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ABSTRACT
We consider the online monitoring of multivariate streaming data
for changes that are characterized by an unknown subspace struc-
ture manifested in the covariance matrix. In particular, we consider
the covariance structure changes from an identity matrix to an
unknown spiked covariance model. We assume the postchange dis-
tribution is unknown and propose two detection procedures: the
largest-eigenvalue Shewhart chart and the subspace-cumulative sum
(CUSUM) detection procedure. We present theoretical approxima-
tions to the average run length (ARL) and the expected detection
delay (EDD) for the largest-eigenvalue Shewhart chart and provide
analysis for tuning parameters of the subspace-CUSUM procedure.
The performance of the proposed methods is illustrated using simu-
lation and real data for human gesture detection and seismic
event detection.
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1. INTRODUCTION

Detecting the change from high-dimensional streaming data is a fundamental problem
in various applications such as video surveillance (Sultani, Chen, and Shah 2018), sensor
networks (Xie and Siegmund 2013), wearable sensors (Sprint, Cook, and Schmitter-
Edgecombe 2016), and seismic events detection (Z. Li et al. 2018). In many scenarios,
the change happens to the covariance structure and can be represented as a low-rank
subspace to capture the similarity of signal waveforms observed at multiple sensors. We
consider the fundamental problem of detecting such a change in the covariance matrix
that shifts from an identity matrix to a spiked covariance model (Johnstone 2001).
Different from the off-line hypothesis test considered in Berthet and Rigollet (2013), we
assume a sequential setting, where the goal is to detect such a change as quickly as pos-
sible after it occurs.
A formal description of the problem is as follows. Assume a sequence of multivariate

observations x1, x2, :::, xt, :::, where xt 2 Rk and k is the data dimension. At a certain
time s, the distribution of the observation changes. In particular, we are interested in
structural changes that happen to the covariance matrix, which we describe below: (1)
the emerging subspace, meaning that the change is a subspace emerging from a noisy
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background and thus the covariance matrix changes from an identity matrix to a spiked
covariance matrix; (2) the switching subspace, meaning that the signals are along with
different subspaces before and after the change, resulting in the covariance matrix
changing from one spiked covariance matrix to another. The emerging subspace prob-
lem can arise, for instance, from weak signal detection for seismic sensor arrays (Sprint,
Cook, and Schmitter-Edgecombe 2016), and the switching subspace detection can arise
from monitoring principal component analysis for streaming data (Balzano, Chi, and
Lu 2018). The switching subspace problem, as we will show, can be reduced to the
emerging subspace problem; therefore, we focus on the emerging subspace problem.
The main contribution of this article is twofold. From the methodology perspective,

we propose two sequential detection procedures: the largest-eigenvalue Shewhart chart
and the subspace-cumulative sum (CUSUM) procedure. The largest-eigenvalue
Shewhart chart computes the largest eigenvalue of the sample covariance matrix over a
sliding window and detects a change when the statistic exceeds the threshold. The sub-
space-CUSUM is derived based on the likelihood ratio following the approach of clas-
sical CUSUM (Page 1954), but instead of assuming that the parameters are fully
specified, we estimate the parameters and plug-in, which is analogous to the generalized
likelihood ratio (GLR) statistic (Lai 1995). From the theoretical perspective, we provide
a theoretical analysis of the proposed procedures, which facilitates efficient calibration
of the parameters. We consider two commonly used metrics: the average run length
(ARL) and the expected detection delay (EDD). Theoretical approximations can help us
determine the threshold in the detection procedure efficiently. Moreover, building on
Anderson’s results for the distribution of eigenvectors (Anderson 1963), we provide the-
oretical guidelines on how to choose the parameters involved in the subspace-
CUSUM procedure.
The proposed detection procedures are computationally efficient because they only

require computing the leading eigenvalue and eigenvector of the sample covariance
matrix, respectively. They are widely applicable to real data whenever there is a low-
rank subspace change. For example, we have demonstrated its use in human activity
detection from wearable sensors data and seismic event detection.

1.1. Related Work

In change point detection and industrial quality control, commonly used methods can
be categorized into Shewhart chart, CUSUM, and GLR types of detection procedures.
Shewhart charts can be viewed as scan statistics over time. A change is detected when

the process is out of control; that is, the detection statistic falls out of the control limit.
A commonly used Shewhart chart for multivariate observations is the Hotelling T2 con-
trol chart (Hotelling 1947), which can detect both mean and covariance shifts and the
control limits are set through chi-square distributions. Modified T2 charts based on
principal component analysis are considered in Jackson (1959) and Jackson and
Mudholkar (1979). The U2 multivariate control chart in Runger (1996) considers detect-
ing the mean shift in a known subspace. Those works do not consider the largest eigen-
value as a detection statistic.
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Whereas Shewhart charts use the current subgroup samples to compute the detection
statistic, the CUSUM procedure utilizes all past samples and updates the detection stat-
istic recursively based on the log-likelihood ratio (Page 1954). A multivariate CUSUM
procedure for detecting mean shift was developed in Pignatiello and Runger (1990), and
a more recent work (Bodnar and Schmid 2005) presents CUSUM based on projected
data. In classic CUSUM, the prechange and postchange distributions are specified com-
pletely. The subspace-CUSUM procedure here is not a typical CUSUM because we esti-
mate the unknown subspace after the change.
Usually, the postchange distributions or their parameters are unknown and hard to

prespecify. One solution is to set the postchange parameter to represent the “smallest
possible change” of interest. However, when there is a parameter mismatch, the
CUSUM procedure suffers from a performance loss. The GLR procedure is introduced
to handle unknown postchange distributions (Lai 1995). The subspace-CUSUM proced-
ure here is different from the GLR procedure because we do not estimate the full log-
likelihood function; instead, we only estimate the subspace and introduce an additional
parameter to control the performance.
Covariance shift detection has been considered in the past literature using various

detection statistics. A multivariate CUSUM based on likelihood functions of multivari-
ate Gaussian was studied in Healy (1987) considering a specific setting where the
covariance changes from R to cR for a constant c. The determinant of the sample
covariance matrix was used in Alt (1985) and Alt and Smith (1988) to detect the
covariance change. Chan and Zhang (2001) considered a CUSUM chart for monitor-
ing covariance shift using the projection pursuit (Huber 1985) and likelihood ratio,
with simulation studies on the performance of the proposed methods. Offline change
detection of covariance change was studied in Chen and Gupta (2004) using the
Schwarz information criterion (Schwarz 1978), where the change point location must
satisfy certain regularity conditions to ensure the existence of the maximum likelihood
estimator. Recently, Wang, Yu, and Rinaldo (2017) used wide binary segmentation
through independent projection to recover the change points for the covariance matrix
in the off-line setting. Avanesov and Buzun (2018) used the distance between empir-
ical precision matrices to detect abrupt changes in covariance for the off-line case.
Classical approaches usually consider the general setting, and here we are interested in
detecting the structural change; that is, spiked covariance matrix.
Recent work has also considered other types of structured covariance changes. The detec-

tion of a shift in an off-diagonal submatrix of the covariance matrix was studied in Arias-
Castro, Bubeck, and Lugosi (2012) using likelihood ratios. The detection of switching sub-
spaces was studied in Jiao, Chen, and Gu (2018) based on a CUSUM-type procedure, but
they only estimated the prechange subspace using historical data and assumed that the
postchange subspace was known; this is different from our work because we also estimate
the postchange subspace. Zhang et al. (2018) developed an off-line modeling framework for
multivariate functional data based on sparse subspace clustering.
The largest-eigenvalue Shewhart chart is related to Berthet and Rigollet (2013), which

studied the sparse principal component test based on sparse eigenvalue statistics. The
largest eigenvalue statistic was shown to be asymptotically minimax optimal in Berthet
and Rigollet (2013) for detecting whether there exists a sparse and low-rank component.
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A natural sequential version of this idea is to use a sliding window and estimate the
largest eigenvalue of the corresponding sample covariance matrix. However, this
sequential version does not enjoy any form of (asymptotic) optimality.

