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ABSTRACT
We propose a two-stage sequential method for obtaining tandem-
width confidence intervals for a Bernoulli proportion p. The term
“tandem-width” refers to the fact that the half-width of the
100ð1"aÞ% confidence interval is not fixed beforehand; it is instead
required to satisfy two different half-width upper bounds, h0 and h1,
depending on the (unknown) values of p. To tackle this problem, we
first propose a simple but useful sequential method for obtaining
fixed-width confidence intervals for p, whose stopping rule is based
on the minimax estimator of p. We observe Bernoulli(p) trials
sequentially, and for some fixed half-width h ¼ h0 or h1, we develop
a stopping time T such that the resulting confidence interval for p,
[p̂T"h; p̂T þ h], covers the parameter with confidence at least
100ð1"aÞ%; where p̂T is the maximum likelihood estimator of p at
time T. Furthermore, we derive theoretical properties of our pro-
posed fixed-width and tandem-width methods and compare their
performances with existing alternative sequential schemes. The pro-
posed minimax-based fixed-width method performs similarly to alter-
native fixed-width methods, while being easier to implement in
practice. In addition, the proposed tandem-width method produces
effective savings in sample size compared to the fixed-width coun-
terpart and provides excellent results for scientists to use when no
prior knowledge of p is available.
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1. Introduction

Confidence interval (CI) estimation for a Bernoulli proportion p has a wide variety of
important real-world applications such as those involving the prevalence of a rare dis-
ease (Sullivan et al., 2013), the overall response rate in clinical trials (Abramson et al.,
2013), and accuracy assessment in remote sensing (Morisette and Khorram, 1998).
Perhaps the most widely known fixed sample size 100ð1"aÞ% CI is what is commonly
referred to as Wald’s CI of the form p̂6za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1"p̂Þ=n

p
; where p̂ is the sample mean

of n independent and identically distributed (i.i.d.) Bernoulli(p) observations, and za=2 is
the 1"a=2 quantile of the standard normal distribution. This CI is known to have poor
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properties when npð1"pÞ is small; see Vollset (1993), Agresti and Coull (1998),
Newcombe (1998), and Brown et al. (2001). Research continues to be undertaken to
improve this CI in the “offline” or “online” contexts. In particular, extensive research
has been devoted to CIs for p in the offline context, in which the sample size is fixed a
priori. Wilson (1927) proposed the “score” CI, which incorporates a correction term to
Wald’s CI to yield improved performance. Clopper and Pearson (1934) obtain an exact
CI by inverting equal-tailed binomial tests; see also Sterne (1954), Crow (1956), Blyth
and Still (1983), and Reiczigel (2003). Agresti and Coull (1998) and Brown et al. (2001,
2002) provide excellent surveys and comparisons of the methods.
In the online context, in which the sample size is not fixed beforehand and in fact

depends on the observed data, a great deal of research has obviously been devoted to
sequential CIs. In such cases, one continues to take observations until the 100ð1"aÞ%
CI satisfies a certain stopping criterion, often related to the length of the CI. For an
estimator dT of p, with T being the time we stop sampling (i.e., the stopping time), one
criterion for obtaining a CI is the fixed-width criterion, where the CI for p is given by
½dT"h; dT þ h' for fixed half-width h> 0. Example articles among the rich literature in
this area include Armitage (1958), Tanaka (1961), Robbins and Siegmund (1974), Khan
(1998), Zacks and Mukhopadhyay (2007; which gives two-stage and sequential modifica-
tions of Robbins and Siegmund (1974)), Frey (2010), and Yaacoub et al. (2019; a pro-
cedure satisfying certain optimality criteria). References involving broader methodology
(e.g., a greater variety of distributions and/or functions of parameters) include Chow
and Robbins (1965), Khan (1969), Siegmund (1985), and Mukhopadhyay and De
Silva (2009).
A related basis for obtaining a CI is the proportional accuracy criterion, where the CI

for p is given by fp : jdT"pj<gpg for some fixed g 2 ð0; 1Þ: Huber (2017) and
Malinovsky and Zacks (2018) cover the Bernoulli proportion; but see also Zacks (1966)
and Nadas (1969). A third measure under which we can consider a CI is the fixed-
accuracy criterion, where the CI for p is given by fp : p 2 ½d"1dT ; ddT 'g for some fixed
d> 1; see Mukhopadhyay and Banerjee (2015) for the Bernoulli case and
Mukhopadhyay and Banerjee (2014) and Banerjee and Mukhopadhyay (2015), which
discuss other cases.
In this article, we investigate a sequential CI for a Bernoulli proportion p but with

the new twist that the CI is tandem-width. By this we mean that the half-width h of the
100ð1"aÞ% CI is not fixed beforehand; it is instead required to satisfy two different
upper bounds, h0 and h1, depending on the (unknown) values of p. Some motivating
examples include the customer click-through rate to measure the efficacy of a new
online ad marketing campaign and the statistical model checking approach adopted in
complicated stochastic systems; see, for example, Jegourel et al. (2017). In both of these
modern applications, it is very expensive and time-consuming to set up the experiments
or simulations. Once they are set up, one wants to use the smallest number of samples
to gain knowledge of the Bernoulli proportion p as accurately and precisely as possible
due to the time or cost constraints. For instance, if the true (unknown) value of p were
to be in ½0:2; 0:8'; then one may feel that the half-width h0 ¼ 0:1 is precise enough and
is acceptable. On the other hand, if the true p were to be in ½0; 0:1Þ or ð0:9; 1'; then one
may feel that h0 ¼ 0:1 is too crude, and the half-width h1 ¼ 0:01 might be more
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suitable. This inspires us to investigate the problem of tandem-width sequential inter-
val estimation.
We propose to develop effective sequential methods for tandem-width interval esti-

mation of the Bernoulli proportion p at the pre-specified confidence level 100ð1"aÞ%:
It is intuitive to combine two sequential fixed-width CIs together, one for each fixed
half-width h0 or h1, but unfortunately it might be very difficult to implement the com-
bination in the sequential context if the two corresponding stopping times are not
monotone decreasing in the half-width. Indeed, though many existing methods yield
statistically efficient 100ð1"aÞ% CIs in the sense of small expected sample sizes for a
fixed half-width h, the stopping time T(h) often depends heavily on h, and it is unclear
whether the stopping boundary (i.e., termination criterion) of T(h) at each time step is
a monotone decreasing function of h or not, which would be a desirable property. As a
concrete illustration, the stopping time of the sequential CI proposed by Frey (2010) is
based on the Bayesian point estimator whose prior distribution depends on the half-
width h when optimized for the smallest expected sample size, and thus the monoton-
icity property is unclear here. To circumvent the monotonicity issue, we propose to use
the minimax point estimator of p instead of the Bayesian estimator to develop effective
sequential methods for fixed-width sequential CIs. By doing so, it will be straightfor-
ward to show that the monotonicity properties hold. The methodology to be described
in this article will allow us to conveniently combine two fixed-width sequential interval
estimators together, yielding an efficient tandem-width sequential interval estima-
tion method.
The remainder of this article is organized as follows. In Section 2, we formulate our

problem on tandem-width sequential CIs for a Bernoulli proportion p and provide
some background regarding different point estimators for p and, in particular, on the
method proposed by Frey (2010). In Section 3, we describe our sequential stopping
rules for the fixed-width CI and the tandem-width CI. We also discuss some asymptotic
properties for our proposed methods. Section 4 presents simulation results for our tan-
dem-width stopping rule. We also provide numerical results that compare our proposed
fixed-width stopping rule to Frey’s stopping rule. These numerical results are obtained
through recursive formulas that were inspired by the methodologies given in Zacks
(2017). Concluding remarks are included in Section 5.

