 0 and 1
λ ≥ r ≥ 0.

Regarding probability measures, we use Pt to denote the measure incurred, when the
change-time takes upon the deterministic value τ = t and reserve Et for the corresponding
expectation. With this definition we have that P∞ corresponds to the probability measure
when all observations are under the nominal regimewhileP0 when the observations are under
the alternative. Combining the previous measures with the prior on τ produces Pr,λ and Er,λ;
that is, the probability measure and expectation when the change-time τ is random.

If {Ft}t≥0 denotes the filtration generated by the observations; that is, Ft = σ (ξs : 0 ≤
s ≤ t), withF0 the trivial sigma-algebra then, for detectionwe seek an {Ft}-adapted stopping
time T that will detect the change in the drift as quickly as possible, subject to a constraint on
the false alarm rate. When the pair (r, λ) is known, Shiryaev (1963) proposed the following
formulation:

inf
T

Er,λ[T − τ+|T > τ ], subject to: Pr,λ(T ≤ τ ) ≤ α, (1.4)

where x+ = max{x, 0} and α ∈ [0, 1] a known false alarm probability level.
In the current work, unlike (1.4), we consider (r, λ) to be unknown. In order to deal with

this lack of information, we adopt a worst-case analysis with respect to the parameter pair.
We therefore propose the following min–max constrained optimization alternative

inf
T

sup
r,λ

Er,λ[T − τ+|T > τ ], subject to: E∞[T] ≥ γ , (1.5)

where γ is a constant that constrains the average period of false alarms. The switching from
the false alarm probability appearing in (1.4) to the average false alarm period adopted in (1.5)
is common for min-max approaches (e.g., see Moustakides, 2014). This change is necessary
since the false alarm probability in (1.4) depends on the unknown parameter pair and would
therefore require an additional worst-case analysis for the constraint. Unfortunately, the
worst-case false alarm probability cannot be efficiently controlled (actually very often it takes
the value 1), thus making the constrain meaningless. This is the reason why it is replaced by
the average false alarm period that is independent from the unknown parameters.
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To complete our introduction, we need some additional definitions that are necessary for
our analysis. Consider the process

dut = −dt +
√
2dξt , u0 = 0, (1.6)

then from Peskir and Shiryaev (2006, chapter VI, section 22), and Girsanov’s theorem (see
Rogers and Williams, 2000), we have

dP0
dP∞

(Ft) = eut , t ≥ 0,

and more generally for s ≥ 0

dPs
dP∞

(Ft) =
{

eut−us s ≤ t
1 s > t.

(1.7)

It is clear that eut is the Radon-Nikodym derivative between the two probability measures
P0, P∞ limited to Ft and eut−us is the Radon-Nikodym derivative between Ps, P∞ on the
same sigma-algebra when t ≥ s.

Consider now the following statistic, which will play a key role in our analysis:

Rt = eut
{

r∗ +
∫ t

0
e−usds

}

, (1.8)

where r∗ ≥ 0 is a specially designed initial point (since R0 = r∗) that will be specified exactly
in the sequel. Define now the following function:

g(R) = e(r∗+γ )−1
E1
(

(r∗ + γ )−1)− eR
−1
E1
(

R−1) , (1.9)

where E1(x) =
∫∞
x

e−z

z dz is the exponential integral (see Abramowitz and Stegun, 1965,
chapter 5), r∗ is the parameter we introduced in the definition of Rt in (1.8), and γ the
constraint on the average false alarm period in (1.5). The next lemma contains a number
of interesting equalities that will be used throughout our analysis. The most important one
consists of providing an alternative form for our performance measure.

Lemma 1.1. If Rt is as in (1.8) and T an {Ft}-adapted stopping time, thenwe have the following
equalities that are valid:

E∞[RT] = r∗ + E∞[T] (1.10)

Et[(T − t)+|Ft] = Et[g(Rt) − g(RT)|Ft]1{T>t}. (1.11)

Furthermore,

D(T, r, λ) = Er,λ[T − τ+|T > τ ]

=
rE0[g(r∗) − g(RT)] + (1 − λr)

∫∞
0 Et

[(

g(Rt) − g(RT)
)

1{T>t}
]

e−λtdt

r + (1 − λr)E∞

[

∫ T
0 e−λtdt

] .