1.2. Organization

The rest of the article is organized as follows. Section 2 presents the formulation of the
emerging and switching subspace problems and shows a unified framework. Section 3
presents the proposed two sequential change detection procedures: the largest-eigen-
value Shewhart chart and subspace-CUSUM procedure. Section 4 presents theoretical
approximations and bounds for the average run length and the expected detection delay
of the largest-eigenvalue Shewhart chart, as well as theoretical calibration and parameter
choice for subspace-CUSUM procedure. Section 5 contains simulation studies to dem-
onstrate the performance of the proposed algorithms in different settings. Section 6
shows two real data examples using human gesture detection and seismic event detec-
tion. Finally, Section 7 contains our concluding remarks.

2. PROBLEM SETUP

We first introduce the spiked covariance model considered in Johnstone (2001), which
assumes that a small number of directions explain most of the variance. For simplicity,
we consider the spiked covariance model of rank 1 in this article. The results can be
generalized to the case where rank is greater than one using similar ideas. In particular,
the rank 1 spiked covariance matrix is given by

R ¼ r2Ik þ huu> ,

where Ik denotes an identity matrix of size k; h> 0 is the signal strength; u 2 Rk repre-
sents a basis for the subspace with unit norm juj j ¼ 1;j and r2 is the noise variance,
which will be considered known because it can be estimated from training data. It is
possible to consider r2 unknown as well and provide estimates of this parameter along
with the necessary estimates of u. However, to simplify our presentation, we decide to
consider r2 known. The signal-to-noise ratio (SNR) is defined as q ¼ h=r2:
Formally, the emerging subspace problem can be cast as follows

xt #
iid N 0, r2Ikð Þ, t ¼ 1, 2, :::, s,

xt #
iid N 0, r2Ik þ huu>ð Þ, t ¼ sþ 1, sþ 2, :::

(2.1)

where s is the unknown change point that we would like to detect from data that are
acquired sequentially. Similarly, the switching subspace problem can be formulated as
follows:

xt #
iid N 0, r2Ik þ hu1u>1

! "
, t ¼ 1, 2, :::, s,

xt #
iid N 0, r2Ik þ hu2u>2

! "
, t ¼ sþ 1, sþ 2, :::

(2.2)

where u1, u2 2 Rk represent bases for the subspaces before and after the change, with
jju1jj2 ¼ jju2jj2 ¼ 1 and u1 is considered known. In both settings, our goal is to detect
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the change as quickly as possible, subject to the constraint that false detections occur-
ring before the true change point are very rare.
The switching subspace problem (2.2) can be reduced into the emerging subspace

problem (2.1) by a simple data projection. In detail, we can select any orthonormal

matrix Q 2 R k&1ð Þ'k such that

Qu1 ¼ 0, QQ> ¼ Ik&1,

which means that all rows of Q are orthogonal to u1, and they are orthogonal to each
other and have unit norm. Then, we project each observation xt using the projection
matrix Q onto a k& 1 dimensional space and obtain a new sequence

yt ¼ Qxt 2 Rk&1, t ¼ 1, 2, ::::

Then yt is a zero-mean random vector with covariance matrix r2Ik&1 before the change
and r2Ik&1 þ hQu2u>2 Q

> after the change. Let u ¼ Qu2= jQu2j j ,j and

~h ¼ h jQu2j jj2 ¼ h 1& u>1 u2
! "2h i

:

Thus, problem (2.2) can be reduced to the following:

yt #
iid N 0, r2Ik&1ð Þ, t ¼ 1, 2, :::, s,

yt #
iid N 0, r2Ik&1 þ ~huu>

! "
, t ¼ sþ 1, sþ 2, :::

(2.3)

Note that this way the switching subspace problem is reduced into the emerging sub-

space problem, where the new signal power ~h depends on the angle between u1 and u2,
which is consistent with our intuition.
We would like to emphasize that by projecting the observations onto a lower-dimen-

sional space, we lose information, suggesting that the two versions of the problem are
not exactly equivalent. Indeed, the optimum detector for the transformed data in (2.3)
and the one for the original data in (2.2) do not coincide. This can be easily verified by
computing the corresponding CUSUM tests and their optimum performance. Despite
this difference, it is clear that with the proposed approach we put both problems under
the same framework, offering computationally simple methods to solve the original
problem in (2.2). Consequently, in the following analysis, we focus solely on prob-
lem (2.1).

3. DETECTION PROCEDURES

We propose two online methods: the largest-eigenvalue Shewhart chart and the sub-
space-CUSUM procedure. Below, denote by Ps and Es the probability and expectation
induced when there is a change point at the deterministic time s. Under this definition,
P1 and E1 are the probability and the expectation under the nominal regime (a
change never happens) and P0 and E0 are the probability and expectation under the
alternative regime (a change happens before we take any data).
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3.1. Largest-Eigenvalue Shewhart Chart

Motivated by the test statistic in Berthet and Rigollet (2013), we consider a Shewhart
chart by computing the largest eigenvalue of the sample covariance matrix repeatedly
over a sliding window. Assume that the window length is w. For each time t> 0, the
unnormalized sample covariance matrix using the available samples is given by

R̂t, minft,wg ¼
x1x>1 þ ( ( ( þ xtx>t , for t < w

xt&wþ1x>t&wþ1 þ ( ( ( þ xtx>t , for t ) w:

(

(3.1)

We note that for t¼ 1 the matrix contains a single outer product and as time progresses
the number of outer products increases linearly until it reaches w. After this point,
namely, for t ) w, the number of outer products remains equal to w.
Let kmax Xð Þ denote the largest eigenvalue of a symmetric matrix X. We define the

largest-eigenvalue Shewhart chart as the one that stops according to the following rule:

TE ¼ infft > 0 : kmax R̂t, minft,wg

# $
) bg, (3.2)

where b> 0 is a constant threshold selected to meet a suitable false alarm constraint.
We need to emphasize that we do not divide by minft,wg when forming the unnormal-
ized sample covariance matrix. As we explain in Section 4.1, it is better for TE to always
divide by w instead of minft,wg: Consequently, we can omit the normalization con-
stant w from our detection statistics by absorbing it into the threshold.

3.2. Subspace-CUSUM

The CUSUM procedure (Page 1954; Siegmund 1985) is the most popular sequential test
for change detection. When the observations are independent and identically distributed
before and after the change, CUSUM is known to be exactly optimum (Moustakides
1986) in the sense that it solves a very well-defined constrained optimization problem
introduced in Lorden (1971). However, the CUSUM procedure can only be applied
when we have exact knowledge of the pre- and postchange distributions. For our prob-
lem, this requires complete specification of all parameters, namely, the subspace u, noise
power r2, and SNR q. In this section, we first introduce the exact CUSUM formulation
and then present our subspace-CUSUM procedure.