2. Problem formulation and background

Assume that we observe a sequence of i.i.d. Bernoulli random variables, X1;X2; :::;
sequentially; that is, one at a time. Suppose PðXi ¼ 1Þ ¼ p and PðXi ¼ 0Þ ¼ 1"p; and
we want to use as few samples as possible to make an accurate and precise interval esti-
mate about the unknown parameter p 2 ½0; 1' at the confidence level 100ð1"aÞ% for
some prespecified a: We assume that the 100ð1"aÞ% CI for p is written in the form
½dT"h; dT þ h'; where h is the desired half-width of the CI, and dT can be thought as
the point estimator of p when we stop taking observations at time T.
In the problem of formulating tandem-width sequential confidence intervals, we want

to find a stopping time T and then a corresponding 100ð1"aÞ% CI for p whose half-
width is required to satisfy two different upper bounds, h0 and h1, depending on the
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unknown value of p and, in turn, the point estimate of p. On the one hand, when the
estimate dT is not too small or large, say, when dT 2 ½p0; 1"p0' for some prespecified p0
—for example, p0 ¼ 0:1— we would like to set the half-width h of the CI to a relatively
large value h0 (e.g., h0 ¼ 0:1) to save time and sampling costs. On the other hand, when
dT is quite small or large, say, when dT<p0 or >1"p0; we would like to set the half-
width of the CI to a smaller value h1 (e.g., h1 ¼ 0:01) in order for the CI to be more
meaningful. In the latter case, it is useful to take more time (additional samples) to pro-
duce a meaningful CI instead of stopping earlier with a CI that is too wide to
be practical.
To be more rigorous, we would like to find a stopping time T and the corresponding esti-

mator dT that minimize the average run lengths (ARLs), EpðTÞ; simultaneously for all 0 (
p ( 1; subject to the coverage probability (CP) constraints that

CPp h0ð Þ ¼ Pp p 2 dT " h0; dT þ h0½ '
" #

) 1"a; when p0 ( p ( 1"p0; (2.1)

and

CPp h1ð Þ ¼ Pp p 2 dT " h1; dT þ h1½ '
" #

) 1"a; when p<p0 or p>1"p0; (2.2)

where 0<h1<h0<1 and a 2 ð0; 1Þ are prespecified. Note that Ep and Pp denote the
expectation and the probability measure, respectively, when p is the true
Bernoulli parameter.
Let us now provide some background information on point and interval estimation

of the Bernoulli proportion p. For this purpose, we first review three different kinds of
point estimators of p in the offline context when the complete set of observations is
fX1;X2; :::;Xng: the maximum likelihood estimator (MLE), Bayes estimator, and mini-
max estimator, denoted by p̂n; ~pn; p

?
n; respectively, to emphasize their dependence on

the sample size n. First of all, the MLE of p is the sample mean,

p̂n ¼ p̂MLE ¼ Sn
n
; where Sn ¼

Xn

i¼1

Xi: (2.3)

Below we follow the literature to assume that the point estimator p̂T from (2.1) is the
MLE estimator from (2.3) when implemented with the (random) stopping time T. This
will allow us to make a fair, apples-to-apples comparison between our proposed stop-
ping time T and other sequential methods in the literature.
As for the Bayes estimator of p, it is well known that if the prior distribution of p is

the Beta(a, b) distribution for some prespecified a; b>0; then the posterior of p given
observed ðX1;X2; :::;XnÞ is the Beta(aþ Sn; b"Sn þ n) distribution. Thus, the mean of
the posterior distribution, ðSn þ aÞ=ðnþ aþ bÞ; is the Bayes estimator of p under the
standard squared error loss function. One important special case of the prior Beta dis-
tribution is when b ¼ a>0; so that the corresponding Bayes estimator of p becomes

~pn;a ¼ ~pBayes ¼
Sn þ a
nþ 2a

: (2.4)

Meanwhile, under the squared error loss function, the minimax framework is to find an
estimator d ¼ dðX1; :::;XnÞ that minimizes the largest mean square error over the entire
space ½0; 1' of the true parameter p. In other words, the minimax estimator minimizes
max0(p(1Ep½ðd"pÞ2': For Bernoulli random variables and for fixed sample size n, the
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minimax estimator is known to be given by

p?n ¼ p?minimax ¼
Sn þ

ffiffi
n

p

2

nþ
ffiffiffi
n

p ; (2.5)

see, for example, Lehmann and Casella (1998, pp. 311–312). Note that p?n is minimax in
the offline context because it is Bayes with respect to the (least favorable) prior distribu-
tion Beta(

ffiffiffi
n

p
=2;

ffiffiffi
n

p
=2) and has a constant risk or mean square error

of 1=ð4ð
ffiffiffi
n

p
þ 1Þ2Þ:

It is useful to compare the Bayes estimator ~pn;a from (2.4) with the minimax estima-
tor p?n from (2.5). On the one hand, for a fixed sample size n, the minimax estimator p?n
can be thought of as a special case of the Bayes estimator with a ¼

ffiffiffi
n

p
=2: On the other

hand, when the sample size n is variable, the estimators are fundamentally different:
The minimax estimator incorporates the sample size n adaptively in the estimator itself,
whereas the Bayes estimator involves a constant parameter a that can be tuned for opti-
mization depending on the problem context.
Next, we review the well-known offline sample size formula for estimating the

