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Abstract—The problem of sequentially detecting a moving
anomaly is studied, in which the anomaly affects different parts of
a sensor network over time. Each network sensor is characterized
by a pre- and post-change distribution. Initially, the observations
of each sensor are generated according to the corresponding pre-
change distribution. After some unknown but deterministic time
instant, a moving anomaly emerges, affecting different sets of
sensors as time progresses. Our goal is to design a stopping
procedure to detect the emergence of the anomaly as quickly
as possible, subject to false alarms constraints. The problem is
studied in a quickest change detection framework where it is
assumed that the evolution of the anomaly is unknown but deter-
ministic. A modification of Lorden’s detection delay is proposed
to account for the trajectory of the anomaly that maximizes the
detection delay of a detection procedure. It is established that a
Cumulative Sum-type test solves the resulting sequential detec-
tion problem exactly when the sensors are homogeneous. For
the case of heterogeneous sensors, the proposed detection scheme
can be modified to provide a first-order asymptotically optimal
algorithm.

Index Terms—Sequential change detection, CUSUM test,
dynamic anomaly, worst-path approach, heterogeneous sensors.

I. INTRODUCTION

IN QUICKEST change detection (QCD) [3]–[5], a sequen-
tially observed time series undergoes a change in the

underlying probability distribution at some unknown time
instant. The goal is to design a detection procedure, in the
form of a stopping time, to detect this abrupt change as quickly
as possible, subject to false alarm (FA) constraints.

Manuscript received October 5, 2020; revised March 10, 2021 and April
19, 2021; accepted April 20, 2021. Date of publication April 27, 2021; date of
current version June 21, 2021. This work was supported in part by the Army
Research Laboratory through Cooperative Agreement under Grant W911NF-
17-2-0196 (IoBT CRA); in part by the National Science Foundation (NSF)
under Grant CCF 16-18658 and Grant CIF 15-14245, through the University
of Illinois at Urbana-Champaign; and in part by Rutgers University under
Grant CIF 15-13373. This work was presented in part in the 2019 Asilomar
Conference on Signals, Systems, and Computers [1] and in the 2020
International Symposium on Information Theory [2]. (Corresponding author:
Venugopal V. Veeravalli.)

Georgios Rovatsos was with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
USA. He is now with Walmart Labs, Mountain View, CA, USA (e-mail:
rovatso2@illinois.edu).

George V. Moustakides is with the Electrical and Computer Engineering
Department, University of Patras, 26500 Patra, Greece (e-mail:
moustaki@upatras.gr).

Venugopal V. Veeravalli is with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801
USA (e-mail: vvv@illinois.edu).

Digital Object Identifier 10.1109/JSAIT.2021.3076043

In the case of multisensor networks, the theory of QCD
has been widely employed to provide solutions to a variety of
detection problems of interest. The simplest case corresponds
to the anomaly persistently affecting a fixed set of sensors,
the identity of which is known to the decision maker, after the
changepoint. This problem is a trivial extension of the classi-
cal single-sensor QCD setting, and the algorithms in [6]–[11]
can be directly applied to provide performance guarantees. A
significantly more complicated problem instance arises if we
assume that the decision maker has no knowledge of the iden-
tity of the affected nodes. This problem has been extensively
studied in the literature under the minimax setting [12]–[18].
Generalizations of these two aforementioned settings consider
the case that the onset of the anomaly is perceived at differ-
ent time instants across sensors [19]–[27]. It is crucial to note
that in the sensor network problems studied thus far, a core
assumption made is that the anomaly persistently affects each
sensor.

In this work, we study the problem of sequentially detecting
a moving anomaly under Lorden’s minimax framework [6]. In
the moving anomaly QCD setting, it is assumed that different
sets of nodes are affected by the anomaly as time progresses,
and that the anomalous nodes are unknown to the decision
maker. As a result, the anomaly does not affect any spe-
cific sensor persistently, but is persistent in the network as a
whole. The problem was initially studied in [28], [29], where
it was assumed that the anomaly evolves according to a dis-
crete time Markov chain and is of fixed size. Here we drop
the Markov assumption and assume that the trajectory of the
anomaly is unknown and deterministic. To account for the lack
of a specific model for the anomaly path, we modify Lorden’s
detection delay metric [6] to obtain a worst-path detection
delay, and frame Lorden’s QCD problem with this new delay
metric. In the case of a network comprised of homogeneous
sensors, which share a common pre-change and a common
post-change distribution, we establish that a Cumulative Sum
(CUSUM)-type [30] test that detects a transition to a mixture
of distributions, each induced on the observations according
to the identity of the anomalous nodes, is exactly optimal.
Furthermore, we show that in the general case of heteroge-
neous sensors the proposed test can be modified to provide a
first-order asymptotically optimal solution.

The problem studied in this work is particularly rel-
evant to applications where the location of the anoma-
lous nodes can change rapidly with time. An example of
such a setting is anomaly detection in intrusion detection
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applications, especially in cases where the intruder’s loca-
tion can change rapidly with time [13], [31]. In such settings,
current techniques that assume that the sensors are affected
persistently by the anomaly after it appears may incur large
detection delays and new algorithms are needed.

II. PROBLEM MODEL

In this section, we present the statistical model that gov-
erns the data generated by the sensor network, and our
QCD problem in a delay-FA optimization framework after
introducing the worst-trajectory delay metric. We begin by
introducing some necessary notation. Our convention in this
work is that for any sequence {α[k]}∞k=1, if k2 > k1 we define
∏k1

j=k2
α[j] � 1 and

∑k1
j=k2

α[j] � 0. Furthermore, for any

sequence {α[k]}∞k=1, α[k1, k2] � [α[k1], . . . α[k2]]� denotes
the samples from time k1 to k2. For a set E, |E| denotes the
number of elements in the set. The set {1, 2, . . . ,K} is denoted
by [K]; in particular, the set of L senors that comprise the sen-
sor network is denoted by [L]. The sequence {X[k]}∞k=1 denotes
the sequence of observations generated by the sensor network,
where X[k] � [X1[k], . . . ,XL[k]]� is the observation vector at
time k and X�[k] ∈ R is the measurement obtained by sensor
� ∈ [L] at time k. The filtration generated by the observation
process is denoted by F � {F k}∞k=1, where F k = σ(X[1, k])
denotes the σ -algebra generated by X[1, k]. Furthermore, for
K ≥ 0, ‖x‖K denotes the lK norm of vector x. Finally, for
functions f : R �→ R, g : R �→ R, f (x) ∼ g(x) denotes that
g(x) = f (x)(1+o(1)) as x → ∞, where o(1) → 0 as x → ∞.