3.2.1. Exact CUSUM
To derive the CUSUM procedure, let f1 (ð Þ, f0 (ð Þ denote the pre- and postchange prob-
ability density function of the observations. Then the CUSUM statistics are defined by
maximizing the log-likelihood ratio statistic over all possible change point locations

St ¼ max
1*j*t

Xt

i¼j

log
f0 xið Þ
f1 xið Þ

,

which has the recursive implementation

St ¼ St&1ð Þþ þ log
f0 xtð Þ
f1 xtð Þ

, (3.3)
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which enables its efficient calculation (Moustakides 1986), where xþ ¼ maxf0, xg: The
CUSUM stopping time in turn is defined as

TC ¼ infft > 0 : St ) bg, (3.4)

where b is a threshold selected to meet a suitable false alarm constraint. For our prob-
lem of interest (2.1) we can derive that

log
f0 xtð Þ
f1 xtð Þ

¼ log
2pð Þkjr2Ik þ huu> j

h i&1=2

2pð Þkr2k
h i&1=2 ' exp f&x>t r2Ik þ huu>ð Þ&1xt=2g

exp f&x>t xt= 2r2ð Þg

2

664

3

775

¼ log Ik þ quu>
%% %%&1

2 exp
1
2

h
hþ r2

u> xtð Þ2

r2

( )" #

¼ q
2r2 1þ qð Þ

f u> xt
! "2 & r2 1þ 1

q

& '
log 1þ qð Þg:

The second equality is due to the matrix inversion lemma (Woodbury 1950) that allows
us to write

r2Ik þ huu>
! "&1 ¼ 1

r2
Ik &

h
hþ r2

uu>

r2
,

which, after substitution into the equation, yields the desired result. Note that the multi-
plicative factor q= 2r2 1þ qð Þ

( )
is positive, so we can omit it from the log-likelihood

ratio when forming the CUSUM statistic in (3.3). This leads to

St ¼ St&1ð Þþ þ u> xt
! "2 & r2 1þ 1

q

& '
log 1þ qð Þ: (3.5)

Remark 3.1. We can show that the increment term in (3.5); that is,

u> xt
! "2 & r2 1þ 1

q

& '
log 1þ qð Þ,

has the following property: its expected value is negative under the prechange probabil-
ity measure and positive under the postchange probability measure. The proof relies on
a simple argument based on Jensen’s inequality (Rudin 2006). Due to this property,
before the change, the CUSUM statistics St will oscillate near 0 and it will exhibit, on
average, a positive drift after the occurrence of the change, forcing it, eventually, to hit
or exceed the threshold.

3.2.2. Subspace-CUSUM Procedure
Usually the subspace u and SNR q are unknown. In this case it is impossible to form
the exact CUSUM statistic depicted in (3.5). One option is to estimate the unknown
parameters and substitute them back into the likelihood function. Here we propose to
estimate only u and introduce a new drift parameter d that plays the same role as
r2 1þ 1=qð Þ log 1þ qð Þ; this leads to the following subspace-CUSUM update:

St ¼ St&1ð Þþ þ û>
tþwxt

# $2
& d: (3.6)
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To apply (3.6), we need to specify d and of course provide the estimate ûtþw: Regarding
the latter, we simply use the unit norm eigenvector corresponding to the largest eigen-

value of R̂tþw,w depicted in (3.1). We denote the estimator of u as ûtþw because at time
t the estimate will rely on the data xtþ1, :::, xtþw that are in the “future” of t. Practically,
this is always possible by properly delaying our data by w samples. Stopping occurs
similar to CUSUM; that is,

TSC ¼ infft > 0 : St ) bg: (3.7)

Of course, in order to be fair, at the time of stopping we must make the appropriate
correction; namely, if St exceeds the threshold at t for the first time, then the actual
stopping takes place at tþw. The reason we use estimates based on “future” data is to
make xt and ûtþw independent, which in turn will help us decide what is the appropriate
choice for the drift constant d in Section 4.3.

Remark 3.2. An alternative possibility is to use the GLR statistic, where both q and u
are estimated for each possible change location j. The GLR statistic is

max
j<t

& t & j
2

log 1þ q̂ j, t
! "

þ 1
2r2

q̂ j, t

1þ q̂ j, t

Xt

i¼jþ1

û>
j, txi

# $2
( )

,

where q̂ j, t, ûj, t are estimated from samples fxigti¼jþ1: However, this computation is
more intensive because there is no recursive implementation for the GLR statistic.
Furthermore, it requires growing memory. There are finite memory versions (Lai and
Shan 1999); however, they are equally complicated in their implementation. Therefore,
we do not consider the GLR statistic in this article.

4. THEORETICAL ANALYSIS

To fairly compare the detection procedures discussed in the previous section, we need
to calibrate them properly. The calibration process must be consistent with the perform-
ance measure we are interested in. For a given stopping time T we measure false alarms
through the ARL expressed with E1 T½ ,: For the detection capability of T we use the
worst-case EDD defined in Lorden (1971),

sup
s)0

ess supEs T & sð ÞþjT > s, x1, :::, xs
h i

, (4.1)

which considers the worst possible data before the change (expressed through the
ess sup) and the worst possible change time s.
In this section, we first discuss the scenarios that lead to the worst-case detection

delay for the proposed procedures. Then we characterize the ARL and EDD of the larg-
est-eigenvalue Shewhart chart. In doing so, we will also introduce some of the mathem-
atical tools that can be used for the analysis of subspace-CUSUM. The theoretical
characterization of ARL is very important because it can serve as a guideline on how to
choose the threshold b used in the detection procedure. Without theoretical analysis,
people usually use Monte Carlo simulation to set the threshold, which can be time con-
suming when the problem structure is complicated. Therefore, a theoretical way to

314 L. XIE ET AL.



choose the threshold can be beneficial, especially for online change point detection
where computational efficiency is of great importance.

4.1. Worst-Case EDD

We now consider scenarios that lead to the worst-case detection delay. For the largest-
eigenvalue Shewhart chart, assume that 1 * t & wþ 1 * s < t: Because for the detection
we use kmax R̂t,w

! "
and compare it to a threshold, it is clear that the worst-case data

before s are the ones that will make kmax as small as possible. We observe that

kmax R̂t,w

! "
¼ kmax xt&wþ1x>t&wþ1 þ ( ( ( þ xsx>s þ ( ( ( þ xtx>t

# $

) kmax xsþ1x>sþ1 þ ( ( ( þ xtx>t
# $

¼ kmax R̂t, t&s

! "
,

which corresponds to the data xt&wþ1, :::, xs, before the change, being all equal to zero.
In fact, the worst-case scenario at any time instant s is equivalent to forgetting all data
before and including s and restarting the procedure from sþ 1 using up to w outer
products in the unnormalized sample covariance matrix, exactly as we do when we start
at time 0. Due to stationarity, this suggests that we can limit ourselves to the case s¼ 0
and compute E0 TE½ , and this will constitute the worst-case EDD. Furthermore, the fact
that in the beginning we do not normalize with the number of outer products is benefi-
cial for TE because it improves its ARL.
We should emphasize that if we do not force the data before the change to become 0

and use simulations to evaluate the detector with a change occurring at some time dif-
ferent from 0, then it is possible to arrive at misleading conclusions. Indeed, it is not
uncommon for this test to appear to outperform the exact CUSUM test for low ARL
values. Of course, this is impossible because the exact CUSUM is optimum for any ARL
in the sense that it minimizes the worst-case EDD depicted in (4.1).
Let us now consider the worst-case scenario for subspace-CUSUM. We observe that

St ¼ St&1ð Þþ þ û>
tþwxt

# $2
& d ) 0þ û>

tþwxt
# $2

& d,

suggesting that when St restarts this is the worst that can happen for the detection
delay. Therefore, the well-known property of the worst-case scenario in the exact
CUSUM carries over to subspace-CUSUM. Again, because of stationarity, this allows us
to fix the change point time at s¼ 0. Of course, as mentioned before, because ûtþw uses
data coming from the future of t, if our detector stops at some time t (namely, when
we experience St ) b for the first time), then the actual time of stopping must be cor-
rected to tþw. A similar correction is not necessary for CUSUM because this test has
the exact information for all parameters.
Threshold b is chosen so that the ARL meets a prespecified value. In practice, b is

usually determined by simulation. More specifically, by simulating multiple streams of
data from prechange distribution, we can obtain the average run length for different
thresholds. Therefore, the threshold can be determined by the simulation results.
A very convenient tool in accelerating the estimation of ARL (which is usually large)

is the usage of the following formula that connects the ARL of CUSUM to the average
of the sequential probability ratio test (SPRT) stopping time (Siegmund 1985)
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E1 TC½ , ¼ E1 TSPRT½ ,
P1 STSPRT ) bð Þ

, (4.2)

where the SPRT stopping time is defined as

TSPRT ¼ infft > 0 : St 62 0, b½ ,g:

The validity of (4.2) relies on the CUSUM property that, after each restart, St is inde-
pendent of the data before the time of the restart. Unfortunately, this key characteristic
is no longer valid in the proposed subspace-CUSUM scheme because ûtþw uses data
from the future of t. We could, however, argue that this dependence is weak. Indeed, as
we will see in Lemma 4.1, each ût is equal to u plus some small random perturbation
(estimation error with the power of the order of 1=w), with these perturbations being
practically independent in time. As we observed with numerous simulations, estimating
the ARL directly and through (4.2) (with St replaced by St) results in almost indistin-
guishable values even for moderate window sizes w. This suggests that we can use (4.2)
to estimate the ARL of the subspace-CUSUM as well. As we mentioned, in the final
result, we need to add w to account for the future data used by the estimate ûtþw:

4.2. Analysis of Largest-Eigenvalue Shewhart Chart

4.2.1. Approximate ARL of Largest-Eigenvalue Shewhart Chart
In this section, we first introduce some connection with random matrix theory, which
provides the building blocks for the theoretical derivation. Then we provide the
approximation to ARL as a function of threshold b after taking into account the tem-
poral correlation between detection statistics. The comparison with simulation results
shows the high accuracy of our results.
The study of ARL requires the understanding of the property of the largest eigenvalue

under the null hypothesis; that is, the samples are independent and identically distrib-
uted Gaussian random vectors with zero mean and identity covariance matrix. To
characterize the distribution of the largest eigenvalue, Johnstone (2001) used the Tracy-
Widom law (Tracy and Widom 1996). Define the center constant lw, k and scaling con-
stant rw, k:

lw, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w& 1

p
þ

ffiffiffi
k

p! "2
,

rw, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
w& 1

p
þ

ffiffiffi
k

p! " 1ffiffiffiffiffiffiffiffiffiffiffiffi
w& 1

p þ 1ffiffiffi
k

p
& '1=3

:
(4.3)

If k=w ! c < 1, then the centered and scaled largest eigenvalue converges in distribu-
tion to a random variable W1 with the so-called Tracy-Widom law of order one
(Johnstone 2001):

kmax R̂w

! "
& lw, k

rw, k
! W1: (4.4)

The Tracy-Widom law can be described in terms of a partial differential equation and
the Airy function, and its tail can be computed numerically (using, for example, the R
package RMTstat).
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Remark 4.1 (Connection with random matrix theory). There has been an extensive lit-
erature on the distribution of the largest eigenvalue of the sample covariance matrix;
see, for example, Johnstone (2001), Yin, Bai, and Krishnaiah (1988), Baik and
Silverstein (2006), and Jiang, Leder, and Xu (2017). The so-called bulk (Edelman and
Wang 2013) results are typically used for eigenvalue distributions. It treats a continuum
of eigenvalues and the extremes, which are the (first few) largest and smallest eigenval-
ues. Assume that there are w samples that are k-dimensional Gaussian random vectors
with zero mean and identity covariance matrix. Let R̂w ¼

Pw
i¼1 xix

>
i denote the unnor-

malized sample covariance matrix. If k=w ! c > 0, the largest eigenvalue of the sample
covariance matrix converges to w 1þ ffiffiffi

c
p! "2 almost surely (Geman 1980). Here we use

the Tracy-Widom law to characterize its limiting distribution and tail probabilities.
If we ignore the temporal correlation of the largest eigenvalues produced by the slid-

ing window, we can obtain a simple approximation for the ARL. If we call p ¼
P1 kmax R̂t,w

! "
> b

! "
for t ) w then the probability of stopping at t is geometric and it

is easy to see that the ARL can be expressed as 1=p: We note that to obtain this result,
we must assume that P1 kmax R̂t,w

! "
> b

! "
¼ p for t<w as well, which is clearly not

true. Because for t<w the unnormalized sample covariance has less than w terms, the
corresponding probability is smaller than p. This suggests that 1=p is a lower bound to
the ARL and wþ 1=p is an upper bound. If w - 1=p, - then approximating the ARL
with 1=p is quite acceptable. We can use the Tracy-Widom law to obtain an asymptotic
expression relating the ARL with the threshold b. The desired formula is depicted in
the following theorem.

Theorem 4.1 (Approximation of ARL by ignoring temporal correlation). For any 0 <
p - 1 we have E1 TE½ , .1=p, if we select

b ¼ rw, kbp þ lw, k, (4.5)

where bp denotes the p upper percentage point of W1, namely, P W1 ) bp
! "

¼ p:
Now we aim to capture the temporal correlation between detection statistics due to

overlapping time windows. We leverage a proof technique developed in Siegmund,
Yakir, and Zhang (2010), which can obtain satisfactory approximation for the tail prob-
ability of the maximum of a random field.
Figure 1 illustrates the overlap of two sample covariance matrices and provides necessary

notation. For each R̂t,w, define Zt ¼ kmax R̂t,w

! "
: We note that for any given M> 0,

P1 T * Mð Þ ¼ P1 max
1*t*M

Zt ) b
# $

,

Figure 1. Illustration of the temporal correlation between largest eigenvalues, here d 2 Zþ:
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which is the max over a set of correlated variables fZtgMt¼1: Capturing the temporal
dependence of fZtg is challenging. Below, we assume that the dimension k and the win-
dow size w are fixed and consider the local covariance structure of the detection statistic
when they only non-overlap at a small shift d relative to the window size; that is, d=w
is small. By leveraging the properties of the local approximation, we can obtain an
asymptotic approximation using the localization theorem (Siegmund, Yakir, and Zhang
2010). Define a special function ! (ð Þ that is closely related to the Laplace transform of
the overshoot over the boundary of a random walk (Siegmund and Yakir 2007)

! xð Þ .
2
x U x

2

! "
& 0:5

( )

x
2U

x
2

! "
þ / x

2

! " , (4.6)

where / xð Þ and U xð Þ are the probability density function and cumulative distribution func-
tion of the standard normal distribution N 0, 1ð Þ: Then we have the following results.

Theorem 4.2 (ARL of largest-eigenvalue Shewhart chart). For large values of b we can
write

E1 TE½ , ¼ b0/ b0ð Þbk,w! b0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bk,w=w

q& '
=w

+ ,&1

1þ o 1ð Þð Þ, (4.7)

where

bk,w ¼ 1þ 1þ c1k&
1
6=

ffiffiffiffi
w

p! "
2þ c1k&

1
6=

ffiffiffiffi
w

p! "

c22k
&1

3=w
, b0 ¼

b& lw, k þ rw, kc1ð Þ
rw, kc2

,

with c1 ¼ E W1½ , ¼ &1:21 and c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var W1ð Þ

p
¼ 1:27:

We perform simulations to verify the accuracy of the threshold values obtained without
and with considering the temporal correlation (Theorem 4.1 and Theorem 4.2, respectively).
The results are shown in Table 1. Compared with the thresholds obtained from Monte Carlo
simulation, we find that the threshold, when temporal correlation (4.7) is taken into account,
is more accurate than its counterpart obtained by using the Tracy-Widom law (4.5).

4.2.2. Lower Bound to EDD of Largest-Eigenvalue Shewhart Chart
We now focus on the detection performance and present a tight lower bound for the
EDD of the largest-eigenvalue Shewhart chart. The results are based on a known result

Table 1. Comparison of the threshold b obtained from simulations and using the approximations
ignoring the correlation in (4.5) and considering the correlation in (4.7). Window length w¼ 200,
dimension k¼ 10. The numbers shown are b/w. Approximations that are closer to simulation values
are indicated in boldface.
Target ARL 5K 10K 20K 30K 40K 50K

Simulation 1.633 1.661 1.688 1.702 1.713 1.722
Approx (4.5) 1.738 1.763 1.787 1.800 1.809 1.816
Approx (4.7) 1.699 1.713 1.727 1.735 1.740 1.744
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for CUSUM (Siegmund 1985) and requires the derivation of the Kullback-Leibler diver-
gence for our problem.