Bernoulli proportion p. Recall that in the offline context with a fixed sample size n, the
central limit theorem gives ðp̂n"pÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1"pÞ=n

p
* Nð0; 1Þ for large n, where p̂n is the

MLE from (2.3). Thus, an (approximate) 100ð1"aÞ% CI for p is p̂n6za=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1"pÞ=n

p
: If

we would like the half-width of this CI to be at most h, then the sample size n needs to
satisfy

za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1"pð Þ

n

r
( h; (2.6)

so that the fixed-sample lower bound on the required sample size for the two-sided
100ð1"aÞ% CI is

n0 ¼
$
p 1" pð Þ

za=2
h

% &2'
; (2.7)

where d+e is the ceiling function. When we do not have any prior knowledge of p, it is
often conservative to set the fixed sample size ncons ¼ 0:25ðza=2=hÞ2 by using the fact
that pð1"pÞ ( 0:25 for any 0 ( p ( 1: For instance, for survey polls, one typically sets
a ¼ 5% and h ¼ 3% (often called the margin of error), and thus the conservative
required sample size will be ncons * 1068:
Note that the conservative required fixed sample size ncons depends heavily on the

half-width h. In modern applications, a smaller half-width often makes sense only when
the true p value is very small or very large, and this occasionally allows us to signifi-
cantly reduce the sample size from the conservative required fixed sample size obtained
from (2.7) when we have prior knowledge on the bounds of p. For instance, for the
half-width h ¼ 0:01; if we have prior knowledge that p is very small or very large, say,
p ( 0:03 or p ) 0:97; then we can significantly reduce the required sample size from
the conservative value ncons ¼ 9604 to n0 ¼ ð0:03Þð0:97Þð1:96=0:01Þ2 * 1118; which is
more manageable. This is exactly the main idea in the sequential context, where we are
able to update our estimate of p over time as we collect data, which in turn may occa-
sionally allow us to identify opportunities to reduce the required sample size.
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Finally, let us review the existing methods for sequential fixed-width CIs for p. The
fixed-width sequential CI problem can be thought of as a special case of our proposed
tandem-width CI problem when h0 ¼ h1 ¼ h in (2.1). In other words, for the fixed-
width 100ð1"aÞ% sequential CI, we would like to find a stopping time T that (asymp-
totically) minimizes the ARLs, EpðTÞ; simultaneously for all 0 ( p ( 1; subject to the
CP constraint that

inf
0(p(1

Pp p 2 p̂T " h; p̂T þ h
( )" #

) 1"a; (2.8)

where a>0 and h> 0 are prespecified (e.g., a ¼ 5% and h¼ 0.1).
In the context of sequential CIs with fixed half-width h, one often writes the sequen-

tial CI in the form ½p̂T"h; p̂T þ h'; where p̂T is the MLE from (2.3). Of course, when
the lower bound p̂T"h ( 0 or the upper bound p̂T þ h ) 1; we can threshold these val-
ues to 0 and 1, respectively. Note that no statistical procedure can exactly and simultan-
eously optimize over all 0 ( p ( 1; and thus it is reasonable to adopt an asymptotic
approach as h; a ! 0; for example, finding a family of stopping times T ¼ Th;a such
that EpðTÞ is asymptotically equivalent to the fixed-sample lower bound from (2.7) at
each 0< p< 1:
Most existing methods for fixed-width sequential CIs work with the relationship (2.6)

by estimating the unknown true p carefully, especially at the early stages when few sam-
ples are available. To highlight the challenge of sequential CIs, let us estimate the
unknown p from (2.6) by the MLE p̂n (2.3). This will yield a naive stopping time based
on Wald’s CI:

TW ¼ inf n ) 1 :
p̂n 1"p̂n
" #

n
( h

za=2

 !2
8
<

:

9
=

;: (2.9)

Unfortunately, TW from (2.9) is not effective. In fact, when n ¼ 1; the MLE p̂n ¼ 0 or
1; and thus TW will always stop at time 1: There are many ways to improve this stop-
ping time, say, implementing it only after taking m0 ) 2 observations or setting lower
bounds on p̂nð1"p̂nÞ; but the corresponding new stopping times often require various
tuning parameters and become very complicated.
Frey (2010) proposes an interesting idea to salvage (2.9) by using the Bayes estimate

~pn;a; and this yields the stopping time

TF ¼ inf n ) 1 :
~pn;a 1"~pn;a

" #

n
( h

zc=2

 !2
8
<

:

9
=

;; (2.10)

where the parameter c ¼ cða; h; aÞ is chosen to satisfy the CP constraint from (2.8). The
main advantage of Frey’s method TF is that it is intuitively appealing and avoids the

Table 1. Optimal choices of a and c for 100ð1"aÞ% CIs with fixed half-width h from Frey (2010).
1"a 90% 95% 99%

h a c a c a c

0.10 4 0.0754 4 0.0356 6 0.0068
0.05 4 0.0859 6 0.0433 8 0.0083
0.01 8 0.0972 10 0.0487 14 0.0097
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trivial stopping scenario of (2.9). Unfortunately, in Frey’s method TF; both the decision
statistic and the threshold ðh=zc=2Þ2 depend on the tuning parameter a, which needs to
be optimized according to the specific half-width h and confidence level 1"a; see
Table 1 for the optimal values of a and c recommended by Frey (2010). As a result, it
is challenging to combine two fixed-width sequential CIs, each individually arising from
Frey’s method, together in the tandem-width sequential CI context.

3. Proposed sequential methods

For the problem of tandem-width sequential CIs, we propose to develop sequential
methods by combining two efficient sequential methods that are designed for fixed-
width CIs. For efficiency and easy implementation, we require that these two
sequential methods for fixed-width CIs have the same decision statistics, with the
only difference being the thresholds of the decision statistics. For this purpose, we
will use the minimax estimator p?n from (2.5) to estimate the unknown p used in
(2.6). This allows us to develop effective stopping times that do not involve tun-
ing parameters.
To better present our methods, this section is divided into three parts: Section 3.1

develops our proposed stopping times for sequential CIs; Section 3.2 derives the asymp-
totic properties of those sequential methods; and Section 3.3 discusses finite-sample
numerical issues, particularly how to accurately compute the ARL and CP properties of
our proposed sequential methods by non–Monte Carlo numerical methods. This will
allow us to validate our theoretical results.

3.1. Proposed stopping times

To simplify our notation, below we fix the a value in the CP constraint from (2.8) and
write the proposed fixed-width and tandem-width stopping times as a function of the
half-width h of the CI.
Let us begin with the proposed stopping time for a sequential 100ð1"aÞ% CI with

the fixed half-width h. The key idea is to apply the minimax estimator p?n from (2.5) to
estimate p from (2.6). This motivates us to propose the following stopping time:

TM cð Þ ¼ inf n ) 1 :
p?n 1"p?nð Þ

n
( c

* +
; (3.1)

where the threshold c ¼ ch is chosen to satisfy the CP constraint from (2.8). We report
the fixed-width sequential CI for p as ½p̂TMðcÞ"h; p̂TMðcÞ þ h' or, more accurately, as

max 0; p̂TM cð Þ"h
, -

;min 1; p̂TM cð Þ þ h
, -h i

:

An alternative way to consider confidence intervals is introduced in Mukhopadhyay and
Banerjee (2014) where we adopt the fixed-accuracy criterion. This selection proposes a
continuously variable CI with respect to the true parameter and forms a “cone of con-
fidence” over all of the values that it can take. Even though such an approach is inter-
esting, for our problem, when p is close to 1, it will result in the largest possible CI.
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Instead, our approach treats values close to 0 and 1 similarly and switches to a more
stringent CI in these two cases.
It is also important to point out that the threshold c ¼ ch from (3.1) is an increasing

function of h, in order to satisfy the CP constraint in (2.8). To see this, note that