(1.12)

When r = r∗ and λ = 0, then we can also write

D(T, r∗, 0) =
E∞

[

∫ T
0 Rtdt

]

r∗ + E∞[T]
. (1.13)
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Proof. The proof of this lemma is presented in Appendix A.

1.1. Saddle-point problem

With the help of Lemma 1.1, the min–max problem depicted in (1.5) can be equivalently
expressed as

inf
T

sup
r,λ

D(T, r, λ), subject to: E∞[T] ≥ γ . (1.14)

As is the case in most min–max problems, it is possible to obtain their solution by solving
a simpler saddle-point alternative. Boyd and Vandenberghe (2004, Section 5.1), report that
when a saddle-point solution exists it is also the solution of the min-max problem. The
opposite is not necessarily true. In particular, we are interested in a triplet T∗, r∗, λ∗ = 0
such that for any λ ≥ 0 and 1

λ ≥ r ≥ 0 we have validity of the following double inequality:

D(T, r∗, 0) ≥ D(T∗, r∗, 0) ≥ D(T∗, r, λ), subject to: E∞[T] ≥ γ . (1.15)

We should point out that with λ∗ = 0 the exponential prior becomes a degenerate uniform.
As we mentioned, it is a well-established fact that the solution to the saddle-point problem

in (1.15) is also the solution to the min–max problem in (1.14). We therefore focus on (1.15).

2. Main results

Our first goal is to specify completely the triplet T∗, r∗, λ∗. So far we have that λ∗ = 0. Let us
now define T∗ in terms of r∗. For this to be possible, we focus on the first inequality of the
saddle-point problem in (1.15), which requires D(T, r∗, 0) ≥ D(T∗, r∗, 0) for all T satisfying
the constraint E∞[T] ≥ γ . In fact, we realize that T∗ must solve the following constrained
minimization problem:

inf
T

D(T, r∗, 0) = D(T∗, r∗, 0), subject to: E∞[T] ≥ γ . (2.1)

Minimizing D(T, r∗, 0) over T is straightforward and the optimum stopping time is given in
the next lemma.

Lemma 2.1. The stopping time that solves the constrained minimization problem depicted in
(2.1) is given by

T∗ = inf{t > 0 : Rt ≥ γ + r∗}. (2.2)

Proof. To prove this lemma, we use the expression for D(T, r∗, 0) provided in (1.13). We are
interested in showing that among all T that satisfy the false alarm constraint E∞[T] ≥ γ , the
stopping time that solves the minimization

inf
T

E∞

[

∫ T
0 Rtdt

]

r∗ + E∞[T]

is T∗ defined in (2.2). This is a known result in discrete time (see Polunchenko and
Tartakovsky, 2010). The continuous-time version follows a similar line of proof and uses
classical optimal stopping arguments. The analysis presents no special difficulties; for this
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reason, we do not provide any further details.We only point out thatT∗ satisfies the constraint
with equality. Indeed, from (1.10) and since RT∗ = r∗ + γ , we have r∗ + γ = E∞[RT∗] =
r∗ + E∞[T∗], from which we conclude that E∞[T∗] = γ .

The candidate stopping time T∗ is specified in terms of r∗, which is still unknown. To
define r∗, we make use of the second inequality in the saddle-point problem (1.15), namely,
that D(T∗, r∗, 0) ≥ D(T∗, r, λ) for all λ ≥ 0 and 1

λ ≥ r ≥ 0. Since the second inequality
in (1.15) must be true for all λ ≥ 0 it must certainly be valid for λ = 0. This implies that r∗
must be such that for any r ≥ 0 we have D(T∗, r∗, 0) ≥ D(T∗, r, 0). In other words, r∗ must
maximizeD(T∗, r, 0) over r. In (1.12), substitutingT = T∗, λ = 0, recalling thatRT∗ = r∗+γ

and g(RT∗) = g(r∗ + γ ) = 0, we can write

D(T∗, r, 0) =
rg(r∗) +

∫∞
0 Et

[

g(Rt)1{T∗>t}
]

dt

r + E∞[T∗]