A. Observation Model

Denote by g�(x), f�(x) the pre- and post-change probability
density functions (pdfs) at sensor � ∈ [L], respectively. We
assume that at each sensor the corresponding pre- and post-
change distributions are different and that all data-generating
distributions are known to the decision maker. Initially, the
data at all the sensors are i.i.d. according to the pre-change
distribution, and observations are assumed to be independent
across sensors. As a result, the joint pdf of X[k] is initially
given by

g(X[k]) �
L∏

�=1

g�(X�[k]). (1)

After some unknown and deterministic changepoint ν ≥ 0, a
physical event leads to the emergence of a moving anomaly in
the network. The anomaly moves around the network, affect-
ing different sets of size 1 ≤ m ≤ L as time progresses. It is
assumed that m is constant and known to the decision maker.
Define the process S � {S[k]}∞k=1, where S[k] denotes the m-
dimensional vector containing the indices of the anomalous
nodes at time k. Note that for notational convenience, S[k] is
defined for all k ≥ 1 and not simply for k > ν. We denote by
E(L,m) � E � {Ej | 1 ≤ j ≤ (L

m

)} the set of all distinct possi-
ble vector-values that S[k] can take (without loss of generality
we assume that the components of each vector are ordered to
provide a unique vector per anomaly placement). The nodes
affected by the anomaly generate observations according to

the post-change mode. In particular, for k > ν, we have that
conditioned on S, the joint pdf of X[k] is:

pS[k](X[k]) �
∏

�∈S[k]

f�(X�[k]) ·
∏

�/∈S[k]

g�(X�[k]) (2)

where for E ∈ E , pE(x) denotes the joint pdf induced on
a vector observation when the anomalous nodes are the ones
contained in E. We also assume that the observations are inde-
pendent across time, conditioned on the changepoint. As a
result, conditioned on ν and S the complete statistical model
is the following:

X[k] ∼
{

g(X[k]) 1 ≤ k ≤ ν

pS[k](X[k]) k > ν.
(3)

Note that this moving anomaly QCD problem can also be
posed as the following dynamic composite hypothesis testing
problem: at each time instant k, decide between the hypotheses

Hk
1,S : ν < k and anomaly evolves according to S

Hk
0 : ν ≥ k. (4)

The likelihood ratio between the hypothesis that the anomaly
appears at time ν + 1 and evolves according to S and the
hypothesis that the anomaly never appears is given by

�S(k, ν) �
k∏

j=ν+1

⎛

⎝
∏

�∈S[j]

f�(X�[j])

g�(X�[j])

⎞

⎠. (5)

B. Delay-FA Trade-off Formulation

In this work, the goal is to design a detection procedure in
the form of a stopping time to detect the abrupt change in dis-
tribution detailed in (3). A stopping time τ [3]–[5] adapted to
F is a positive random variable that satisfies {τ ≤ k} ∈ F k for
all k ≥ 1. An efficient stopping procedure offers quick detec-
tion while guaranteeing a sufficiently low frequency of false
alarms. To frame this trade-off mathematically, we employ a
modified version of Lorden’s delay-FA formulation [6]. In par-
ticular, since the anomaly trajectory process S is assumed to be
unknown, we modify Lorden’s delay metric to evaluate can-
didate detection schemes according to the anomaly path that
maximizes the expected detection delay. In particular, denote
by E

S
ν [ · ] the expectation when the changepoint is equal to ν

and the trajectory of the anomaly is specified by S. Then, for
any stopping rule τ adapted to F consider the following mod-
ification of Lorden’s worst average detection delay (WADD)
metric:

WADD(τ ) = sup
S

sup
ν≥0

ess supES
ν

[
τ − ν|τ > ν,F ν

]
(6)

where the convention that E
S
ν [τ − ν|τ > ν,F ν] � 1 when

P
S
ν (τ > ν) = 0 is used. Note that an additional sup is used

to account for the trajectory of the anomaly that maximizes
the detection delay of τ . Denote by E∞[ · ] the expectation
when no anomaly is present. To quantify the frequency of FA
events we use the mean time to false alarm (MTFA), denoted
by E∞[τ ] for stopping time τ . For γ > 1 a pre-determined
constant, define the class of stopping times

Cγ � {τ : E∞[τ ] ≥ γ }. (7)
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Our goal then is to design a stopping time τ to solve the
following problem:

min
τ

WADD(τ )

s.t. τ ∈ Cγ . (8)

Remark 1: We will without loss of generality be consid-
ering stopping times τ satisfying E∞[τ ] < ∞, since any
stopping time that does not satisfy this condition can be trun-
cated to provide a smaller detection delay while at the same
time satisfying the FA constraint.

C. Randomized Anomaly Allocation Model

Before proceeding to the presentation of our main theoret-
ical results, we introduce another statistical model that plays
an important role in the mathematical analysis, as well as in
the interpretation of the results. In particular, consider an alter-
nate setting to that of (3), where at each time instant after the
changepoint, the m anomalous nodes are chosen randomly.
To this end, denote by α = {αE : E ∈ E} ∈ A the prob-
ability mass function (pmf) containing the probabilities that
each of the vectors in E is chosen as the vector of anomalous
nodes. That is, at each time instant k the probability that the
m anomalous nodes are chosen to be in E is given by αE, and
the set of anomalous nodes is chosen i.i.d. across time. Here,
A denotes the simplex of all probability vectors of dimen-
sion |E |. When at each time instant after the changepoint the
anomalous nodes are placed i.i.d. randomly according to α, we
have that the induced pdf after the changepoint is the mixture:

pα(X[k]) �
∑

E ∈E
αEpE(X[k]). (9)

As a result, the complete observation model for the case of a
randomized anomaly allocation according to pmf α is:

X[k] ∼
{

g(X[k]) 1 ≤ k ≤ ν

pα(X[k]) k > ν.
(10)

Similarly to (3), we can pose the following dynamic composite
hypothesis testing problem corresponding to (10): at each time
k choose between the hypotheses

H̄k
1,α : ν < k and anomaly placed randomly according to α

H̄k
0 : ν ≥ k.

The likelihood ratio between the hypothesis that the anomaly
appears at time ν + 1 and is randomly placed according to α

at each time instant and the hypothesis that the anomaly never
appears is given by

Lα(k, ν) �
k∏

j=ν+1

pα(X[j])

g(X[j])

=
k∏

j=ν+1

(
∑

E∈E
αE

∏

�∈E

f�(X�[j])

g�(X�[j])

)

=
k∏

j=ν
Lα(j, j − 1). (11)

The Kullback-Leibler (KL) divergence between the post- and
pre-change distributions in (10) given by

Iα � E
α

0

[

log
pα(X[1])

g(X[1])

]

, (12)

where E
α

ν [·] denotes the expectation when the underlying sta-
tistical model is that of (10) with changepoint being equal to
ν and the anomaly placed randomly according to α.