Pp p 2 p̂TM cð Þ " h; p̂TM cð Þ þ h
h i, -

¼ Pp p̂TM cð Þ 2 p" h; pþ h½ '
, -

;

and thus the CP constraint in (2.8) implies that p̂TMðcÞ needs to be closer to the true p
with high probability for a smaller half-width h. This can only happen if the sample
size TMðcÞ becomes larger. Meanwhile, the stopping time TMðcÞ from (3.1) or the
(expected) sample size is clearly increasing as the threshold c ¼ ch decreases. This
implies that ch is increasing in h.
For the purpose of comparison with relation (2.6) and Frey’s method from (2.10), we

can rewrite the threshold c from (3.1) as

c ¼ ch ¼
h
zc=2

 !2

; (3.2)

where c ¼ cðh; aÞ depends on both h and a: In the finite-sample setting, we usually
have 0< c< a due to the repeated estimation over time from (3.1), although asymptot-
ically c=a ! 1 as h ! 0; see Theorem 3.1 in the next subsection. Our extensive numer-
ical experiments also suggest that c is a decreasing function of h (see Table 2) but,
unfortunately, we have been unable to prove the result rigorously.
Now we are ready to present our proposed tandem-width sequential CI. Denote by

TMðc0Þ and TMðc1Þ the stopping times TMðcÞ from (3.1) with h ¼ h0 (e.g., ¼ 0:1) and
h ¼ h1 (e.g., ¼ 0:01), respectively. Furthermore, based on the values of h0 and h1, we
can write

c0 ¼ ch0 ¼
h0
zc0=2

 !2

and c1 ¼ ch1 ¼
h1
zc1=2

 !2

; (3.3)

where c0 ¼ cðh0; aÞ and c1 ¼ cðh1; aÞ: At a high level, our proposed stopping time is a
two-stage procedure: The first stage uses our stopping time TMðc0Þ to derive a sequen-
tial CI with a larger half-width h0; and if the estimate p̂TMðc0Þ at the end of the first stage
is too small or too large, then we continue to conduct the second stage by using TMðc1Þ

Table 2. Choices of c ¼ cðh; aÞ and c ¼ cðh; aÞ for 90%, 95%, and 99% CIs of fixed half-width h for
our method.

1"a ¼ 90% 1"a ¼ 95% 1"a ¼ 99%

h c c c c c c

0.10 0.0736 3:12417, 10"3 0.0351 2:25210, 10"3 0.0051 1:27492, 10"3

0.09 0.0762 2:57622, 10"3 0.0373 1:86780, 10"3 0.0057 1:05982, 10"3

0.08 0.0801 2:08954, 10"3 0.0394 1:50818, 10"3 0.0064 8:60900, 10"4

0.07 0.0826 1:62629, 10"3 0.0412 1:17569, 10"3 0.0071 6:76096, 10"4

0.06 0.0851 1:21429, 10"3 0.0426 8:75656, 10"4 0.0078 5:08559, 10"4

0.05 0.0877 8:57312, 10"4 0.0436 6:13951, 10"4 0.0086 3:62106, 10"4

0.04 0.0901 5:56989, 10"4 0.0450 3:98145, 10"4 0.0089 2:33823, 10"4

0.03 0.0925 3:17985, 10"4 0.0462 2:26456, 10"4 0.0092 1:32673, 10"4

0.02 0.0950 1:43496, 10"4 0.0475 1:01844, 10"4 0.0095 5:94678, 10"5

0.01 0.0975 3:64170, 10"5 0.0488 2:57585, 10"5 0.0097 1:49495, 10"5
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to derive another sequential CI with a smaller half-width h1: Note that TMðc0Þ (
TMðc1Þ; and the observations in the first stage are kept and used in TMðc1Þ in the
second stage.
In other words, our proposed stopping time for the tandem-width sequential CI is

defined by

TTW -
TM c0ð Þ; if p̂TM c0ð Þ 2 p0; 1"p0½ ';
TM c1ð Þ; otherwise:

(
(3.4)

When TTW ¼ TMðc0Þ; we have p̂TMðc0Þ 2 ½p0; 1"p0'; and thus we report the 100ð1"aÞ%
CI as the one with a larger half-width h0; that is, ½maxð0; p̂TMðc0Þ"h0Þ;minð1; p̂TMðc0Þ þ
h0Þ': When TTW ¼ TMðc1Þ; we have p̂TMðc0Þ 62 ½p0; 1"p0' and typically report the
100ð1"aÞ% CI as the one with a smaller half-width h1; that is,
½maxð0; p̂TMðc1Þ"h1Þ;minð1; p̂TMðc1Þ þ h1Þ': In the finite-sample setting, it is possible,
though very rare, that p̂TMðc0Þ 62 ½p0; 1"p0' but p̂TMðc1Þ 2 ½p0; 1"p0': In such rare cases,
when TTW ¼ TMðc1Þ; one may choose to report the 100ð1"aÞ% CI by using p̂TMðc1Þ with
a larger half-width h0; for example, report CI as ½maxð0; p̂TMðc1Þ"h0Þ;minð1; p̂TMðc1Þ þ h0Þ':
For the purpose of numerical computations, it is useful to rewrite TTW from (3.4) as

TTW ¼ TM c1ð Þ" TM c1ð Þ"TM c0ð Þ
" #

+ 1 p̂TM c0ð Þ 2 p0; 1"p0½ '
n o

; (3.5)

which allows us to investigate the properties of TTW by conditioning on the sufficient sta-
tistics Sn from (2.3) when ðn; SnÞ is on the boundary of the stopping region of TMðc0Þ:

3.2. Asymptotic properties

In this subsection, we present asymptotic properties of the proposed tandem-width
sequential CI defined by the stopping time TTW from (3.4), including both the asymp-
totic expressions of ARL and the asymptotic CP. The main theoretical challenge is to
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Figure 1. The stopping points for TTW from (3.5) with h0 ¼ 0:1; h1 ¼ 0:05; c0 ¼ 0:0351; c1 ¼ 0:0436;
and p0 ¼ 0:15:
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investigate the asymptotic properties of the stopping time TMðcÞ from (3.1) for the
fixed-width sequential CI as h ! 0 or, equivalently, as c ¼ ch ! 0: It is useful to point
out that our technique is applicable to derive the asymptotic properties of Frey’s stop-
ping time TFða; hÞ from (2.10); this complements Frey (2010), which only reports finite-
sample numerical performance results.
Let us begin with the investigation of the asymptotic properties of our proposed stop-

ping time TMðcÞ from (3.1) for the fixed-width CI — including the CP in the uncon-
strained scenario as the threshold c ! 0: This will later allow us to investigate the
constrained scenario by finding c that satisfies the CP constraint in (2.8). The following
theorem summarizes the main results for TMðcÞ:

Theorem 3.1. As c ! 0; we have cTMðcÞ ! pð1"pÞ almost surely for each p 2 ð0; 1Þ, and

Ep TM cð Þ½ ' ¼ 1þ o 1ð Þð Þ p 1"pð Þ
c

: (3.6)

Moreover, denote by p̂TM
the MLE of p from (2.3) at time TMðcÞ. Then, as c ! 0;