Theorem 4.3. For large values of b we have

E0 TE½ , ) 2
b0 þ e&b0 & 1

& log 1þ qð Þ þ q
1þ o 1ð Þð Þ, (4.8)

where

b0 ¼ 1
2r2 1þ qð Þ

bq & 1þ qð Þr2 log 1þ qð Þ
( )

:

Consistent with intuition, in Theorem 4.3, the right-hand side of (4.8) is indeed a
decreasing function of the SNR q. Comparing the lower bound in Theorem 4.3 with
simulated average delay, as shown in Figure 2, we can show that in the regime of small
detection delay (which is the main regime of interest), the lower bound serves as a rea-
sonably good approximation.

4.3. Analysis of Subspace CUSUM

In this section, we focus on how to set the drift parameter d for the subspace-CUSUM
procedure. This is an important parameter for the subspace-CUSUM to achieve desired
properties of change point detection algorithms. For the drift parameter d we need the
following double inequality to be true:

E1 û>
tþwxt

# $2
+ ,

< d < E0 û>
tþwxt

# $2
+ ,

: (4.9)

With (4.9) we can guarantee that St mimics the behavior of the exact CUSUM statistic
St mentioned in Remark 3.1, namely, it exhibits a negative drift before and a positive

Figure 2. Simulated EDD and lower bound as a function of the threshold b.
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after the change. As we mentioned, the main advantage of using R̂tþw,w is that it pro-
vides estimates ûtþw that are independent of xt. This independence property allows for
the straightforward computation of the two expectations in (4.9) and contributes toward
the proper selection of d. Note that under the prechange distribution we can write

E1 û>
tþwxt

# $2
+ ,

¼ E1 û>
tþwE1 xtx>t

( )
ûtþw

h i
¼ r2E1 û>

tþwûtþw

h i
¼ r2, (4.10)

where the first equation is due to the independence of xt and ûtþw, the next one due to
xt having covariance r2Ik, and the last equality is due to ûtþw being of unit norm.
Under the postchange regime, we need to specify the statistical behavior of ûtþw for

the computation of E0½ðû>
tþwxtÞ

2,: We will assume that the window size w is sufficiently
large so that central limit theorem approximations (Anderson 1963; Paul 2007) are pos-
sible for ûtþw: The required result appears in the next lemma.

Lemma 4.1. Suppose vectors x1, :::, xw are of dimension k and follow the distribution
N 0, r2Ik þ huu>ð Þ. Let ûw be the eigenvector corresponding to the largest eigenvalue of
the sample covariance matrix 1=wð Þ x1x>1 þ ( ( ( þ xwx>w

! "
, then, as w ! 1, we have the

following central limit theorem version for ûw:

ffiffiffiffi
w

p
ûw & uð Þ ! N 0,

1þ q
q2

Ik & uu>
! "& '

:

Lemma 4.1 provides an asymptotic statistical description of the unnormalized estimate
of u. More precisely, it characterizes the estimation error vw ¼ ûw & u: In our case we
estimate the eigenvector from the matrix R̂tþw,w but, as mentioned before, we adopt a
normalized (unit norm) version ût: Therefore, if we fix w at a sufficiently large value
and vt denotes the estimation error of the unnormalized estimate at time t, then from
Lemma 4.1 we can deduce

ûtþw ¼ ûtþw

kûtþwk
¼ uþ vtþw

kuþ vtþwk
, vtþw # N 0,

1þ q
wq2

Ik & uu>
! "& '

:

Consequently,

E0 û>
tþwxt

# $2
+ ,

¼ r2 1þ qð Þ 1& k& 1
wq

þ o
1
w

& ' !

, (4.11)

with the o (ð Þ term being negligible compared to the other two when k=w - 1, where
a¼o(b) denotes that a/b!0.
Consider now the case where q is unknown but exceeds some preset minimal SNR

qmin: From the above derivation, given the worst-case SNR and an estimation for the
noise variance r̂2, we can give a lower bound for E0½ðû>

tþwxtÞ
2,: Consequently, the drift

d can be anything between r̂2 and r̂2ð1þ qminÞð1& ðk& 1Þ=ðwqminÞÞ where we observe
that the latter quantity exceeds r̂2 when w > ðk& 1Þð1þ qminÞ=qmin2 : Below, for simpli-
city, for d we use the average of the two bounds. It is worthwhile mentioning that the
lower bound (4.10) and upper bound (4.11) are derived based on the assumption that
the window size w is large enough.
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Remark 4.2 (Monte Carlo simulation to choose the threshold). Alternatively, and in
particular when w does not satisfy w / k, where /means much greater than. we can
estimate E0½ðû>

tþwxtÞ
2, by Monte Carlo simulation. This method requires (i) estimating

the noise level r̂2, which can be obtained from training data without a change point;
(ii) the preset worst-case SNR qmin; and (iii) a unit norm vector u0 that is generated
randomly. Under the nominal regime we have E1½ðû>

tþwxtÞ
2, ¼ r̂2: Under the alterna-

tive, E0½ðû>
tþwxtÞ

2, depends only on the SNR q as shown in (4.11). We can therefore
simulate the worst-case scenario qmin using the randomly generated vector u0 by gener-
ating samples from the distribution N ð0, r̂2Ik þ qminu0u

>
0 Þ:

Even though the average of the update in (3.6) does not depend on true subspace u,
the computation of the test statistic St (3.6) requires the estimate ûtþw of the eigen-
vector. This can be accomplished by applying singular value decomposition (or the
power method; Mises and Pollaczek-Geiringer 1929) on the unnormalized sample

covariance matrix R̂tþw,w:

5. SIMULATION STUDY

In this section, numerical results are presented to compare the proposed detection pro-
cedures. The tests are first applied to synthetic data, where the performance of the sub-
space-CUSUM and largest-eigenvalue Shewhart chart are compared against the CUSUM
optimum performance. Then the performance of subspace-CUSUM is optimized by
selecting the most appropriate window size.

5.1. Performance Comparison

Simulation studies are performed to compare the largest-eigenvalue Shewhart chart and
the subspace CUSUM procedure. The exact CUSUM procedure with all parameters
known is chosen as the baseline and gives the minimal detection delay to all detec-
tion procedures.
Figure 3 depicts EDD versus log-ARL for parameter values k¼ 5, r2 ¼ 1, w¼ 50 and

three different levels of signal strength (SNR): h ¼ 0:5, h¼ 1, and h ¼ 1:5: For fair
comparison, the SNR lower bound is set to be a constant qmin ¼ 0:5 in all
three scenarios.
The threshold for each procedure is determined using the preset lower bound qmin as

discussed in Remark 4.2. In Figure 3, the black line corresponds to the exact CUSUM
procedure, which is clearly the best, and it lies below the other curves. Subspace-
CUSUM has much smaller EDD than the largest-eigenvalue Shewhart chart, and the
difference increases with increasing ARL for SNR h ¼ 0:5 and h¼ 1. However, when
the signal is stronger (h ¼ 1:5), the largest-eigenvalue Shewhart chart outperforms the
subspace-CUSUM as shown in Figure 3(c). This is consistent with previous research
findings in Neuburger et al. (2017) that Shewhart charts are more efficient when detect-
ing strong signals, whereas the CUSUM-type chart can detect weak signals more quickly
due to its cumulative structure.
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(a)

(b)

(c)

Figure 3. Comparison of subspace-CUSUM and the largest-eigenvalue Shewhart chart, fixed window
size w¼ 50. Baseline: Exact CUSUM (optimal).
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5.2. Optimal Window Size

We also consider the EDD-ARL curve, where w is optimized to minimize the detection
delay at every ARL. We first compute the EDD for window sizes w ¼ 1, 2, :::, 50, given
each ARL value. Then we plot in Figure 4(a) the lower envelope of EDDs corresponding
to the optimal EDD achieved by varying w. We also plot the optimal value of w as a
function of ARL in Figure 4(b). Even though the best EDD of the subspace-CUSUM is
diverging from the performance enjoyed by CUSUM, this divergence we believe is
slower than the increase of the optimum CUSUM EDD. One of the goals in the future
publication regarding the analysis of subspace-CUSUM is to show that this is indeed
the case, which in turn will demonstrate that this detection structure is first-order
asymptotically optimum.