This QCD problem is associated with a corresponding
detection delay. In particular, for stopping time τ , define the
detection delay corresponding to the model in (10) by

WADDα(τ ) = sup
ν≥0

ess supE
α

ν

[
τ − ν|τ > ν,F ν

]
. (13)

Here, we also use the convention that E
α

ν [τ −ν|τ > ν,F ν] �
1 when P

α

ν (τ > ν) = 0. Since both the pre- and post-
change joint pdfs for the QCD problem presented in (10)–(13)
are completely specified, the classical CUSUM test studied
in [6]–[9] can be directly applied to solve this QCD problem
exactly [8]. In the remainder of the paper, we show that solv-
ing the QCD problem in (10)–(13) for a specific choice of
α, which depends in the data generating distributions of the
sensors, can lead to a solution to the QCD problem described
in (3)–(8).

III. PROPOSED DETECTION ALGORITHM

For λ ∈ A, consider the following Mixture-CUSUM
(M-CUSUM) test statistic

Wλ[k] � max
1≤i≤k

Lλ(k, i − 1) (14)

with the corresponding stopping time

τW(λ, b) � inf
{

k ≥ 1 : Wλ[k] ≥ eb
}

(15)

where b > 0 is a constant chosen so that the stopping time
satisfies the FA constraint in (7). The test statistic in (14) can
be computed recursively as

Wλ[k] = max{Wλ[k − 1], 1}Lλ(k, k − 1) (16)

where Wλ[0] � 0.
Remark 2: Note that according to (12) and (17) the cal-

culation of the M-CUSUM test statistic at each time instant
requires the calculation of

(L
m

)
terms inside the log-likelihood

ratio. In practice an approximation of the log-likelihood ratio
function (e.g., discretized version) can be stored and used to
calculate the test statistic significantly more efficiently.

Note that the M-CUSUM test presented in (14)–(16) is the
exact solution to the QCD problem detailed in (10)–(13) when
α = λ, if b is chosen such that E∞[τW(λ, b)] = γ [8]. In the
remainder of the paper, we establish that by choosing λ accord-
ingly the M-CUSUM procedure is also an exact solution to (8)
when the network is comprised of homogeneous sensors, as
well as first-order asymptotically optimal for the general het-
erogeneous network case. Our analysis is based on relating
the two QCD models presented in Section II and exploiting
tools used for the analysis of the CUSUM test in [8], [9].
We begin by presenting an important theorem relating the
detection delay metrics (6), (13) introduced in Section II.
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Theorem 1: Let γ > 1 and α ∈ A. For the M-
CUSUM test introduced in (14)-(16) with b chosen such that
E∞[τW(α, b)] = γ we have that

WADD(τW(α, b)) ≥ inf
τ∈Cγ

WADD(τ )

≥ WADDα(τW(α, b)). (17)

Proof: See the Appendix.

IV. HOMOGENEOUS SENSOR NETWORK CASE

In this section, we consider the case of a homogeneous
sensor network, i.e., a network where g�(x) � g(x) and
f�(x) � f (x) for all � ∈ [L], x ∈ R (note that with some
abuse of notation g(x) denotes the common marginal pre-
change pdf, while g(x) denotes the joint pdf under P∞(·)).
Since the network is symmetric, an intuitive weight choice is
one where all the weights in the M-CUSUM test of Section III
test to be equal. This then implies by symmetry arguments that
placing the anomaly randomly or with the worst-path approach
will not lead to a different detection delay. In particular, we
have the following lemma:

Lemma 1: Consider a homogeneous sensor network where
g�(x) � g(x) and f�(x) � f (x) for all � ∈ [L], x ∈ R. Let

λU �
[

1
(L

m)
, . . . , 1

(L
m)

]�
be the uniform M-CUSUM weights

vector. For any threshold b > 0 and any α ∈ A we have that

WADD(τW(λU, b)) = WADDα(τW(λU, b)). (18)

Proof: See the Appendix.
By using Theorem 1 and Lemma 1 we can establish the

exact optimality of the M-CUSUM test with uniform weights
for the case of a homogeneous sensor network.

Theorem 2: Consider a homogeneous sensor network
where g�(x) � g(x) and f�(x) � f (x) for all � ∈ [L],
x ∈ R. Let γ > 1. The M-CUSUM test with uniform weights

λ = λU �
[

1
(L

m)
, . . . , 1

(L
m)

]�
and threshold b chosen such that

E∞[τW(λU, b)] = γ is exactly optimal with respect to (8):

WADD(τW(λU, b)) = inf
τ∈Cγ

WADD(τ ). (19)

Proof: The result follows directly by combining Theorem 1
and Lemma 1.

Theorem 2 implies that, for the case of homogeneous
sensors, the M-CUSUM test that solves the QCD problem
of (10)–(13) for a uniform pmf α = λU is also the exact solu-
tion to (3)–(8). Next, we investigate whether a similar result
holds for the general case of heterogeneous networks.

V. HETEROGENEOUS SENSOR NETWORK CASE

In Section IV, we saw how the symmetry of a homogeneous
sensor network can facilitate the construction of an exactly
optimal test with respect to (8). However, in the case of a het-
erogeneous sensor network, such a symmetry no longer holds,
and a result similar to Lemma 1 cannot be established in gen-
eral. In this section, we show that by choosing the weights
of the M-CUSUM test carefully, a first-order asymptotically
optimal test can be derived.

A. Universal Asymptotic Lower Bound on the WADD

We begin our analysis by presenting an asymptotic lower
bound on WADD for stopping times satisfying the false alarm
constraint E∞[τ ] ≥ γ . Our lower bound is derived by using
Theorem 1 together with the asymptotic lower bound on
WADD [6], [9]. In particular, note that the inequalities in
Theorem 1 hold for any arbitrary α ∈ A. Therefore, to obtain
the tightest asymptotic lower bound we need to consider the
α that maximizes the coefficient of the asymptotic rate of
WADD. To this end, define the minimizer of the effective KL
divergence [32] Iα by

α∗ � arg min
α∈A

Iα. (20)

It can be shown that Iα is strictly convex with respect to α,
hence, such a minimizer is uniquely defined. We then have the
following theorem:

Theorem 3: Let α∗ be defined as in (20). Then

inf
τ∈Cγ

WADD(τ ) ≥ log γ

Iα∗
(1 + o(1)) (21)

as γ → ∞.
Proof: By Theorem 1 we have that for any α ∈ A and

any γ > 1

inf
τ∈Cγ

WADD(τ ) ≥ inf
τ∈Cγ

WADDα(τ ). (22)

which implies that the inequality also holds for α = α∗ , i.e.,

inf
τ∈Cγ

WADD(τ ) ≥ inf
τ∈Cγ

WADDα∗(τ ) ∼ log γ

Iα∗
(23)

where the asymptotic delay approximation follows from the
asymptotic analysis of the CUSUM test [6], [9].