1ffiffi
c

p p̂TM
"p

" #
! N 0; 1ð Þ in distribution; (3.7)

and thus an asymptotic 100ð1"aÞ% CI for p is p̂TM
6za=2

ffiffi
c

p
:

Before detailing the proof of this theorem, we comment on its usefulness. First, for
TMðcÞ; if we set the half-width of the asymptotic 100ð1"aÞ% CI for p to be h, then
za=2

ffiffi
c

p
¼ h; and thus c ¼ ðh=za=2Þ2: This justifies the form of c ¼ ch from (3.2) and

shows that c. a as h ! 0: Moreover, for TMðc0Þ; with the threshold c0 ¼ q0c for some
constant q0>0; as c0 ! 0; we have that Ppðp̂TMðc0Þ 2 ½p0; 1"p0'Þ is equal to 1"oð1Þ if
p 2 ½p0; 1"p0' and o(1) otherwise. When the sample sizes of these two cases are of the
same order, then the o(1) term will become negligible. Thus, for the proposed stopping
time, TTWðcÞ for the tandem-width CI, the asymptotic properties follow directly from
the theorem if the thresholds c0 and c1 in the two stages are of the same order. Such
results are summarized by the following corollary.

Corollary 3.1. Let T0 and T1 denote the stopping times TMðcÞ from (3.1) with the thresh-
olds c0 ¼ q0c and c1 ¼ q1c; respectively, for some q0>q1>0: Then for the proposed stop-
ping time TTWðcÞ from (3.4), we have with probability 1 under Pp that as c ! 0;

TTW cð Þ ¼ T0; if p 2 p0; 1"p0½ ';
T1; if p<p0 or if p>1"p0

*
(3.8)

and

Ep TTW cð Þ½ ' ¼

1þ o 1ð Þð Þ p 1"pð Þ
c0

; if p0<p<1"p0;

1þ o 1ð Þð Þ p 1"pð Þ
c1

; if p<p0 or p>1"p0;

1þ o 1ð Þð Þp 1"pð Þ
1
2c0

þ 1
2c1

% &
; if p ¼ p0 or p ¼ 1"p0:

8
>>>>>>>><

>>>>>>>>:

(3.9)
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Two simple lemmas will enable us to prove the theorem. One shows that TMðcÞ in
Theorem 3.1 is bounded above, and the other shows that TMðcÞ is bounded below. Both
bounds are non-asymptotic and hold for any threshold c> 0:

Lemma 3.1. For TMðcÞ in Theorem 3.1, we have TMðcÞ ( maxð1; 1=ð4cÞÞ for any c> 0:

Proof. The key idea is to note that p?nð1"p?nÞ ( 1=4 regardless of the value of p?n: When
n> 1=ð4cÞ ) 1; we have

p?n 1"p?nð Þ
n

( 1
4n

<
1

4 + 1
4c

" # ¼ c:

The lemma then follows directly from the definition of the stopping time from (3.1). w

Lemma 3.2. For TMðcÞ in Theorem 3.1, we have TMðcÞ ) ð 18cÞ
2=3 for any c> 0:

Proof. By the definition of the minimax estimator p?n from (2.5), an elementary argu-
ment shows that for all n ) 1;

p?n 1"p?nð Þ
n

¼
Sn n"Snð Þ þ n

ffiffi
n

p

2 þ n=4

n nþ
ffiffiffi
n

p" #2 )
0þ n

ffiffi
n

p

2 þ 0

n nþ
ffiffiffi
n

p" #2 >
n

ffiffi
n

p

2

n nþ nð Þ2
¼ 1

8
n"1:5:

Here we use the fact that Snðn"SnÞ ) 0 since 0 ( Sn ¼
Pn

i¼1 Xi ( n: Hence, whenever
n ( ð 18cÞ

2=3; we have p?nð1"p?nÞ
n > c; and thus TMðcÞ will not stop at time n. This proves the

lemma. w

Remark 3.1. Lemmas 3.1 and 3.2 provide nonasymptotic bounds that allow us to prove
the asymptotic results in Theorem 3.1 as c ! 0 for our stopping time TMðcÞ: However,
these results also apply to Frey’s procedure TFðc; aÞ from (2.10). In particular, by the
elementary arguments in Lemmas 3.1 and 3.2, we can show that for a> 0 and c> 0;

ffiffiffi
a
c

r
" 2a ( TF c; að Þ ( max 1;

1
4c

% &
; (3.10)

which results in TFðc; aÞ ! 1 almost surely as c ! 0:

Given the nonasymptotic bounds in Lemmas 3.1 and 3.2, we are now ready to prove
the asymptotic results in Theorem 3.1 as c ! 0:

Proof of Theorem 3.1. By Lemma 3.2, as c ! 0; we have TMðcÞ ! 1 with probability 1.
To find an accurate asymptotic expression of TMðcÞ; it is useful to rewrite its stopping
rule in terms of the MLE p̂n from (2.3), whose asymptotic properties are well known. A
simple mathematical argument shows that

p?n 1"p?nð Þ
n

¼
p 1"pð Þ þ 1

2
ffiffi
n

p þ 1
4n þ p̂n 1"p̂n

" #
"p 1"pð Þ

" #

n 1þ 1ffiffi
n

p
, -2 : (3.11)

At a high level, the proof is based on two disjoint events related to p̂n; depending on
how close the term from (3.11) is to pð1"pÞ=n: By the law of large numbers, for any
given 0< p< 1; the term from (3.11) is asymptotically equivalent to pð1"pÞ=n with
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probability that tends to 1 for large n. This turns out to capture the first-order asymp-
totic analysis, as the corresponding complement event is negligible, since TMðcÞ is
bounded from above by Lemma 3.1.
Below is the detailed, rigorous proof. Fix 0< p< 1 and !> 0: Then there exists an integer

n! > 0 such that for all n ) n!;

1þ 1ffiffiffi
n

p
% &2

( 1þ !: (3.12)

Furthermore, all n ) n!; denote the event

An;! ¼
....

1
2

ffiffiffi
n

p þ 1
4n

þ p̂n 1" p̂n
" #

" p 1" pð Þ
" #.... ( ! + p 1" pð Þ

( )

: (3.13)

First consider the case when the event An;! does not hold. Then for !> 0 and d > 0; the
weak law of large numbers implies that there exists n!;d > 0 such that for n ) n!;d ; we
have PðAc

n;!Þ< d: Moreover,

E TM cð Þ½ ' ¼ E TM cð Þ;An;!
( )

þ E TM cð Þ;Ac
n;!

( )
; (3.14)

Wherein the previous equation and throughout the proof, we use E½TMðcÞ;An;!' to
denote E½TMðcÞ' when the event An;! holds. By Lemma 3.1, TMðcÞ ( 1=ð4cÞ; so

E TM cð Þ;An;!
( )

( E TM cð Þ½ ' ( E TM cð Þ;An;!
( )

þ 1
4c

P Ac
n;!

" #
<E TM cð Þ;An;!