=
rg(r∗) +

∫∞
0 E∞

[

g(Rt)1{T∗>t}
]

dt

r + E∞[T∗]
=

rg(r∗) + E∞

[

∫ T∗
0 g(Rt)dt

]

r + γ
,

where the second equality is due to the fact that g(Rt)1{T∗>t} isFt-measurable and onFt we
know that Pt coincides with P∞. To maximize D(T∗, r, 0) over r, we observe in the last ratio,
that both the numerator and the denominator are linear functions of r; therefore, the ratio is
maximized either for r = 0 or r = ∞. In order for the maximum to be attained by any other
value between these two extremes, we need

g(r∗) =
E∞

[

∫ T∗
0 g(Rt)dt

]

γ
, or, equivalently, E∞

[
∫ T∗

0

(

g(Rt) − g(r∗)
)

dt

]

= 0, (2.3)

where for the last equation we used the fact that E∞[T∗] = γ . Condition (2.3) is the
equation through which we can compute r∗. Interestingly, the same condition also assures
that D(T∗, r, 0) = g(r∗), that is, that D(T∗, r, 0) is constant independent of r, namely, an
equalizer over r.

Summarizing: For the solution of the min–max problem in (1.5) we propose the candidate
stopping time T∗ defined in (2.2), where the parameter r∗ is obtained by solving (2.3).
Regarding (2.3), in the next section we offer a more analytic expression.

2.1. Optimality of the proposed test

The optimality of our candidate stopping time is assured if we can show that the two
inequalities in the saddle-point problem (1.15) are true. We note that T∗ was constructed
so that the first inequality is valid for all T satisfying the false alarm constraint. Regarding
the second inequality, by selecting r∗ through (2.3) we guarantee g(r∗) = D(T∗, r, 0) for all
r ≥ 0. However, for optimality we need to demonstrate the stronger version

g(r∗) ≥ D(T∗, r, λ). (2.4)

The next lemma presents a condition that can replace (2.4) and is easier to verify.
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Lemma 2.2. The inequality in (2.4) is equivalent to

E∞

[
∫ T∗

0
e−λt(g(Rt) − g(r∗)

)

dt

]

≤ 0, ∀λ ≥ 0. (2.5)

Proof. The proof is simple. Replacing T with T∗ in the definition of D(T, r, λ) in (1.12) and
using the boundary condition g(RT∗) = g(r∗ + γ ) = 0, we conclude that (2.4) is true iff

g(r∗) ≥
rg(r∗) + (1 − λr)E∞

[

∫ T∗
0 e−λtg(Rt)dt

]

r + (1 − λr)E∞

[

∫ T∗
0 e−λtdt

] ,

is valid for all λ ≥ 0 and 1
λ ≥ r ≥ 0. The above inequality is clearly equivalent to (2.5) for

1
λ > r ≥ 0, whereas it is trivially valid when r = 1

λ .

The next Lemma provides a differential equation and suitable conditions for the compu-
tation of the left-hand-side expectation in (2.5).

Lemma 2.3. Fix λ ≥ 0, if fλ(R) is a twice differentiable function of R that is the solution of the
ODE (ordinary differential equation).

− λfλ(R) + f ′λ(R) + R2f ′′λ (R) = −
(

g(R) − g(r∗)
)

= eR
−1
E1
(

R−1)− er
−1
∗ E1

(

r−1
∗
)

, (2.6)

with fλ(R) bounded when R ∈ [0, r∗ + γ ] and fλ(r∗ + γ , λ) = 0, then

fλ(r∗) = E∞

[
∫ T∗

0
e−λt(g(Rt) − g(r∗)

)

dt

]

. (2.7)

Proof. The proof is detailed in Appendix A.

An analytic form for f0(R) (i.e., fλ(R) when λ = 0) and how this function can be used in
order to obtain an integral instead of a differential equation for fλ(R)when λ > 0 is presented
in the next lemma.