B. Asymptotic Upper Bound on the WADD of M-CUSUM
Test

Although deriving a lower bound on WADD is similar
for both homogeneous and heterogeneous sensor networks
(Theorem 1), upper bounding WADD in the latter case for
arbitrary λ is nontrivial. To this end, we present the following
lemma:

Lemma 2: Let α∗ be defined as in (20). We then have the
following:

i) Case m ≥ 2: α∗ cannot be a corner point of A, i.e.,
2 ≤ ‖α∗‖0 ≤ |E |.

If ‖α∗‖0 = |E | (interior-point minimum),

EpE

[

log

(
pα∗(X)
g(X)

)]

= EpE′

[

log

(
pα∗(X)
g(X)

)]

(24)

for all E, E′ ∈ E , where EpE[ · ] denotes the expected value
when the set of anomalous nodes is given by E ∈ E .

If 2 ≤ ‖α∗‖0 < |E | (boundary-point minimum), let E ′ �
{E ∈ E : α∗

E > 0} the subset of vectors in E for which non-
zero weights are assigned in α∗. We then have that for all E,
E′ ∈ E ′ (24) holds. Furthermore, we have that for all B ∈ E ′,
B′ ∈ E \ E ′

EpB′

[

log

(
pα∗(X)
g(X)

)]

> EpB

[

log

(
pα∗(X)
g(X)

)]

. (25)
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ii) Case m = 1 (single anomalous node): α∗ is an interior
point of A, i.e., ‖α∗‖0 = |E | = L.

Proof: See the Appendix.
By exploiting the properties presented in Lemma 2, we

derive an asymptotic upper bound on WADD(τW(α
∗, b)). In

particular, we have the following theorem:
Theorem 4: Let α∗ be defined as in (20). Assume that

max
E∈E

EpE

[(

log
pα∗(X)
g(X)

)2
]

< ∞ (26)

We then have that as b → ∞
WADD

(
τW(α

∗, b)
) ≤ b

Iα∗
(1 + o(1)). (27)

Proof: The proof is based on Lemma 2 and the analysis
in [9] and is provided in the Appendix.

C. Asymptotic Optimality of M-CUSUM Test

By combining Theorems 3 with 4 we can establish the
asymptotic optimality of the M-CUSUM test for weight
choice λ = α∗.

Theorem 5: Let α∗ be defined as in (20), and assume that

max
E∈E

EpE

[(

log
pα∗(X)
g(X)

)2
]

< ∞. (28)

We then have:
i) For any γ > 1,E∞[τW(α

∗, log γ )] ≥ γ.

ii) infτ∈Cγ WADD(τ ) ∼ WADD(τW(α
∗, log γ )) ∼ log γ

Iα∗ as
γ → ∞.

Proof: i) follows from the MTFA analysis of the CUSUM
test [6], [9], and ii) follows from Theorems 3 and 4.

Essentially, Theorem 5 implies that, for the case of het-
erogeneous sensors, there exists a choice of α such that the
M-CUSUM test that solves the QCD problem of (10)–(13)
for said α exactly is also asymptotically optimal with respect
to (3)–(8). This α is the one that minimizes the KL-divergence
in (12).

The asymptotic optimality of the M-CUSUM test with
weights α∗ can be intuitively explained through Lemma 2.
In particular, since a larger γ implies a larger threshold, if we
consider the logarithm of the M-CUSUM test statistic in (14),
the expectation of the added log-likelihood ratio (which is usu-
ally referred to as the “drift” of the statistic) dominates the
asymptotic performance of the M-CUSUM test. For a general
choice of λ this drift is not generally equal for the differ-
ent anomaly placements E ∈ E . Therefore, the worst-path
delay will be dominated by the smallest resulting drift among
anomaly placements. However, by Lemma 2 we know that
choosing λ = α∗ implies that the drift of the statistic is equal
among a specific subset of anomaly placements. Furthermore,
as we see in Lemma 2, all other placements of anomalous
nodes lead to a larger drift, hence, do not play a role asymp-
totically due to the worst-path aspect of the delay. As a result,
we have that the delay of our proposed test will match the
universally best delay asymptotically.

Remark 3: Note that the first-order asymptotic optimality
result presented in Theorem 5 also holds if we use a worst-
path version of Pollak’s detection delay [7]. In particular, for

stopping time τ define the detection delay

CADD(τ ) � sup
S

sup
ν≥0

E
S
ν [τ − ν|τ > ν]. (29)

By deriving a lower bound similar to the one in Theorem 3,
and since WADD is always larger than CADD, we can
easily establish the first-order asymptotic optimality of the
M-CUSUM test under Pollak’s criterion, i.e., Theorem 5 also
holds when WADD is replaced by CADD.

VI. NUMERICAL RESULTS

In this section, we present numerical results for the stud-
ied moving anomaly QCD problem for the case of a single
anomalous node (m = 1) and different network sizes L.
We present results for both homogeneous and heterogeneous
sensor networks.

Define the Gaussian distribution with mean μ and variance
σ 2 by N (μ, σ 2). For the case of a homogeneous network, we
assume that g = N (0, 1) and f = N (1, 1). For homogeneous
networks, we can introduce two additional tests that can be
used for comparison: a heuristic test; and an oracle-type test.
In particular, note that for all S we have that

E∞

[
L∑

�=1

log
f (X�[k])

g(X�[k])
+ (L − m)D(f ‖g)

]

= −mD(f ‖g) < 0

E
S
0

[
L∑

�=1

log
f (X�[k])

g(X�[k])
+ (L − m)D(f ‖g)

]

= mD(f ‖g) > 0.

This suggests that the following Naive-CUSUM (N-CUSUM)
test may be a candidate test for detecting the distribution
change described in (3).

WN[k] �
(

WN[k − 1] +
L∑

�=1

log
f (X�[k])

g(X�[k])
+ (L − m)D(f ‖g)

)+

with WN[0] � 0 and corresponding stopping time

τN = inf{k ≥ 1 : WN[k] ≥ b}.
Although the N-CUSUM test can be employed to detect the
anomaly due to the statistic WN[k] having a negative drift
before and a positive drift after the change, it may be far from
optimal for the QCD problem of interest defined in (8).

We also compare our proposed procedure to an Oracle-
CUSUM (O-CUSUM) test, which is a CUSUM test that uses
complete knowledge of S. That is, to define this test we
assume that at time k we do not know whether a change has
occured, but we know which set of sensors would be affected
if an anomaly had already emerged in the network. In partic-
ular, consider the statistic calculated by using the following
recursion:

WO[k] =
⎛

⎝WO[k − 1] + log

⎛

⎝
∏

�∈S[k]

f (X�[k])

g(X�[k])

⎞

⎠

⎞

⎠

+
(30)

with WO[0] � 0 and with corresponding stopping time

τO = inf{k ≥ 1 : WO[k] ≥ b}. (31)
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Fig. 1. WADD versus MTFA for homogeneous sensor network.

Fig. 2. WADD versus MTFA for heterogeneous sensor network.