( )
þ 1
4c

d:

(3.15)

Now, we prove the case when the event An;! is true. In this case, a combination of
(3.11) and the fact that the event An;! holds yields that for all n ) n!;

1"!ð Þp 1"pð Þ
1þ !ð Þn

( p?n 1"p?nð Þ
n

(
1þ !ð Þp 1"pð Þ

n
: (3.16)

Note that such n! might depend on p and !; but relation (3.16) holds for all n ) n!:
Now by Lemma 3.2, there exists a c/> 0 such that for all c ( c/; we have TMðcÞ )
n! þ 1 and thus relation (3.16) holds for both n ¼ TMðcÞ and n ¼ TMðcÞ"1:
By the definition from (3.1), when n ¼ TMðcÞ; we have p?nð1"p?nÞ

n ( c: Combining this
with the first inequality in (3.16) for n ¼ TMðcÞ yields that for all c ( c!;

1"!ð Þp 1"pð Þ
1þ !ð ÞTM cð Þ

( c or; equivalently; cTM cð Þ )
1" !

1þ !
p 1"pð Þ:

Letting c ! 0 yields

lim
c!0

inf cTM cð Þ
/ 0

) 1"!

1þ !
p 1"pð Þ

with probability 1"d for any given !> 0: Now the inf-limit on the left-hand side does
not depend on !: Thus, letting ! ! 0; we have, with probability 1"d;

lim
c!0

inf cTM cð Þ
/ 0

) p 1"pð Þ: (3.17)

On the other hand, by the definition from (3.1), when n ¼ TMðcÞ"1; we have
p?nð1"p?nÞ

n >c: Combining this with the second inequality in (3.16) yields that for all c ( c!;
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c<
1þ !ð Þp 1" pð Þ
TM cð Þ " 1

or; equivalently; cTM cð Þ< 1þ !ð Þp 1" pð Þ þ c

with probability 1"d: Letting c ! 0; we have

lim
c!0

sup cTM cð Þ
/ 0

( 1þ !ð Þp 1"pð Þ

for any !> 0; which results in

lim
c!0

sup cTM cð Þ
/ 0

( p 1"pð Þ (3.18)

with probability 1"d: Combining (3.17) and (3.18), we obtain

lim
c!0

cTM cð Þ
/ 0

¼ p 1"pð Þ

with probability 1"d: By Lemma 3.1 and Lebesgue’s dominated convergence theorem,
we have

lim
c!0

Ep cTM cð Þ;An;!
( )

¼ Ep lim
c!0

cTM cð Þ;An;!
h i

¼ p 1"pð Þ;

and so

Ep TM cð Þ;An;!
( )

¼ 1þ o 1ð Þð Þ p 1"pð Þ
c

: (3.19)

Now, letting d ! 0 and using (3.19),

1þ o 1ð Þð Þ p 1"pð Þ
c

( E TM cð Þ½ ' ( 1þ o 1ð Þð Þ p 1"pð Þ
c

þ o 1=cð Þ ¼ 1þ o 1ð Þð Þ p 1"pð Þ
c

:

(3.20)

This proves (3.6).
To prove (3.7), a crucial step is to define an integer-valued constant m ¼ mc ¼

bpð1" pÞ=cc as c ! 0: On the one hand, by the central limit theorem,ffiffiffiffi
m

p
ðp̂m"pÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1"pÞ

p
¼ ðp̂m"pÞ=

ffiffi
c

p
is asymptotically normally N(0, 1) distributed, as

c ! 0: On the other hand, for T ¼ TMðcÞ; we just showed that T=m ! 1 almost surely.
By Equation (2.43) in Theorem 2.40 of Siegmund (1985, p. 23), we have

ffiffiffiffi
m

p
p̂T"p̂m
" #

! 0 in probability: (3.21)

Combining these two results together yields (3.7), thus completing the proof of the the-
orem. w

3.3. Finite-sample numerical computation

In this subsection, we discuss the numerical computation of the finite-sample perform-
ance properties of our proposed stopping times TMðcÞ from (3.1) and TTWðcÞ from
(3.8), including the ARL, Ep½T'; and the CP, Ppðjp̂T"pj ( hÞ, at each p. This allows us
to validate the asymptotic properties of our stopping times from the previous subsection
as well as compare properties of different methods.
For a given stopping time T and its corresponding sequential CI, there are two

approaches to compute its finite-sample properties, Ep½T' and Ppðjp̂T"pj ( hÞ for all
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0< p< 1: The first one is an approximate Monte Carlo method based on repeated ran-
dom sampling of Bernoulli(p) random variables for each 0< p< 1: It is straightforward
to implement such a Monte Carlo method, although it is very time consuming to obtain
accurate estimates of the ARL or CP properties over the whole interval p 2 ð0; 1Þ; espe-
cially when the true p is close to 0 or 1. The second approach is an accurate
non–Monte Carlo numerical method based on the path-counting ideas in Girshick et al.
(1946) and Schultz et al. (1973); see also Frey (2010). This non–Monte Carlo numerical
method is validated against the Monte Carlo method, and both yield the same results.
Let us provide a more-detailed discussion on the accurate non–Monte Carlo numerical

method. Note that Sn ¼
Pn

i¼1 Xi ¼ Sn"1 þ Xn is a sufficient statistic for the Bernoulli pro-
portion p, and conditional on Sn"1; the value of Sn has only two choices: Sn"1 or Sn"1 þ 1;
depending on whether Xn ¼ 0 or 1. Then, the key idea of the non–Monte Carlo numerical
method is to count the number of paths, denoted by Hða; nÞ; from S0 ¼ 0 at time 0 to Sn ¼
a at time n without hitting any earlier stopping boundaries of T before time n. For many rea-
sonable stopping times T, including our proposed stopping time T ¼ TMðhÞ; the stopping
points/boundaries of T can be written as the set of discrete points, ðSn1 ¼ a1; n1Þ; :::; ðSnk ¼
ak; nkÞ; for some (possibly large) k ) 1: Furthermore, in our proposed stopping time and
many other stopping times, ðSni ¼ a; niÞ is a stopping point if and only if ðni"a; niÞ is also a
stopping point, due to the fact that the problem is symmetric at p ¼ 1=2: Then, when the
stopping time T stops at time ni with the observed value Sni ¼ ai—that is, when ðai; niÞ is a
stopping point—we estimate p by p̂T ¼ p̂i ¼ ai=ni and report the confidence interval
as ½maxð0; p̂T"hÞ;minð1; p̂T þ hÞ':
Now once we have counted the number Hðai; niÞ of sample paths from (0, 0) to

ðSn ¼ ai; n ¼ niÞ without hitting any earlier stopping regions for all stopping points of
T, we can compute the finite-sample properties of T simultaneously for all p by

Pp jp̂T"pj ( h
" #

¼
Xk

i¼1

H ai; nið Þpai 1"pð Þni"ai1 jp"p̂ij ( h
/ 0

; (3.22)

and

Ep T½ ' ¼
Xk

i¼1

H ai; nið Þpai 1"pð Þni"aini: (3.23)