Lemma 2.4. If fλ(R) is as in Lemma 2.3, then for λ = 0 the corresponding function f0(R) is
equal to

f0(R) = {1 − er
−1
∗ E1(r

−1
∗ )}(R − r∗ − γ ) +

∫ R−1

(r∗+γ )−1
E1(x)d

(

Ei(x)
)

, (2.8)

while fλ(R) when λ > 0 satisfies the following integral equation:

fλ(R) = f0(R) − λ

{

(

Ei
(

(r∗ + γ )−1)− e(r
∗+γ )−1

(r∗ + γ ) − Ei(R
−1) + eR

−1
R
)

×
∫ ∞

(r∗+γ )−1
fλ(z

−1)d(e−z) −
∫ R−1

(r∗+γ )−1
fλ(z

−1)d
(

e−zEi(z)
)

+
(

Ei(R
−1) − eR

−1
R
)

∫ R−1

(r∗+γ )−1
fλ(z

−1)d(e−z)

}

, (2.9)

where Ei(x) =
∫ x
−∞

ez

z dz is the second version of the exponential integral.
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Proof. The details of the proof are presented in Appendix A.

The function f0(R) enjoys an additional notable property. Comparing (2.7) with (2.3), we
observe that we can recover the expectation in (2.3) by computing f0(r∗). This suggests that
the corresponding equation can be written as f0(r∗) = 0. Using (2.8) and substituting R = r∗,
we obtain the final form of the equation that identifies r∗ and replaces (2.3):

f0(r∗) = −γ {1 − er
−1
∗ E1(r

−1
∗ )} +

∫ r−1
∗

(r∗+γ )−1
E1(x)d

(

Ei(x)
)

= 0. (2.10)

To complete the proof of optimality for T∗, we need to establish the validity of (2.5), which,
because of (2.7), is equivalent to showing that

fλ(r∗) ≤ 0, (2.11)

where fλ(R) satisfies the integral equation in (2.9). Unfortunately, this last stepwas not possible
to demonstrate analytically. Therefore, we state the following claim:

Conjecture. The inequality fλ(r∗) ≤ 0 is true for all λ ≥ 0.

The validity of this claim establishes exact optimality of the candidate stopping time T∗
defined in (2.2) in the sense that it ismin–max optimumaccording to the problemproposed in
(1.14). Of course, our conjecture constitutes a crucial part of the optimality proof for T∗. Even
though we cannot support our claim analytically, we intend to provide numerical evidence
for its validity by directly computing fλ(r∗) and examining its sign. To achieve this goal, we
develop a simple computational method by borrowing ideas from Moustakides et al. (2011).
In fact, as we will see next, the expressions for f0(R) and fλ(R) proposed in (2.8) and (2.9),
respectively, are properly set for the numerical computation of the two functions.

2.2. Numerical method

To numerically evaluate f0(R) and fλ(R), we need to compute integrals of the form
∫ β
α a(x)d

(

b(x)
)

where a(x), b(x) are functions of x and d
(

b(x)
)

= b′(x)dx denotes the
differential of b(x). If we sample the interval [α,β] (not necessarily canonically) at the points
α = x0 < x1 < · · · < xN = β , then using the simple trapezoidal rule we can approximate
the corresponding integral by the following sum:

∫ β

α
a(x)d

(

b(x)
)

≈
N
∑

n=1

a(xn) + a(xn−1)

2

(

b(xn) − b(xn−1)
)

=
b(x1) − b(x0)

2
a(x0) +

N−1
∑

n=1

b(xn+1) − b(xn−1)

2
a(xn)

+
b(xN) − b(xN−1)

2
a(xN). (2.12)
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The last sum in (2.12) can be clearly written as the inner product bta of the two vectors

a = [a(x0), a(x1), . . . , a(xN)]t

b =
1

2
[b(x1) − b(x0), b(x2) − b(x0), . . . , b(xN) − b(xN−2), b(xN) − b(xN−1)]t .

This straightforward idea can be applied in (2.10) for the computation of the corresponding
integral and the evaluation of the function f0(r∗) for any given r∗. Furthermore, with the help
of an elementary bisection method, we can then easily approximate the root of the equation
f0(r∗) = 0 and obtain the initializing point R0 = r∗ of our test statistic Rt .

Once r∗ is specified, we can attempt to solve the integral equation (2.9) in order to compute
the function fλ(R). In fact, as we can see from the equations, it is more convenient to compute
fλ(R−1) since it is the actual function used in the corresponding integrals. We first sample the
interval (0, r∗ + γ ] at a sufficient number of points. A small but crucial technicality is that we
must avoid the value R = 0 because it is the source of numerical instability. We can instead
select a point that is sufficiently close to 0 but avoids the product of a very large with a very
small number (which is the source of the observed instability). Among our sampled values
we must include r∗ since we are interested in (the sign of) fλ(r∗).