6. REAL DATA EXAMPLES

In this section, we show how to apply the proposed methods to real data problems and
demonstrate the performance using two real data sets: a human gesture detection data

(a)

(b)

Figure 4. (a) Minimal EDD vs ARL among window sizes from 1 to 50 and (b) optimal window size
resulting in smallest EDD.
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set and a seismic data set. It is worth mentioning that the model formulation is a fun-
damental problem in high-dimensional problems, and the proposed methods are widely
applicable to a variety of applications.

6.1. Human Gesture Detection

We apply the proposed method to the sequential posture detection problem using a real
data set: the Microsoft Research Cambridge-12 Kinect gesture data set (Fothergill et al.
2012). The cross-correlation structure of such multivariate functional data may change
over time due to the posture change. Zhang et al. (2018) studied the same data set from
the dynamic subspace learning perspective in the off-line setting; our goal is to detect
the change point from sequential observations. This data set contains 18 sensors. At
each time t, each sensor records the coordinates in the three-dimensional Cartesian
coordinate system. Therefore, there are 54 attributes in total.
We select a subsequence with a posture change from “bow” to “throw” and we use

the first 250 training samples to estimate the subspace before the change. Figure 5(a)
shows the eigenvalues of the principal component analysis. We select r leading eigenvec-
tors of the sample covariance matrix as our estimate of the prechange subspace. For
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Figure 5. (a) Principal component analysis eigenvalues; (b), (c) subspace-CUSUM statistic over time;
and (d) Hotelling T2 statistic. True change point indicated by red line.
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example, when r¼ 1, we estimate the prechange subspace to be a rank 1 space charac-
terized by the leading eigenvector of the sample covariance matrix of training samples.
Then we normalize the observations by multiplying them with a matrix Q that is
orthogonal to the prechange subspace, as discussed in Section 2. This enables us to
approximate the covariance of prechange observations by an identity matrix. Then we
apply the proposed subspace-CUSUM procedure to detect the change.
The detection statistic is shown in Figures 5(b) and 5(c) for different r; the detection stat-

istic indeed increased significantly at the true change point time (indicated by the red dash
line). It also shows that the proposed test performs well not only when r¼ 1 but also for
r> 1, which means that although we focus on the rank 1 case in the previous discussion,
the proposed method can be widely used in many problems that involve such low-rank
change. We also compare the proposed method with Hotelling’s T2 control chart (Hotelling
1947). We use the same training data to estimate the prechange mean !l and covariance

matrix !R and then construct the Hotelling T2 statistics xt & !lð ÞT !R&1 xt & !lð Þ: As shown in
Figure 5(d), the detection statistic has a much larger vibration than the subspace-CUSUM
procedure and the performance is sensitive to the estimation of !l and !R:

6.2. Seismic Event Detection

In this example, we consider a seismic signal detection problem. The goal is to detect
micro-earthquakes and tremor-like signals, which are weak signals caused by minor subsur-
face changes in the Earth. The tremor signal may be seen at a subset of sensors, and the
affected sensors observe a similar waveform corrupted by noise. The tremor signals are not
earthquakes, but they are useful for geophysical study and prediction of potential earth-
quakes. Usually, the tremor signals are challenging to detect using an individual sensor’s
data; therefore, network detection methods have been developed, which mainly use covari-
ance information of the data for detection (Z. Li et al. 2018). We will show that network-
based detection can be cast as a subspace detection problem.
Assume that we have N sensors. At an unknown onset, the tremor signal may affect

all sensors. Let s(t) be the unknown signal waveform, then the signal observed at sen-
sors can be represented as

xi tð Þ ¼ uis t & sð Þ þ wi tð Þ, i ¼ 1, 2, :::, n, (6.1)

where wi tð Þ #
iid N 0, r2ð Þ denotes the random noise, ui > 0 is the unknown deterministic

magnitude of the signal, and s is the unknown change point or the time when the seismic
event happens. Here the waveform function s(t) is assumed to be causal; that is, s tð Þ ¼
0, 8t < 0: Moreover, we suppose that the signal waveform at time t follows a zero-mean
normal distribution with time-varying variance (vibration); that is, s tð Þ # N 0, r2t

! "
:

Denote the observation vector X tð Þ :¼ x1 tð Þ, :::, xn tð Þ½ ,> and magnitudes u :¼
u1, :::, un½ ,> : Following (6.1), we can formulate the problem as follows:

X tð Þ #iid N 0, r2Inð Þ, t ¼ 1, 2, :::, s,

X tð Þ #iid N 0, r2In þ r2t uu
>! "

, t ¼ sþ 1, sþ 2, ::::
(6.2)

We apply the proposed methods to a real seismic data set recorded at Parkfield,
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California, from 2 a.m. to 4 a.m. on 23 December 2004. The raw data contain
records at 13 seismic sensors that simultaneously record a continuous stream of
data. The frequency of the raw data is 250Hz. In this example, we set the window
size w¼ 200, which corresponds to a 0.8 s time window. For each procedure, we use
the data within the first 600 s to find the threshold by controlling the false
alarm rate.
We apply the proposed largest-eigenvalue Shewhart chart and the subspace-CUSUM

procedure. We further compare them with the classic Hotelling T2 procedure based on
the estimated sample mean and sample covariance. The results are shown in Figure
6(b). Using the detection statistics in Figures 6(c), and 6(d), we find three main events
at 615, 2,127, and 6,371 s, as well as some continuous vibration during 2,500–3,200 s. By
comparing the detection results with the true seismic event catalog that can be found
online at the Northern California Earthquake Data Center, we found that our findings
match the three true events at 594, 2,124, and 6,369 s, along with a tremor catalog
around 2,500–3,180 s. The comparison shows that all detection delays are within 20 s.

(a) (b)

(c) (d)

Figure 6. (a) Raw data; (b) comparison of different detection procedures; (c) increment term; and (d)
subspace-CUSUM statistic.
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Both the largest-eigenvalue Shewhart chart and the subspace-CUSUM procedure work
effectively for this data set.

7. DISCUSSION AND CONCLUSION

In this article, we study two online detection procedures for detecting the emergence of
a spiked covariance model: the largest-eigenvalue Shewhart chart and the subspace-
CUSUM control chart. For subspace-CUSUM, we perform a simultaneous estimate of
the required subspace in parallel with its sequential detection. We avoid estimating all
unknown parameters by following a worst-case analysis with respect to the subspace
power. We were able to derive theoretical expressions for the ARL and an interesting
lower bound for the EDD of the largest-eigenvalue Shewhart chart. In particular, we
were able to handle the correlations resulting from the usage of a sliding window, which
is an issue that is not present in the off-line version of the same procedure. For the
comparisons of the two proposed detection procedures, we discuss how it is necessary
to calibrate each detector so that comparisons are fair. Comparisons were performed
using simulated data and real data about human gesture detection and seismic
event detection.

APPENDIX A: PROOF OF LEMMA 4.1

We have the following asymptotic distribution (Anderson 1963):

1ffiffiffiffi
w

p ûw & uð Þ !d N 0,
Xk

j¼2

k1kj
k1 & kj
! "2 !j!

>
j

0

@

1

A,

where kj is the jth largest eigenvalue of the true covariance matrix and !j is the corresponding
eigenvector. In our case the true covariance matrix is r2Ik þ huu> ; therefore, k1 ¼ r2 þ h and
kj ¼ r2 for j ) 2, and f!j, j ) 2g is a basis of the orthogonal space of u. Thus, we have

Xk

j¼2

k1kj
k1 & kj
! "2 !j!