Since this O-CUSUM test uses the knowledge of the location
of the anomalous nodes, it is expected to perform better than
our proposed test. However, such a test is not implementable
since in practice such location information will not be available
to the decision maker.

In Fig. 1(a) we compare the M-CUSUM test, with the
N-CUSUM test and the O-CUSUM test for network size
L = 20. Note that due to the symmetry of the M-CUSUM
and the N-CUSUM test statistics, WADD is equal to the delay
for any arbitrary path of the anomaly. By inspecting Fig. 1(a)
we note that the M-CUSUM test outperforms the heuristic N-
CUSUM test, which is expected since the M-CUSUM test is
optimal with respect to (8). In addition, we note that the O-
CUSUM test performs better than the other detection schemes,
which is to be expected since it exploits complete knowl-
edge of S. In Fig. 1(b), we evaluate the performance of our
proposed M-CUSUM test for different values of L. We note
that as L increases our proposed test performs worse, which
is expected since the algorithm is affected by more “noise”
from non-anomalous nodes for larger network sizes. It should
be noted that the graph points presented thus far, as well as
in the remainder of the paper, were generated by varying the
threshold used to account for different values of MTFA and
delay. In practice, the test threshold can be chosen to satisfy
the MTFA constraint by setting b = log γ , as highlighted in
the analysis of the M-CUSUM test.

For the case of a heterogeneous sensor network, we com-
pare three versions of the test introduced in (14)–(16): the
first version (“Uniform slopes” in Fig. 2) uses the optimal
weights α∗ to achieve a uniform average statistic drift among
anomaly placements (see Lemma 2); the second and third ver-
sions (“Non-uniform slopes 1” and “Non-uniform slopes 2” in
Fig. 2) use arbitrary choices of weights that only guarantee that
the expected drift of the statistic is positive for any placement

of the anomaly. The optimal weights are found by using gradi-
ent descent with the derivatives calculated as in (59). Note that
each derivative is equal to a difference of two expected values,
which we calculate using Monte Carlo methods. Note that this
method of calculating α∗ can be computationally expensive,
especially for specific values of m and large network sizes L.
Alternative techniques can be derived by using approximations
of the KL divergence between two Gaussian mixture models
(see, e.g., [33]). In addition, note that α∗ is calculated offline,
hence does not affect the calculation of the test statistic.

It should be noted that the WADD in the case of heteroge-
neous sensor networks is calculated approximately, since the
worst path of the anomaly cannot be specified analytically.
However, as the MTFA becomes large, the WADD can be
approximated by placing the anomalies at only the nodes (in
this case node since m = 1) that correspond to the worst post-
change drift for the test statistic. For the optimal weight choice,
the placement of the anomaly does not affect the delay for
large MTFA, since the drift does not depend on the trajectory
of the anomaly.

We consider the cases of L = 10 and L = 20. For
the case of L = 10, we assume that g� = N (0, 1)
for all � ∈ [L], and that f� = N (μ�, 1) with μ =
[1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9]� denoting the vec-
tor of the post-change means. The results can be seen in
Fig. 2(a). The M-CUSUM test statistic using optimal weights
is then characterized by a uniform statistic drift, approxi-
mately equal to 0.178. For the case of “Non-uniform slopes
1” the worst drift corresponds to placing the anomaly at sen-
sor 2, corresponding to an approximate slope of 0.029, and
for the case of “Non-uniform slopes 2” at sensor 5, with
an approximate slope of 0.065. We see that he mixture-
CUSUM test using the optimal weights α∗ outperforms the
other two implementations. Similar results can be produced by
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considering the case of L = 20. For that case, we assume that
g� = N (0, 1) for all � ∈ [L], f� = N (0.8, 1) for all 1 ≤ � ≤ 5,
f� = N (1, 1) for all 6 ≤ � ≤ 15, and f� = N (1.2, 1) for all
16 ≤ � ≤ 20. The results can be seen in Fig. 2(b), where we
note that the optimal weights test outperforms the tests that use
arbitrarily chosen weights. The resulting homogeneous statis-
tic drift is then approximately equal to 0.036. Furthermore, for
the case of “Non-uniform slopes 1” the worst drift corresponds
to placing the anomaly at any sensor � ∈ [5], corresponding
to an approximate slope of 0.003, and for the case of “Non-
uniform slopes 2” at any sensor � ∈ {16, 17, 18, 19, 20}, with
an approximate slope equal to 0.023. Finally, it should be
noted that in this case we have chosen “Non-uniform slopes
1” to correspond to the case of uniform weights. As a result,
the gap between the blue and red lines in Fig. 2(b) captures
the loss we suffer if we make the assumption that the sensors
of the network are homogeneous.

VII. CONCLUSION

We studied the problem of moving anomaly detection,
where an anomaly emerges in a sensor network affecting dif-
ferent nodes at each time instant after its appearance. We
posed the problem in a minimax QCD setting, where the
trajectory of the anomaly is assumed to be unknown but deter-
ministic. To this end, we introduced a modified version of
Lorden’s [6] detection delay metric that evaluates candidate
detection schemes according to the worst performance with
respect to the path of the anomaly. We proposed a CUSUM-
type test that is an exact solution to the moving anomaly
QCD problem for the case of a homogeneous network, and
is also first-order asymptotically optimal when applied to a
heterogeneous network.

Future work in this area includes studying the case of
a moving anomaly of size varying with time (for current
progress on this problem see [34], modifying the proposed
procedures to provide robustness with respect to limited
knowledge of data-generating distributions, as well as, study-
ing the case of moving anomaly detection under the presence
of adversarial attacks.

APPENDIX

Proof of Theorem 1: For any stopping time τ adapted to
F and N > 0 define the truncated version of τ by τ (N) �
min{τ,N}. Fix α ∈ A. Due to the presence of the sup and ess
sup in (6), we have that for any path S, ν ≥ 0, F -adapted
stopping time τ and N > 0

WADD
(
τ (N)

)
≥ E

S
ν

[
τ (N) − ν|τ (N) > ν,F ν

]

= E
S
ν

⎡

⎣
∞∑

j=ν
1{τ (N)>j}

∣
∣
∣
∣τ
(N) > ν,F ν

⎤

⎦

(a)= E∞

⎡

⎣
∞∑

j=ν
�S(j, ν)1{τ (N)>j}

∣
∣
∣
∣τ
(N) > ν,F ν

⎤

⎦

(32)

where (a) follows by changing the measure to P∞(·). By mul-
tiplying both sides of the inequality (32) with 1{τ (N)>ν}(1 −
Wα[ν])+ and taking the expected value under E∞[ · ] we then
have that

E∞
[
1{τ (N)>ν}(1 − Wα[ν])+WADD

(
τ (N)

)]

= E∞

⎡

⎣
∞∑

j=ν
1{τ (N)>ν}(1 − Wα[ν])+�S(j, ν)1{τ (N)>j}

⎤

⎦

By summing both sides of this equation over ν from ν = 0
to ν = N, and due to the linearity of expectation and the fact
that τ (N) ≤ N we have that

E∞

⎡

⎣
τ (N)−1∑

ν=0

(1 − Wα[ν])+WADD
(
τ (N)

)
⎤

⎦

≥ E∞

⎡

⎣
τ (N)−1∑

ν=0

τ (N)−1∑

j=ν
(1 − Wα[ν])+�S(j, ν)

⎤

⎦

= E∞

⎡

⎣
τ (N)−1∑

j=0

j∑

ν=0

(1 − Wα[ν])+�S(j, ν)

⎤

⎦.