Call fλ the vector version of the samples of fλ(R) and f0 the corresponding vector for the
samples of f0(R). In the sampled version of the integral equation (2.9), if we approximate the
three integrals using the idea proposed in (2.12), we end upwith the following system of linear
equations:

fλ = f0 − λPfλ.

Matrix P summarizes the contribution of the three integrals that use the function fλ(R). The
reason we need a matrix (and not a vector) is because we evaluate (2.9) for the complete
collection of samples of R. Each sample requires its own vector b, which contributes a row to
the matrix P. It is clear that the product Pfλ evaluates the sum of the three integrals for all
sampled values of R at the same time. Solving for fλ yields

fλ = (I + λP)−1f0. (2.13)

From the solution vector fλ, we only need to retain the term corresponding to fλ(r∗). We note
that f0,Pmust be computed only once, since they do not depend on λ. By changing the value
of the scalar λ, we can then find fλ(r∗) for different values of this parameter and examine its
sign to verify the validity of (2.11).

3. Examples

Let us apply the numerical method we introduced above to the case where the average false
alarmperiod takes the values γ = 5 and 20. The next two figures depict our numerical results.

In Figure 1(a) we plot f0(r∗) as a function of r∗ for γ = 5. For the computation of the
integral in (2.10) we used 501 samples in the interval [r∗, r∗ + γ ]. The bisection method
estimated the root of f0(r∗) = 0 to be r∗ = 1.0707. This is the value we adopted for this
parameter. For the computation of fλ(R), we sampled the interval [2× 10−3, r∗ + γ ] at 2,001
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Figure 1. (a) Plot of f0(r∗) as a function of r∗ for µ =
√
2 and γ = 5. The point at which the function

becomes 0 is r∗ = 1.0707. (b) Plot of fλ(r∗) as a function of λ ≥ 0.

Figure 2. (a) Plot of f0(r∗) as a function of r∗ for µ =
√
2 and γ = 20. The point at which the function

becomes 0 is r∗ = 1.5240. (b) Plot of fλ(r∗) as a function of λ ≥ 0.

points retaining the 501 we used for the determination of r∗. We then solved the linear system
in (2.13) for 100 values of λ selected canonically from the interval (0, 10]. The resulting fλ(r∗)
appears in Figure 1(b). We can see that this function is clearly negative thus supporting our
conjecture.

In Figures 2(a) and 2(b), we present our numerical results for the false alarm value γ = 20.
Here the bisection method yielded r∗ = 1.5240. For the computation of f0(r∗) and fλ(R), we
used 1,001 and 4,001 samples, respectively, where for the latter case, as before, we sampled
the interval [2 × 10−3, r∗ + γ ]. Finally, we canonically selected 200 samples for λ from the
interval (0, 10]. The resulting function fλ(r∗) is depicted in Figure 2(b) and, as we can see, it
is again negative, thus supporting, once more, our claim.

We should mention that we have performed numerous similar computations for various γ

that ranged from small to large values. In all cases, fλ(r∗) turned out to be a negative function
of λ. Of course, it is understood that these observations cannot serve, by any means, as a
formal proof of optimality for T∗. However, finding the proper formulas for the numerical
computation demanded a serious mathematical analysis, and the final outcome, undeniably,
supports our conjecture and the optimality of our detector.
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4. Discussion

We must point out that the proposed stopping time T∗ in (2.2) is known as the Shiryaev-
Roberts-r (SR-r) test and has already been considered in the analysis of Pollak’s performance
measure (Pollak, 1985):

JP(T) = sup
t≥0

Et[T − t|T > t]. (4.1)

In the same article, the following constrained min-max optimization problem was suggested:

inf
T

JP(T) = inf
T

sup
t≥0

Et[T − t|T > t], subject to: E∞[T] ≥ γ > 0, (4.2)

for the determination of an optimum detection strategy. Pollak (1985) was able to prove that
the discrete time analog of the stopping time T∗ in (2.2) is asymptotically optimum in a very
strong sense, provided that the deterministic starting point R0 = r∗ is replaced by a random
variable that follows the quasi stationary distribution. More precisely, he demonstrated that

JP(T∗) − inf
T

JP(T) = o(1), as γ → ∞.