Numerically, we can use (3.22) and (3.23) to compute Ppðjp̂T"pj ( hÞ and Ep½T' as a
function of p as p varies from 0 to 1 (or to 1/2 due to symmetric properties) with a
small step size.
For each threshold c or tuning parameter c from (3.2), we will be able to derive the

corresponding finite-sample properties, Ep½T' and Ppðjp̂T"pj ( hÞ; of our proposed
stopping times T ¼ TMðcÞ from (3.1) or T ¼ TTWðcÞ from (3.8) for all 0<p<1: To sat-
isfy the 1"a CP constraints from (2.1) or (2.8), we propose to use the bisection search
method to obtain the desired threshold c or c.
We split the remainder of this subsection into two parts: (a) the numerical computa-

tion of the finite-sample properties of T ¼ TMðcÞ from (3.1) and (b) the numerical com-
putation of the finite-sample properties of T ¼ TTWðcÞ from (3.8). The latter part uses
the numerical computations of part (a) but is more involved in computation because
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the stopping region for the tandem method involves two stopping regions, one from the
first stage using h0 and another from the second stage using h1.

3.3.1. Finite-sample properties of TMðcÞ

Let us first focus on how to count the number of paths for a stopping time T such as
T ¼ TMðcÞ from (3.1) whose stopping region boundary is convex. Without loss of gener-
ality, assume that the stopping time is defined as T ¼ inffn ) 1 : Sn 2 Rng; where
Rn ¼ RnðcÞ is the stopping region at time n. Note that 0 ( Sn ( n for all n ) 1: Now
for each n and each possible value Sn ¼ a; we define two functions: (i) the indicator
function Iða; nÞ ¼ 1 if Sn ¼ a is an interior (non-stopping) point at time n and
Iða; nÞ ¼ 0 if Sn ¼ a belongs to the stopping region Rn; and (ii) is the counting func-
tion H(a, n) that denotes the number of ways to get to Sn ¼ a successes at time step n
without hitting any earlier stopping regions Rks at times 1 ( k ( n"1: Note that
Hð0; 1Þ ¼ Hð1; 1Þ ¼ 1; since we only have one way to obtain S1 ¼ 0 or 1 at time n ¼ 1:
To compute the counting function HðSn ¼ a; nÞ in general, note that Sn"1 ¼ a or a – 1

if Sn ¼ a; depending on whether Xn ¼ 1 or 0, and thus the number of path counts for
points ðSn ¼ a; nÞ can be computed by the number of paths to either ðSn"1 ¼ a; n"1Þ or
ðSn"1"1 ¼ a"1; n"1Þ; when at least one of them is an interior (non-stopping) point. In
other words, the counting function HðSn ¼ a; nÞ can be recursively computed by:

H a; nð Þ ¼ H a; n"1ð ÞI a; n"1ð Þ þ H a"1; n"1ð ÞI a"1; n"1ð Þ: (3.24)

For the purpose of numerical computation, the value H(a, n) can be large for large n
and, in such case, this recursion can be implemented on the log scale to avoid overflow
problems by using the equality log ðcþ dÞ ¼ log c þ log ð1þ exp ð log d" log cÞÞ:
Table 2 presents the numerical values of c for different choices of a and h that guar-

antee that the coverage probability of the confidence interval is at least 1"a:

3.3.2. Finite-sample properties of TTW (c)

It is much more challenging to count the number of paths for the stopping TTWðcÞ
from (3.8) for tandem-width sequential CIs, since its stopping region boundary is
non-convex.
To better illustrate the challenges, consider Figure 1, which plots the stopping points

for our proposed tandem method with h0 ¼ 0:1; h1 ¼ 0:05; c0 ¼ 0:0351; c1 ¼ 0:0436;
and p0 ¼ 0:15: Equivalently, c0 ¼ 2:2521, 10"3 and c1 ¼ 2:5758, 10"5: The stopping
points in red represent the stopping points for TMðc0Þ when h0 ¼ 0:1 and p̂TMðc0Þ 2
½p0; 1"p0': This means that if we hit these red stopping points, then we stop sampling
and report the 100ð1"aÞ% CI as ½maxð0; p̂TMðc0Þ"h0Þ;minð1; p̂TMðc0Þ þ h0Þ': However, if
we do not hit these points in the first stage and instead hit the green stopping points
for TMðc0Þ where p̂TMðc0Þ 62 ½p0; 1"p0'; then we need to keep on sampling until we reach
the blue stopping points for TMðc1Þ and report the 100ð1"aÞ% CI as
½maxð0; p̂TMðc1Þ"h1Þ;minð1; p̂TMðc1Þ þ h1Þ': As a result, the stopping region boundary of
TTWðcÞ from (3.8) consists of both red and blue stopping times, which form a non-con-
vex set. The good news is that this non-convex set is the difference of two convex boun-
daries, which allows us to simplify the computations.
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Figure 2. A comparison of coverage probability and average run length for three sequential methods:
(i) our proposed tandem-width CI with h0 ¼ 0:01 and h1 ¼ 0:1 (blue line); (ii) our proposed fixed-
width CI with h ¼ h0 ¼ 0:01 (red line); and (iii) our proposed fixed-width CI with h ¼ h1 ¼ 0:1 (green
line).
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Figure 3 . A comparison of coverage probabilities and expected sample sizes of three methods
(Optimum, Frey, and Proposed), for h¼ 0.1.
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To be more concrete, we use the definition of our tandem stopping time from (3.5)
to split the CP and ARL for the tandem procedure into three parts as follows. First, we
compute CP and ARL achieved by using TMðc1Þ; hitting the blue stopping points when
the blue region is the only stopping region. Second, compute CP and ARL achieved by
hitting the red stopping points; that is, the stopping points for the first stage where we
stop sampling using the equations in Section 3.3.1. The third part is the more demand-
ing part, as we need to compute the number of ways to hit the blue stopping points
starting from the red stopping points without hitting any stopping points in the interim
process. We start the recursion (3.24) from each red stopping point as the origin and
continue recursively until we hit the blue region. Then, we finish the third step by com-
puting the CP and ARL as from (3.22) and (3.23) but with the modified number of
ways reaching these blue points. The CP and ARL for the tandem procedure can be
combined by adding the CP and ARL from the first and third parts and subtracting the
second part.

4. Numerical studies

In this section, we report on numerical study results to further demonstrate the useful-
ness of our proposed stopping times. In Section 4.1, we illustrate the performance of
the tandem-width stopping time TTW from (3.4). In Section 4.2, we compare our pro-
posed fixed-width stopping time TM from (3.1) with Frey’s method TF from (2.10) that
involves an additional tuning parameter of the Bayes prior.