By taking the sup with respect to S, we obtain

WADD
(
τ (N)

)

≥
supS[1,N−1] E∞

[∑τ (N)−1
j=0

∑j
ν=0(1 − Wα[ν])+�S(j, ν)

]

E∞
[∑τ (N)−1

ν=0 (1 − Wα[ν])+
]

(33)

To proceed, we further bound the numerator in (33). For 1 ≤
n < N, define the following function

	n,N−1(S[1, n − 1],S[n + 1,N − 1])

� sup
S[n]

E∞

⎡

⎣
N−1∑

j=0

j∑

ν=0

(1 − Wα[ν])+�S(j, ν)1{τ (N)>j}
⎤

⎦. (34)

Then, by first taking the sup over S[n] we have that

sup
S[1,N−1]

E∞

⎡

⎣
N−1∑

j=0

j∑

ν=0

(1 − Wα[ν])+�S(j, ν)1{τ (N)>j}
⎤

⎦

= sup
S[1,n−1],S[n+1,N−1]

	n,N−1(S[1, n − 1],S[n + 1,N − 1]).

(35)

For 0 ≤ j < N and 0 ≤ n < N define

Aj,n �

⎛

⎜
⎜
⎝

n−1∑

ν=0

(1 − Wα[ν])+

⎛

⎜
⎜
⎝

j∏

i=ν+1
i 
=n

�S(i, i − 1)

⎞

⎟
⎟
⎠1{τ (N)>j}

⎞

⎟
⎟
⎠1{j≥n} (36)
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and

Bj,n �

⎛

⎝
j∑

ν=0

(1 − Wα[ν])+�S(j, ν)1{τ (N)>j}
⎞

⎠1{j<n}

+
⎛

⎝
j∑

ν=n

(1 − Wα[ν])+�S(j, ν)1{τ (N)>j}
⎞

⎠1{j≥n}. (37)

It can then be shown that for any 0 ≤ n < N

j∑

ν=0

(1 − Wα[ν])+�S(j, ν)1{τ (N)>j}
= �S(n, n − 1)Aj,n + Bj,n. (38)

Then from (34), (38) we have that

	n,N−1(S[1, n − 1],S[n + 1,N − 1])

= sup
S[n]

E∞

⎡

⎣�S(n, n − 1)
N−1∑

j=0

Aj,n +
N−1∑

j=0

Bj,n

⎤

⎦. (39)

Note that since Aj,n and Bj,n are independent of S[n] under
P∞(·), we have that for all

E ∈ E = sup
S[n]

E∞

⎡

⎣

⎛

⎝
∏

�∈S[n]

f�(X�[n])

g�(X�[n])

⎞

⎠
N−1∑

j=0

Aj,n +
N−1∑

j=0

Bj,n

⎤

⎦

≥ E∞

⎡

⎣

(
∏

�∈E

f�(X�[n])

g�(X�[n])

)
N−1∑

j=0

Aj,n +
N−1∑

j=0

Bj,n

⎤

⎦ (40)

which together with (39) implies that

	n,N−1(S[1, n − 1],S[n + 1,N − 1])

≥ E∞

⎡

⎣

(
∏

�∈E

f�(X�[n])

g�(X�[n])

)
N−1∑

j=0

Aj,n +
N−1∑

j=0

Bj,n

⎤

⎦. (41)

By averaging both sides of (41) with respect to α we then
have that

	n,N−1(S[1, n − 1],S[n + 1,N − 1])

≥ E∞

⎡

⎣

(
∑

E∈E
αE

(
∏

�∈E

f�(X�[n])

g�(X�[n])

))
N−1∑

j=0

Aj,n +
N−1∑

j=0

Bj,n

⎤

⎦

= E∞

⎡

⎢
⎢
⎣

N−1∑

j=0

j∑

ν=0

(1 − Wα[ν])+Lα(n, n − 1)

⎛

⎜
⎜
⎝

j−1∏

i=ν+1
i 
=n

�S(i, i − 1)

⎞

⎟
⎟
⎠1{τ (N)>j}

⎤

⎥
⎥
⎦. (42)

By unfolding (35) in the same fashion with respect to all 0 ≤
n < N, it can be easily shown that

sup
S[1,N−1]

E∞

⎡

⎣
τ (N)−1∑

j=0

j∑

ν=0

(1 − Wα[ν])+�S(j, ν)

⎤

⎦

≥ E∞

⎡

⎣
τ (N)−1∑

j=0

j∑

ν=0

(1 − Wα[ν])+Lα(j, ν)

⎤

⎦ (43)

which in turn together with (33) implies that

WADD
(
τ (N)

)
≥

E∞
[∑τ (N)−1

j=0
∑j
ν=0(1 − Wα[ν])+Lα(j, ν)

]

E∞
[∑τ (N)−1

ν=0 (1 − Wα[ν])+
] .

From [8, Lemma 1] we have that

j−1∑

ν=0

(1 − Wα[ν])+Lα(j, ν) = Wα[j]

which together with the previous equation implies that

WADD
(
τ (N)

)
≥

E∞
[∑τ (N)−1

j=0

(
Wα[j] + (1 − Wα[j])+

)]

E∞
[∑τ (N)−1

ν=0 (1 − Wα[ν])+
]

=
E∞

[∑τ (N)−1
j=0 max{Wα[j], 1}

]

E∞
[∑τ (N)−1

ν=0 (1 − Wα[ν])+
] . (44)

Consider b chosen such that E∞[τW(α, b)] = γ . Let b′ ≥ b
such that b′ > 0. Then

WADD(τ ) ≥ WADD
(
τ (N)

)

≥
E∞

[∑τ (N)−1
j=0 max{Wα[j], 1}

]

E∞
[∑τ (N)−1

ν=0 (1 − Wα[ν])+
]

≥
E∞

[∑τ (N)−1
j=0 min

{
max{Wα[j], 1}, eb′}]

E∞
[∑τ (N)−1

ν=0 (1 − Wα[ν])+
] .