This type of asymptotic solution is called third order and has the important characteristic
that, although the quantities JP(T∗) and infT JP(T) tend to infinity as γ → ∞, their distance
tends to zero. We recall for completeness that first-order asymptotic optimality is when
JP(T∗)/ infT JP(T) → 1 and second when JP(T∗) − infT JP(T) is bounded uniformly in γ .

A third order asymptotic optimality property was proven by Tartakovsky et al. (2012) for
the SR-r test, namely, the analog of T∗ in discrete time, with a deterministic and specially
designed initialization r∗.

In continuous time, there exist similar optimality claims. Specifically, Polunchenko (2017)
shows that T∗ can solve (4.2) in the third-order sense, when r∗ is random and follows the
quasi-stationary distribution. This is the continuous-time analog of Pollak’s (1985) result.
To obtain the equivalent of Tartakovsky et al.’s (2012) conclusions, one must demonstrate
that the T∗ in (2.2) can enjoy third-order asymptotic optimality with proper deterministic
initialization. Regarding the initializing value r∗ of Rt in continuous time, we can be very
precise. Since we are under an asymptotic regime with γ → ∞, if we refer to (2.10), divide
by γ , and let γ → ∞, we arrive at the equation

1 − er
−1
∗ E1(r

−1
∗ ) = 0,

from which we compute r∗ = 2.299812. Consequently, the claim is that T∗ when initialized
with r∗ = 2.299812 becomes a third-order asymptotic solution of the min–max problem
defined in (4.2). Unfortunately, the proof of this statement is still an open problem.

We note that the Pollak metric in (4.1) does not rely on any prior distribution (for τ ). It
turns out that we can recover this criterion by considering a generic performance measure
of the form E[T − τ+|T > τ ] where the prior for τ is unknown. If we follow a worst-case
approach over all possible priors, then, as is reported in Moustakides (2008), we recover the
Pollak criterion. For this general case as wementioned above, when Rt is initialized with r∗ =
2.299812, the conjecture is that T∗ is third-order asymptotically optimum.

In our current work, we limit ourselves to prior belonging to the two-parameter zero-
modified exponential family. We assume lack of exact knowledge of these parameters and we
follow a worst-case analysis with respect to the two unknowns. Since we adopt a significantly
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smaller class of distributions for the change-time (compared to Pollak’smetric), our optimality
claim can become stronger: We conjecture exact optimality for T∗ in the sense that it is the
exact solution of the min–max constrained optimization problem proposed in (1.5). For T∗
to enjoy this optimality property, the initialization parameter r∗ must depend on γ through
(2.10). Even though we do not provide a complete analytical proof, we do make a thorough
mathematical analysis and supply strong numerical evidence supporting the validity of our
conjecture.

Appendix A: Proofs of lemmas

In all proofs that follow, we denote the threshold r∗ + γ with A in order to simplify our
mathematical analysis and the corresponding manipulations.

Proof of Lemma 1.1. To show (1.10) we recall that {eut } is an {Ft}-martingale with respect
to P∞, consequently, E∞[eut |Fs] = eus when t ≥ s. This can be extended to stopping times
using optional sampling in the sense that E∞[euT |Fs] = eus on the event {T ≥ s}. With the
help of this observation, we can write

E∞[RT] = E∞

[

euT
{

r∗ +
∫ T

0
e−usds

}]

= r∗E∞[euT ] +
∫ ∞

0
E∞
[

E∞[euT−us |Fs]1{T>t}
]

ds

= r∗ +
∫ ∞

0
E∞[1{T>t}]ds = r∗ + E∞[T],

which proves the desired expression.
For (1.11), we use Itô calculus and observe that under the P0 measure we have the following

SDE for Rt :

dRt = (2Rt + 1) dt +
√
2Rtdwt , R0 = r∗, (A.1)

while under P∞ the sde becomes

dRt = dt +
√
2Rtdwt , R0 = r∗. (A.2)

Consider now dg(Rt) under P0, that we have

dg(Rt) = {(2Rt + 1)g′(Rt) + R2t g
′′(Rt)}dt +

√
2Rtg

′(Rt)dwt .