>
j ¼ r2 r2 þ hð Þ

h2
Xk

j¼2

!j!
>
j ¼ r2 r2 þ hð Þ

h2
Ik & uu>
! "

¼ 1þ qð Þ
q2

Ik & uu>
! "

:

This completes the proof. w

APPENDIX B: PROOF OF THEOREM 4.2

In order to prove Theorem 4.2, we need the following lemma to characterize the local correlation
between largest eigenvalue statistics.

Lemma B.1 (Approximation of local correlation). Let c1 ¼ E W1½ , ¼ &1:21, c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var W1ð Þ

p
¼

1:27 and

bk,w ¼ 1þ 1þ c1k&
1
6=

ffiffiffiffi
w

p! "
2þ c1k&

1
6=

ffiffiffiffi
w

p! "

c22k
&1

3=w
:

Then we have

corr Zt ,Ztþdð Þ * 1& bk,w#þ o #ð Þ,

where # ¼ d=w and corr X,Yð Þ stands for the Pearson’s correlation
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corr X,Yð Þ ¼ E XY½ , & E X½ ,E Y½ ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Yð Þ

p :

Proof. Under the prechange measure, xt #
iid N 0, r2Ikð Þ: For d 2 Zþ, let

P ¼
Xt&wþd

i¼t&wþ1

xix>i , Q ¼
Xt

i¼t&wþdþ1

xix>i , R ¼
Xtþd

i¼tþ1

xix>i :

Then P, Q, and R are independent random matrices. Now we also want to give a general upper
bound for the covariance between Zt and Ztþd: Then we have

E ZtZtþd½ , ¼ E kmax R̂t,w

! "
kmax R̂tþd,w

! "h i
¼ E kmax Pþ Qð Þkmax Qþ Rð Þ½ ,

* E kmax Pð Þ þ kmax Qð Þ
( )

kmax Qð Þ þ kmax Rð Þ
( )n o

¼ E kmax2 Qð Þ½ , þ E kmax Qð Þ½ ,E kmax Rð Þ½ ,

þ E kmax Pð Þ½ ,fE kmax Qð Þ½ , þ E kmax Rð Þ½ ,g,

where the inequality is due to the fact that the largest eigenvalue of the sum of two nonnegative
definite matrices is upper bounded by the sum of the corresponding largest eigenvalues of the
two matrices. The mean and second-order moments can be computed using the Tracy-Widom
law depicted in (4.4).

Because k is a fixed constant, we just write ln and rn instead of ln, k and rn, k to simplify our
notation. We first consider the covariance term E ZtZtþd½ , and decompose it into four parts as
follows:

1
w2 E ZtZtþd½ , * Aþ Bþ Cþ D,

where

A ¼
lw 1&#ð Þ þ c1rw 1&#ð Þ

w

& '2

,

B ¼
c2rw 1&#ð Þ

w

& '2

,

C ¼ 2
lw 1&#ð Þ þ c1rw 1&#ð Þ

w

+ ,
lw# þ c1rw#

w

& '
,

D ¼ lw# þ c1rw#
w

& '2

:

First, the common terms lw 1&#ð Þ=w and rw 1&#ð Þ=w can be written as

lw 1&#ð Þ

w
¼ 1
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 1& #ð Þ & 1

p
þ

ffiffiffi
k

ph i2
¼ w 1& #ð Þ & 1

w
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

w 1& #ð Þ & 1

s2

4

3

5
2

_¼ w 1& #ð Þ & 1
w

_¼1& #,

where the second term in the brackets was ignored because k=w ¼ o 1ð Þ: Moreover, we have

rw 1&#ð Þ

w
¼ 1

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 1& #ð Þ & 1

p
þ

ffiffiffi
k

p# $
( 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w 1& #ð Þ & 1
p þ 1ffiffiffi

k
p

 !1=3

:
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After extracting the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 1& #ð Þ & 1

p
from the first bracket and 1=

ffiffiffi
k

p
from the second

bracket, we obtain

rw 1&#ð Þ

w
¼ k&

1
6

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 1& #ð Þ & 1

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

w 1& #ð Þ & 1

s0

@

1

A

4
3

_¼
ffiffiffiffiffiffiffiffiffiffiffi
1& #

w

r
k&

1
6,

where the second term in the brackets was ignored because k=w ¼ o 1ð Þ: Plugging these two
terms into the first part, we have

A ¼
lw 1&#ð Þ þ c1rw 1&#ð Þ

w

& '2

_¼ 1& #þ c1

ffiffiffiffiffiffiffiffiffiffiffi
1& #

w

r
k&

1
6

 !2

¼ 1& #ð Þ 1& #þ 2c1
k&

1
6

ffiffiffiffi
w

p
ffiffiffiffiffiffiffiffiffiffiffi
1& #

p
þ c21

k&
1
3

w

 !

:

Because # is relatively small,
ffiffiffiffiffiffiffiffiffiffiffi
1& #

p
¼ 1& 1

2#þ o #ð Þ by Taylor expansion. Then the term is
approximately

A _¼ 1& #ð Þ 1& #þ 2c1
k&

1
6

ffiffiffiffi
w

p 1& 1
2
#þ o #ð Þ

& '
þ c21

k&
1
3

w

 !

¼ 1þ c1
k&

1
6

ffiffiffiffi
w

p

 !2

& 1þ c1
k&

1
6

ffiffiffiffi
w

p

 !

2þ c1
k&

1
6

ffiffiffiffi
w

p

 !

#þ o #ð Þ,

where the higher order terms of # are included in o #ð Þ: Parts C and D can be considered negli-
gible, because C is order O #ð Þ and D is order o #ð Þ: In summary, we have

corr Zt ,Ztþdð Þ ¼
E ZtZtþd½ , & E Zt½ ,E Ztþd½ ,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ztð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Ztþdð Þ
p

!
1

c2k
&1
6ffiffiffi

w
p

& '2 f 1þ c1
k&

1
6

ffiffiffiffi
w

p

 !2

þ c22
1& #

w
k&

1
3 & 1þ c1

k&
1
6

ffiffiffiffi
w

p

 !

2þ c1
k&

1
6

ffiffiffiffi
w

p

 !

#

& 1þ c1
k&

1
6

ffiffiffiffi
w

p

 !2

þ o #ð Þg

¼1& bk,w#þ o #ð Þ

This completes the proof. w

The key to proving Theorem 4.2 is to quantify the tail probability of the detection statistic.
However, this probability is very small when the threshold is large (S. Li et al. 2015). Therefore,
we use the change-of-measure technique in Siegmund, Yakir, and Zhang (2010) to recenter the
process mean to the threshold, so that the tail probability becomes much higher. First, the detec-
tion statistic is standardized by

Z0
t ¼

Zt & E1 Zt½ ,
Var1 Ztð Þ :

Here, E1 Zt½ , and Var1 Ztð Þ depend only on k and w but do not depend on t. Then Z0
t has zero

mean and unit variance under the P1 measure. We are interested in finding the probability
P1 TE * Mð Þ ¼ P1 max1*t*MZ0

t > b
! "

: We now prove our proposition in four steps.
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Step 1. Exponential tilting. Denote the cumulant generating function of Z0
t by

w að Þ ¼ logE1 eaZ0t½ ,:

Define a family of new measures

dPt

dP1
¼ exp faZ0

t & w að Þg,

where Pt denotes the new measure after the transformation. The new measure takes the form of
the exponential family, and a can be viewed as the natural parameter. It can be verified that Pt is
indeed a probability measure because

ð
dPt ¼

ð
exp faZ0

t & w að ÞgdP ¼ 1:

It can also be shown that _w að Þ is the expected value of Z0
t under Pt , because

_w að Þ ¼
E1 Z0

te
aZ0t

( )

E1 eaZ0t½ , ¼ E1 Z0
te
aZ0t&w að Þ

h i
¼ Et Z0

t

( )
,

and, similarly, €w að Þ is the variance under the tilted measure. We use the Gaussian approximation
for Z0

t , then its log moment generating function is w að Þ ¼ a2=2: We set a¼ b such that _w að Þ ¼
Et Z0

t

( )
¼ b; therefore, the tail probability after measure transformation will become much larger.