Since E∞[τ ] < ∞, taking the limit as n → ∞ we have that

WADD(τ ) ≥
E∞

[∑τ−1
j=0 min

{
max{Wα[j], 1}, eb′}]

E∞
[∑τ−1

ν=0(1 − Wα[ν])+
] . (45)

Since (45) holds for arbitrary τ adapted to F , we have that
for any γ > 1

inf
τ∈Cγ

WADD(τ )

≥
infτ∈Cγ E∞

[∑τ−1
j=0 min

{
max{Wα[j], 1}, eb′}]

supτ∈Cγ E∞
[∑τ−1

ν=0(1 − Wα[ν])+
] . (46)

Note that the function φ(x) = (1 − x)+ in continuous and
non-increasing with φ(0) = 1. Furthermore, note that the
function ψ(x) = − min{max{x, 1}, eb′ } is continuous and
non-increasing in x with ψ(0) = − min{1, eb′ }. As a result,
from [8, Th. 1] we also have that

inf
τ∈Cγ

WADD(τ )

≥
E∞

[∑τW (α,b)−1
j=0 min

{
max{Wα[j], 1}, eb′}]

E∞
[∑τW (α,b)−1

ν=0 (1 − Wα[ν])+
]
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(d)=
E∞

[∑τW (α,b)−1
j=0 max{Wα[j], 1}

]

E∞
[∑τW (α,b)−1

ν=0 (1 − Wα[ν])+
] (47)

where (d) is implied since Wα[j] < eb ≤ eb′
for 0 ≤ j <

τW(α, b) and since b′ > 0. Furthermore, note that from the
optimality of the CUSUM test for the classic QCD problem [8]
we have that

E∞
[∑τW (α,b)−1

j=0 max{Wα[j], 1}
]

E∞
[∑τW (α,b)−1

ν=0 (1 − Wα[ν])+
] = WADD(τW(α, b)). (48)

As a result, from (47) and (48) and since

WADD(τW(α, b)) ≥ inf
τ∈Cγ

WADD(τ ) (49)

the theorem is established.
Proof of Lemma 1: Fix α ∈ A, b > 0 and N > 0. For

purposes of presentation of this proof, we denote the stopping
τW(λU, b) with uniform weights and threshold b by simply τW

and WλU [k], LλU (·, ·) by W[k] and L(·, ·) respectively. Define
the truncated stopping time τ (N)W = min{τW ,N}. Note that by
employing a change of measure similar to the one in (32) we
have that for any ν ≥ 0 and any S

Vν � E
S
ν

[
τ
(N)
W − ν

∣
∣
∣τ
(N)
W > ν,F ν

]

= 1 + E∞

⎡

⎣
N−1∑

j=ν+1

�S(j, ν)1{
τ
(N)
W >j

}

∣
∣
∣
∣τ
(N)
W > ν,F ν

⎤

⎦

= 1 + E∞

⎡

⎣
N−1∑

j=ν+1

�S(j, ν)

⎛

⎝
j∏

i=ν+1

1{W[i]<eb}

⎞

⎠

∣
∣
∣
∣τ
(N)
W > ν,F ν

⎤

⎦. (50)

Furthermore, by using induction it can be seen that for any
0 ≤ ν ≤ N − 1

Vν = 1 + E∞
[

�S(ν + 1, ν)1{W[ν+1]<eb}Vν+1

∣
∣
∣
∣τ
(N)
W > ν,F ν

]

with Vν = 1 for all ν ≥ N − 1.
By further analyzing Vν it can be shown that Vν is indepen-

dent of S for all ν ≥ 0 and that it is a function of F ν only
through W[ν]. This implies that for ν ≥ 0 and E ∈ E

Vν = 1 + E∞

[(
∏

�∈E

f (X�[ν + 1])

g(X�[ν + 1])

)

1{W[ν+1]<eb}Vν+1

∣
∣
∣τ
(N)
W > ν,F ν

]

. (51)

As a result, by averaging over E with respect to α we have
that

Vν = 1 + E∞
[

L(ν + 1, ν)1{W[ν+1]<eb}Vν+1

∣
∣
∣
∣τ
(N)
W > ν,F ν

]

.

By unfolding this recursion, it can be easily seen that for any
ν ≥ 0 and any S

E
S
ν

[
τ
(N)
W − ν|τ (N)W > ν,F ν

]
= E

α

ν

[
τ
(N)
W − ν|τ (N)W > ν,F ν

]
.

(52)

From the Monotone Convergence Theorem, since τ (N)W −ν and
1{τ (N)W −ν} are non-decreasing with N, we have that for all S

lim
N→∞E

S
ν

[
τ
(N)
W − ν

∣
∣
∣τ
(N)
W > ν,F ν

]

= E
S
ν

[
τW − ν|τW > ν,F ν

]
. (53)

Similarly, it can be shown that

lim
N→∞E

α

ν

[
τ
(N)
W − ν

∣
∣
∣τ
(N)
W > ν,F ν

]

= E
α

ν

[
τW − ν|τW > ν,F ν

]
. (54)

As a result, by taking the limit on both sides of (52) and
using (53) and (54) we have that for all ν ≥ 0, S

E
S
ν

[
τW − ν|τW > ν,F ν

] = E
α

ν

[
τW − ν|τW > ν,F ν

]
(55)

which in turn implies

WADD(τW) = WADDα(τW). (56)

Proof of Lemma 2: Define β = [βE1 , . . . , βE|E|−1 ]� where
αEj � βEj for j ∈ [|E | − 1]. The constrained optimization of
Iα can then be equivalently replaced by

inf
β

q(β)

s.t. βEj ≥ 0, ∀ j ∈ [|E | − 1]
|E |−1∑

j=1

βEj ≤ 1, (57)

where

q(β) �
∫

RL

⎛

⎝(1 − ‖β‖1)pE|E|(x)+
|E |−1∑

j=1

βEjpEj(x)

⎞

⎠

log

⎛

⎝

(
(1 − ‖β‖1)pE|E|(x)+∑|E |−1

j=1 βEjpEj(x)
)

g(x)

⎞

⎠dx. (58)

Denote by β∗ the solution to (57). Then, the derivative at β∗
is given by

∂q(β)

∂βEi

∣
∣
∣
∣
β∗

= EpEi

[

log

(
pα∗(X)
g(X)

)]

− EpE|E|

[

log

(
pα∗(X)
g(X)

)]

. (59)

Without loss of generality we have that either β∗ =
[β∗

E1
, . . . , β∗

Eη
, . . . , 0]� with η ∈ [|E | − 1] and β∗

Ej
> 0 for

all j ∈ [η] (boundary or interior point), or β∗ = [0, . . . , 0]�
(corner point).
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Assume that β∗ is a corner point. Denote by D(f ‖g) denote
the KL-divergence between two pdfs f (·) and g(·). In this case
we have that for all i ∈ [|E | − 1]

∂q(β)

∂βEi

∣
∣
∣
∣
β∗

=
∑

�∈E|E|

(
D(f�‖g�)1{�∈Ei} − D(g�‖f�)1{�/∈Ei}

)

−
∑

�∈E|E|
D(fi‖gi) < 0, (60)

which is a contradiction since

∂q(β)