Integrating and taking expectation with respect to Pt , since we consider RT for {T > t}, we
are under the post change regime, namely, P0. This yields

Et[g(RT) − g(Rt)|Ft]1{T>t} = Et

[
∫ T

t
{(2Rt + 1)g′(Rt) + R2t g

′′(Rt)}dt|Ft

]

1{T>t}

= −Et[T − t|Ft]1{T>t} = −Et[(T − t)+|Ft],

where we used the fact that {T > t} is Ft-measurable. We note that the second equality is
true because, as we can verify, g(R) defined in (1.9) is the solution of the ode (2R+ 1)g′(R) +
R2g′′(R) = −1.
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To prove (1.12), after we note that {T > τ } = {T > τ+} because T > 0, we observe that

Er,λ[T − τ+|T > τ ] =
Er,λ[(T − τ+)+]
Pr,λ(T > τ )

.

We consider the numerator and denominator separately. We start with the denominator for
which we can write

Pr,λ(T > τ ) = P0(T > 0)P(τ ≤ 0) +
∫ ∞

0
Er,λ[1{T>t}1{τ∈dt}]

= π +
∫ ∞

0
Et[1{T>t}]P(τ ∈ dt) = π +

∫ ∞

0
Et[1{T>t}](1 − π)λe−λtdt.

We note that when the time of change is at τ = t, since {T > t} is Ft-measurable, it is a
pre-change event. But on Ft the probability measure Pt coincides with the nominal P∞;
therefore, the previous formula can be modified as follows:

Pr,λ(T > τ ) = π + (1 − π)

∫ ∞

0
E∞[1{T>t}]λe−λtdt

= π + (1 − π)E∞

[
∫ T

0
λe−λtdt

]

= λ

{

r + (1 − λr)E∞

[
∫ T

0
e−λtdt

]}

. (A.3)

Following a similar line of reasoning for the numerator, we obtain

Er,λ[(T − τ+)+] = πE0[T] + (1 − π)

∫ ∞

0
Et[(T − t)+]λe−λtdt.

Replacing Et[(T − t)+] from (1.11) yields

Er,λ[(T − τ+)+]

= λ

{

rE0[g(R0) − g(RT)] + (1 − λr)

∫ ∞

0
Et
[(

g(Rt) − g(RT)
)

1{T>t}
]

e−λtdt

}

.

(A.4)

Taking the ratio of the numerator expression (A.4) and the expression for the denominator
in (A.3) and also recalling that R0 = r∗ yields the desired equality.

To prove the last equality of this lemma, we consider the denominator of D(T, r∗, 0),
normalize it by λ and then take the limit as λ → 0. As we can then see from (A.3), the
denominator becomes r∗ + E∞[T]. For the numerator, we propose the following alternative
way to express Et[(T − t)+] that avoids the use of the function g(R),

Et[(T − t)+] = Et

[
∫ ∞

t
1{T>t}1{T>s}ds

]

=
∫ ∞

t
Et[1{T>t}1{T>s}]ds

=
∫ ∞

t
E∞

[

Et[1{T>s}|Ft]1{T>t}
]

ds
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=
∫ ∞

t
E∞

[

E∞[eus−ut1{T>s}|Ft]1{T>t}
]

ds

=
∫ ∞

t
E∞[eus−ut1{T>t}1{T>s}]ds

= E∞

[

1{T>t}

∫ T

t
eus−utds

]

,

where in the fourth equality we used (1.7) and the fact that {T > s} is Fs-measurable.
Normalizing the numerator by λ and then letting λ → 0 and using the previous expression,
we obtain

r∗E0[T] +
∫ ∞

0
Et[(T − t)+]e−λtdt

= r∗E∞

[
∫ T

0
eusds

]

+ E∞

[
∫ T

0

(
∫ T

t
eusds

)

e−utdt

]

= r∗E∞

[
∫ T

0
eusds

]

+ E∞

[
∫ T

0

(
∫ s

0
e−utdt

)

eusds

]

= E∞

[
∫ T

0
eus
{

r∗ +
∫ s

0
e−utdt

}

ds

]

= E∞

[
∫ T

0
Rsds

]

. (A.5)

Dividing the expression for the normalized numerator in (A.5) with the expression for the
normalized denominator r∗ +E∞[T] yields the desired result. This concludes the proof of the
lemma.