4.1. Tandem-width CI

Suppose that we are interested in deriving a 95% tandem-width sequential CI with half-
width h0 ¼ 0:1 if p̂ 2 ½p0; 1"p0' for p0 ¼ 0:15 and with half-width h1 ¼ 0:01 if p̂<p0 ¼
0:15 or >1"p0 ¼ 0:85: For our proposed tandem-width CI method, two threshold val-
ues are c0 ¼ 2:2521, 10"3 and c1 ¼ 2:5758, 10"5 or, equivalently, c0 ¼ 0:0351 and
c1 ¼ 0:0488 based on Table 2. Next, we obtain the the coverage probability and ARL
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Figure 4. A comparison of coverage probabilities and expected sample sizes of three methods
(Optimum, Frey, and Proposed), for h¼ 0.05.
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through simulation, with 500,000 replications at each value of p ¼
0:001; 0:002; :::; 0:999: Note that we could also use the path-counting ideas in the previ-
ous section to obtain CP and ARL analytically, but in this case it is easier to verify our
results through simulation. We report the estimate of Ppðjp̂TTW

"pj ( hÞ as the number
of instances that p is within the reported confidence interval divided by the total num-
ber of replications. Furthermore, we report the estimate of Ep½TTW' as the average run
length over each replication for each value of p. In Figure 2, we compare the tandem-
width CI simulation results (blue line) versus the analytical results (obtained from the
finite-sample numerical computational methods in Section 3.3) of the fixed-width CI
based on p?n obtained with h¼ 0.1 (green line) and h¼ 0.01 (red line).
We notice that by not choosing to use a fixed-width CI for h¼ 0.01, such as that

based on TM from (3.1), we can save in the worst case about 60% of the sampling cost
and time if we are willing to report a 100ð1"aÞ% CI for p with larger half-width
h¼ 0.1 when p is not close to 0 or close to 1. This savings in sampling cost becomes
more obvious as we get closer to p¼ 0.5. This illustrates the importance of our tandem-
width methodology, because when resources are scarce or when no historical data are
available to gain prior knowledge about p, then we do not need to spend so much time
to report a very accurate CI with a very small half-width when p is close to 1/2.
Now that we illustrated the usefulness of our tandem-width methodology, we com-

pare the performance of the minimax-based method from (3.1) versus Frey’s method
from (2.10).

4.2. Fixed-width CI comparisons

In this subsection, we compare our proposed fixed-width method with Frey’s method
TF from (2.10), and with the optimum scheme in our earlier work in Yaacoub et al.
(2019). Using the numerical iterations from Section 3.3, we calculate numerically
Ppðjp̂T"pj ( hÞ and Ep½T' for p ¼ 1=2001; 2=2001; :::; 2000=2001: Note that the require-
ment is to be able to guarantee a minimal coverage probability for all p. Therefore,
parameters were selected so that all competing schemes guaranteed the same worst-case
coverage probability; that is, coverage of at least 1"a for all p. Here the tuning param-
eter c is chosen from Table 2 for our method and from Table 1 for Frey’s method TF:
The optimum scheme in Yaacoub et al. (2019) requires two tuning parameters: one is
the parameter u that sets the Beta(u, u) as the prior distribution of p, and the other is
the parameter j for the cost per observation. Here, the choice of u¼ 1 (uniform prior)
and cost j ¼ 0:00097 will satisfy the coverage probability constraint in Yaacoub et al.
(2019) for a ¼ 0:05 and h¼ 0.1.
In Figure 3(a), we plot the coverage probability for each method versus p and in

Figure 3(b) we plot the corresponding average sample size required to obtain this per-
formance for a ¼ 0:05 and h¼ 0.1. We can draw the following conclusions from the fig-
ures: Our proposed scheme and Frey’s require about the same sample sizes for most
values of p, although our fixed-width scheme is slightly more parsimonious when p is
close to 0 or 1. Moreover, the two procedures exhibit similar coverage probability pro-
files. The optimum scheme in Yaacoub et al. (2019) is the best in terms of the smallest
number of samples to guarantee the worst-case CP of at least 0.95.
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We also ran numerical experiments for many other combinations of ða; hÞ; and we
make similar conclusions. For instance, in Figure 4(a), we plot the coverage probability
for each method versus p, and in Figure 4(b) we plot the corresponding average sample
size required to obtain this performance for a ¼ 0:05 and h¼ 0.05. Our proposed
method and Frey’s method perform almost identically, whereas the optimum method
has a smaller sample size and larger coverage probability if the true p is not too close to
0 or 1. Notice that the behavior of the optimum scheme differs between different values
of h. For instance, for h¼ 0.1, the optimum scheme has a lower expected sample size
than both methods, whereas for the case of h¼ 0.05 the expected sample size of the
optimum scheme is sometimes larger than those of both methods, even though in such
cases the coverage probability is larger. One possible explanation for this phenomenon
is that the optimum scheme puts more weights on the expected sample size when h is
larger but more weight on CP when h is smaller. However, we are unable to prove such
a claim.
We should emphasize that the optimum scheme in our earlier work (Yaacoub et al.,

2019) becomes computationally expensive as h gets smaller—for example, h ¼ 0:01—as
it involves dynamic programming and involves matrices of dimension of order 1=h2;
see Yaacoub et al. (2019). For the fixed half-width h ¼ 0:01; the performance of our
fixed-width method and Frey’s is also similar, although Frey’s method gives a slightly
smaller (i.e., better) ARL, whereas our proposed method gives a slightly larger coverage
probability.
In summary, as compared to Frey’s method that needs to optimize the tuning param-

eter for the Bayes prior, our proposed method has similar finite-sample properties but
is much simpler to implement since the minimax estimator does not involve any tuning
parameters. In other words, our new tandem-width sequential CIs is a simple but useful
method for fixed-width sequential CIs that is fast and efficient with performance char-
acteristics that are comparable to or only slightly worse than those of the opti-
mum scheme.

5. Conclusions

We proposed two sequential schemes for obtaining confidence intervals for a binomial
proportion p using the minimax estimator of p: a fixed-width scheme, and a tandem-
width scheme. We also established upper and lower bounds for our stopping times, pre-
sented their asymptotic properties, and compared our proposed schemes with other
existing methods. We found that our proposed sequential schemes are computationally
simple and also enjoy nice theoretical properties.
Our proposed tandem-width method can be extended in a couple of different direc-

tions. First, it can be extended to three or more half-widths or stages, allowing better
flexibility with the choice of half-widths based on the true value of p. For instance, one
may prefer a half-width size of (i) h0 ¼ 0:10 if the true p 2 ½0:4; 0:6'; (ii) h1 ¼ 0:05 if
p 2 ½0:1; 0:4Þ or p 2 ð0:6; 0:9'; or (iii) h2 ¼ 0:01 if p< 0.1 or p>0:9: In such cases, we
can extend our proposed stopping time in (3.4) to develop a three-stage stopping time,
depending on the value of p̂ at the end of each stage. Moreover, it is of interest to com-
bine our method with a proportional accuracy (aka relative-width) CI, where the half-
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width h is a function of p; for example, h ¼ hðpÞ ¼ gp for some g 2 ð0; 1Þ: This allows
us to overcome a disadvantage of relative-width schemes that often become very costly
for small p.
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