∂βEi

∣
∣
∣
∣
β∗

≥ 0 (61)

must hold for all i ∈ [|E | − 1] due to the fact that β∗ is a
minimum. As a result, β∗ is not a corner point. In this case,
for all i ∈ [η] we have that

∂q(β)

∂βEi

∣
∣
∣
∣
β∗

= 0, (62)

which implies that for all i ∈ [η]

EpEi

[

log

(
pα∗(X)
g(X)

)]

= EpE|E|

[

log

(
pα∗(X)
g(X)

)]

� J. (63)

Furthermore, we have that since α∗
Ej

= 0 for η < j < |E |

J =
⎛

⎝
η∑

j=1

β∗
Ej

+
⎛

⎝1 −
η∑

j=1

β∗
Ej

⎞

⎠

⎞

⎠J

=
⎛

⎝
η∑

j=1

α∗
Ej

+ α∗
E|E|

⎞

⎠J

=
|E |∑

j=1

α∗
Ej
EpEj

[

log

(
pα∗(X)
g(X)

)]

= Epα∗

[

log

(
pα∗(X)
g(X)

)]

= Iα∗ > 0. (64)

In addition, we have that for η < i < |E |
∂q(β)

∂βEi

∣
∣
∣
∣
β∗
> 0. (65)

This implies that for all i ∈ [η] ∪ {|E |} and η < j < |E |

EpEj

[

log

(
pα∗(X)
g(X)

)]

> EpEi

[

log

(
pα∗(X)
g(X)

)]

= Iα∗ . (66)

ii) For the case of m = 1, without loss of generality assume
that for all 1 ≤ j ≤ |E | = L, we have that Ej = j. For
η < i < L, we then have that

EpEi

[

log

(
pα∗(X)
g(X)

)]

= Epi

[

log

(
pα∗(X)
g(X)

)]

= Eg

⎡

⎣log

⎛

⎝
η∑

j=1

α∗
j

fj(Xj)

gj(Xj)
+ α∗

L
fL(XL)

gL(XL)

⎞

⎠

⎤

⎦

= Eg

[

log

(
pα∗(X)
g(X)

)]

< 0. (67)

We then have that from (59), (63), (64) and (67)

∂q(β)

∂βEi

∣
∣
∣
∣
β∗
< 0 (68)

for all η < i < L, which leads to a contradiction, since (68)
cannot hold at the minimum.

Proof of Theorem 4: Our upper bound analysis is based on
the proof technique in [9]. Due to the structure of the test we
have that for any b > 0

WADD
(
τW
(
α∗, b

)) = sup
S

E
S
0

[
τW
(
α∗, b

)]
. (69)

Let 0 < ε < Iα∗ and nb = b
Iα∗−ε . We then have that

sup
S

E
S
0

[
τW(α

∗, b)

nb

]
(a)= sup

S

∫ ∞

0
P

S
0

(
τW(α

∗, b)

nb
> x

)

dx

(b)≤ 1 + sup
S

lim
ξ→∞

ξ∑

ζ=1

× P
S
0

(
τW
(
α∗, b

)
> ζnb

)
, (70)

where (a) follows from writing the expectation as an integral of
the inverse cumulative density function for a positive random
variable and (b) from the sum-integral inequality. Define the
log-likelihood ratio at time j corresponding to (10) for α =
α∗ by

Zα∗ [j] � log
pα∗(X[j])

g(X[j])
. (71)

For any path S = {S[k]}∞k=1, ζ ≥ 1, we then have that

P
S
0

(
τW
(
α∗, b

)
> ζnb

) = P
S
0

(

max
1≤k≤ζnb

Wα∗ [k] < eb
)

(c)= P
S
0

(

max
1≤k≤ζnb

max
1≤i≤k

Lα∗(k, i − 1) < eb
)

(d)=
ζ∏

r=1

P
S
0

(∑rnb
j=(r−1)nb+1 Zα∗ [j]

nb
< Iα∗ − ε

)

(72)

where (c) follows from the definition of the M-CUSUM statis-
tic (14) and after taking the logarithm at both sides of the
inequality, and (d) follows by using the binning technique
in [9] and by the independence of the observations over time.
Note that for b > 0 we then have that from (72)

sup
S

lim
ξ→∞

ξ∑

ζ=1

P
S
0

(
τW
(
α∗, b

)
> ζnb

)

≤ lim
ξ→∞

ξ∑

ζ=1

sup
S

P
S
0

(
τW
(
α∗, b

)
> ζnb

)

≤ lim
ξ→∞

ξ∑

ζ=1

ζ∏

r=1

[

sup
S

P
S
0

(∑rnb
j=(r−1)nb+1 Zα∗ [j]

nb
< Iα∗ − ε

)]

= lim
ξ→∞

ξ∑

ζ=1

[

sup
S

P
S
0

(∑nb
j=1 Zα∗[j]

nb
< Iα∗ − ε

)]ζ

. (73)

For fixed S, b define

IS,b � E
S
0

[∑nb
j=1 Zα∗[j]

nb

]

=
∑nb

j=1 EpS[j]

[
Zα∗ [j]

]

nb
≥ I∗

α, (74)
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where the inequality follows from Lemma 2. This in turn
implies that for any S we have that

P
S
0

(∑nb
j=1 Zα∗ [j]

nb
< Iα∗ − ε

)

≤ P
S
0

(∣
∣
∣
∣

∑nb
j=1 Zα∗[j]

nb
− IS,b

∣
∣
∣
∣ > ε

)

.

Define

σ̄ 2 � max
E∈E

VarpE

[

log
pα∗(X)
g(X)

]

. (75)

From (26), we have that σ̄ 2 < ∞. Then, by Chebychev’s
inequality

P
S
0

(∣
∣
∣
∣

∑nb
j=1 Zα∗[j]

nb
− IS,b

∣
∣
∣
∣ > ε

)

≤ VarS
0

(∑nb
j=1 Zα∗ [j]

nb

)
1

ε2

= 1

ε2n2
b

nb∑

j=1

VarpS[j](Zα∗ [j])

≤
∑nb

j=1 σ̄
2

n2
bε

2
= σ̄ 2

nbε2
. (76)

By using (70), (73), (75) and (76) we then have that

sup
S

E
S
0

[
τW(α

∗, b)

nb

]

≤ 1 + lim
ξ→∞

ξ∑

ζ=1

[
σ̄ 2

nbε2

]ζ

. (77)

Let 0 < δ < 1. Since nb is increasing with b, we have that for
all b > B, where B large enough

sup
S

E
S
0

[
τW(α

∗, b)

nb

]

≤ 1 + lim
ξ→∞

ξ∑

ζ=1

δζ =
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ζ=0

δζ = 1

1 − δ
.

(78)

Since (78) holds for all ε > 0 and δ → 0 as b → ∞, by the
definition of nb the theorem is established.
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