Proof of Lemma 2.3. To prove this lemma, we use methodology similar to the one applied in
Lemma 1.1. Consider fλ(R) to be twice differentiable, then under P∞ we have

d
(

e−λtfλ(Rt)
)

= e−λt{−λfλ(Rt) + g′(Rt) + R2t g
′′(Rt)}dt +

√
2e−λtRtg

′(Rt)dwt ,

from which we conclude that

E∞[e−λT∗ fλ(Rt∗) − fλ(R0)] = E∞

[
∫ T∗

0
e−λt{−λfλ(Rt) + g′(Rt) + R2t g

′′(Rt)}dt
]

.

We select fλ(R) to satisfy the ode

−λfλ(R) + f ′λ(R) + R2f ′′λ (R) = −
(

g(R) − g(r∗)
)

and to be bounded in [0,A] with the boundary condition f (A) = 0. If we substitute in the
previous equality, after recalling that R0 = r∗ and RT∗ = A, we prove the desired result.

Proof of Lemma 2.4. We have that the function f0(R) satisfies the ode

f ′0(R) + R2f ′′0 (R) = eR
−1
E1(R

−1) − er
−1
∗ E1(r

−1
∗ ), (A.6)

and it is bounded for R ∈ [0,A] with f0(A) = 0. With direct substitution, we can verify that
the desired solution has the following form:

f0(R) = {1 − er
−1
∗ E1(r

−1
∗ )}(R − A) +

∫ R−1

A−1

ex

x
E1(x)dx

= {1 − er
−1
∗ E1(r

−1
∗ )}(R − A) +

∫ R−1

A−1
E1(x)d

(

Ei(x)
)

.
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We can apply similar ideas in the differential equation (2.6) that defines fλ(R). Multiplying

both sides with e−R−1 1
R2

yields

(

e−R−1
f ′λ(R)

)′ = −λe−R−1 1

R2
fλ(R) +

(

e−R−1
f ′0(R)

)′
,

where for the last term we used the ode in (A.6) that defines f0(R). Integrating both sides, we
obtain

fλ(R) = f0(R) − λ

∫ A

R
ex

−1

(

∫ x

0

e−z−1

z2
fλ(z)dz

)

dx

= f0(R) − λ

∫ R−1

A−1

ex

x2

(
∫ ∞

x
e−zfλ(z

−1)dz

)

dx

= f0(R) − λ

{
∫ R−1

A−1
e−zfλ(z

−1)

(
∫ z

A−1

ex

x2
dx

)

dz +

(

∫ R−1

A−1

ex

x2
dx

)

∫ ∞

R−1
e−zfλ(z

−1)dz

}

,

where the second equality is the result of applying the change of variables x → x−1 and
z → z−1 and the third is obtained by changing the order of integration in the double integral
combined with careful housekeeping of the integration regions. The next step is to observe
that the indefinite integral of ex

x2
is equal to Ei(x)− ex

x . This applied in the previous expression
yields

fλ(R) = f0(R)

− λ

{

(

Ei(A
−1) − eA

−1
A
)

∫ R−1

A−1
fλ(z

−1)d(e−z) +
∫ R−1

A−1
fλ(z

−1)
(

e−zEi(z) − z−1)dz

+
(

Ei(A
−1) − eA

−1
A − Ei(R

−1) + eR
−1
R
)

∫ ∞

R−1
fλ(z

−1)d(e−z)

}

.

Combining terms and observing that the indefinite integral of e−zEi(z) − z−1 is −e−zEi(z)
yields

fλ(R) = f0(R) − λ

{

(

Ei(A
−1) − eA

−1
A − Ei(R

−1) + eR
−1
R
)

∫ ∞

A−1
fλ(z

−1)d(e−z)

−
∫ R−1

A−1
fλ(z

−1)d
(

e−zEi(z)
)

+
(

Ei(R
−1) − eR

−1
R
)

∫ R−1

A−1
fλ(z

−1)d(e−z)

}

,

which is the final expression. This concludes the proof of Lemma 2.4.
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