Given this choice, the transformed measure is given by dPt ¼ exp bZ0
t & b2=2

! "
dP1: We also

define, for each t, the log-likelihood ratio log dPt=dP1ð Þ of the form

‘t ¼ bZ0
t &

1
2
b2:

Step 2. Change-of-measure by the likelihood ratio identity. Now we convert the original problem
of finding the small probability that the maximum of a random field exceeds a large threshold to
another problem: finding an alternative measure under which the event happens with a much
higher probability. By likelihood ratio identity, we have

P1 max
1*m*M

Z0
m ) b

# $
¼ E1 1

max
1*m*M

Z0
m ) b

n o+ ,
¼ E1

XM

t¼1
e‘t

XM

n¼1
e‘n

( 1
max

1*m*M
Z0
m ) b

n o
2

4

3

5

¼
XM

t¼1

E1
e‘tP
n e‘n

( 1
max

1*m*M
Z0
m ) b

n o
" #

¼
XM

t¼1

Et
1P
n e‘n

( 1
max

1*m*M
Z0
m ) b

n o
" #

¼ e&b2=2
XM

t¼1

Et
Mt

St
e&

~‘ tþ logMtð Þ ( 1f~‘ tþ logMt)0g

+ ,
,

(B.1)

where Mt and St in the last step are defined as the maximum and sum of likelihood ratio differ-
ences as

Mt ¼ max
m2f1, :::,Mg

e‘m&‘t , St ¼
X

m2f1, :::,Mg
e‘m&‘t :

And ~‘t is defined as the recentered likelihood ratio, or the so-called global term:

~‘t ¼ b Z0
t & b

! "
:
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The last equation in (B.1) converts the tail probability to a product of two terms: a deterministic
term e&b2=2 associated with the large deviation rate and a sum of expectations under the trans-
formed measures. The expectation involves a product of the ratio Mt=St and an exponential func-
tion that depends on ~‘t , which plays the role of a weight. Under the new measure Pt , ~‘t has zero
mean and variance equal to b2 and it dominates the other term logMt; hence, the probability of
exceeding zero is much higher. Next, we characterize the limiting ratio and the other factors pre-
cisely by the localization theorem.

Step 3. Establish properties of local and global terms. In (B.1), our target probability has been
decomposed into terms that only depend on (i) the local field f‘m & ‘tg, 1 * m * M, which are
the differences between the log-likelihood ratios with parameter t and m, and (ii) the global term
~‘t , which is the centered and scaled likelihood ratio with parameter t. We need to first establish
some useful properties of the local field and global term before applying the localization theorem.
We will eventually show that the local field and the global term are asymptotically independent.

For the local field f‘m & ‘tg, let rm, t denote the correlation between Z0
m and Z0

t , then we have

Et ‘m & ‘tð Þ ¼ &b2 1& rm, tð Þ,
Vart ‘m & ‘tð Þ ¼ 2b2 1& rm, tð Þ,

Covt ‘m1 & ‘t , ‘m2 & ‘tð Þ ¼ b2 1þ rm1,m2 & rm1, t & rm2, tð Þ:

We have Lemma B.1 to characterize the local correlation, which offers a reasonably good
approximation for E ZtZtþd½ , and leads to rm, t .1& m& tj jbk,w=w:

Because we assume that Z0
t is approximately Gaussian, the local field ‘m & ‘t and the global

term ~‘t are also approximately Gaussian. Therefore, when jdj is small (i.e., in the neighborhood
of zero), we can approximate the local field using a two-sided Gaussian random walk with drift
b2bk,w=w and variance of the increment equal to 2b2bk,w=w :

‘tþd & ‘t ¼
D b

ffiffiffiffiffiffiffiffiffiffiffi
2bk,w
w

r Xjdj

i¼1

ni & b2
bk,w
w

d, d ¼ 61,62, :::,

where ni are independent and identically distributed standard normal random variables.
Step 4. Approximation using localization theorem. From the argument in Siegmund and Yakir

(2000), let M̂t and Ŝt denote the maximization and summation restricted to the small neighbor-
hood of t. Then they are asymptotically independent of the global term ~‘t: Moreover, under the
tilted measure,

Et
~‘t
( )

¼ 0, Vart ~‘t
( )

¼ b2:

Therefore, the density Pt
~‘t
! "

can be approximated by 1=
ffiffiffiffiffiffiffiffiffiffi
2pb2

p
in a neighborhood of radius

o 1=bð Þ of zeros. The inner expectation in (B.1) can be approximated as

Et
Mt

St
e&

~‘ tþ logMtð Þ ( 1f~‘ tþ logMt)0g

+ ,
_¼ Et M̂t=Ŝt

! "

b
ffiffiffiffiffiffiffiffiffiffi
2pb2

p :

By Siegmund and Yakir (2000), the expectation Et M̂t=Ŝt
! "

does not depend on t and equals

b2bk,w! b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bk,w=w

p# $
=w in the asymptotic regime. Substituting into (B.1) we have

P1 T * Mð Þ ¼P1 max
1*t*M

Z0
t > b

# $

¼e&b2=2
XM

t¼1

Et
Mt

St
e&

~‘ tþ logMt½ , ( 1f~‘ tþ logMt)0g, _¼Mb/ bð Þbk,w! b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bk,w=w

q& '
=w,

+

where !ð(Þ is the function defined in (4.6). From the above cumulative distribution function, we
can approximate T as exponential distribution, yielding the mean value 1=½b/ðbÞbk,w!
ðb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bk,w=w

p
Þ=w,:
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Because Z0
t is standardized, here the threshold b needs to be converted to the original thresh-

old using a simple formula

b0 ¼ b& lw, k þ c1rw, kð Þ
( )

= c2rw, kð Þ:

This completes the proof.
w

APPENDIX C: PROOF OF THEOREM 4.3

We first relate the largest eigenvalue procedure to a CUSUM procedure. Note that

kmax R̂t,w

! "
¼ max

jjqjj¼1
q> R̂t,wq: (C.1)

For each q, we have

q> R̂t,wq ¼
Xt

i¼t&wþ1

q> xi
! "2

:

According to the Grothendieck’s inequality (Gu#edon and Vershynin 2016), the q that attains the
maximum in equation (C.1) is very close to u under the alternative. Therefore, assuming that the
optimal q always equals u will only cause a small error but will bring great convenience to
our analysis.

Now we have under P1, q> xi # N 0, r2ð Þ and under P0, q> xi # N 0, r2 þ hð Þ: Let f1 denote
the probability density function of N 0, r2ð Þ and f0 the probability density function of
N 0, r2 þ hð Þ: For each observation y, we can derive the one-sample log-likelihood ratio

log
f0 yð Þ
f1 yð Þ

¼ & 1
2
log 1þ qð Þ þ

1
2r2

1& 1
1þ q

& '
y2:

Define the CUSUM procedure

~T ¼ inf t : max
0*k<t

Xt

i¼kþ1

1
2r2

1& 1
1þ q

& '
q> xi
! "2 & log 1þ qð Þ

2

+ ,
) b0

( )
,

where b0 ¼ 1
2r2 1& 1

1þq

# $
b& r2 log 1þqð Þ

1&1= 1þqð Þ

# $
w: Then we have

E0 TE½ , ) E0 ~T½ ,:

Because ~T is a CUSUM procedure with
ð
log

f0 yð Þ
f1 yð Þ

" #
f0 yð Þdy ¼ & 1

2
log 1þ qð Þ þ

q
2
,

by Siegmund (1985) we have

E0 ~T½ , ¼ e&b0 þ b0 & 1
& log 1þ qð Þ=2þ q=2

:

This completes the proof.
w
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