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Window-Limited CUSUM for Sequential
Change Detection

Liyan Xie , George V. Moustakides , Life Senior Member, IEEE, and Yao Xie , Member, IEEE

Abstract— We study the parametric online changepoint detec-
tion problem, where the underlying distribution of the streaming
data changes from a known distribution to an alternative that
is of a known parametric form but with unknown parameters.
We propose a joint detection/estimation scheme, which we call
Window-Limited CUSUM, that combines the cumulative sum
(CUSUM) test with a sliding window-based consistent estimate of
the post-change parameters. We characterize the optimal choice
of the window size and show that the Window-Limited CUSUM
enjoys first-order asymptotic optimality as average run length
approaches infinity under the optimal choice of window length.
Compared to existing schemes with similar asymptotic optimality
properties, our test can be much faster computed because it
can recursively update the CUSUM statistic by employing the
estimate of the post-change parameters. A parallel variant is
also proposed that facilitates the practical implementation of the
test. Numerical simulations corroborate our theoretical findings.

Index Terms— Cumulative sum (CUSUM) test, sequential
change detection, average run length, asymptotic optimality.

I. INTRODUCTION

ONLINE changepoint detection is a fundamental problem
in statistics and signal processing [1], [2], [3], [4] which

finds applications in a plethora of practical problems in diverse
fields. The most common version of the problem consists
of a sequence of observations sampled independently. There
is also a changepoint such that the underlying distribution
changes from one distribution to an alternative. This problem
is of major importance in many applications, such as seismic
signal processing [5], industrial quality control [6], dynamical
systems monitoring [7], structural health control [8], event
detection [9], anomaly detection [10], detection of attacks [11],
etc. The goal of online changepoint detection is to detect
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the occurrence of the change in statistical behavior with a
minimal delay while controlling the false alarm rate. The
suitable tradeoff between detection delay and false alarm rate,
as in all detection problems, is of essential importance for the
proper mathematical formulation of the problem.

Classical formulations assume complete knowledge of the
pre- and post-change underlying distributions with the cumu-
lative sum (CUSUM) test being the most popular means
for the corresponding detection [12]. The CUSUM scheme
properly updates the log-likelihood ratio between the post-
and pre-change densities of the available data to form the
corresponding test statistic. CUSUM is known to be theoreti-
cally optimum in the sense that it enjoys minimum detection
delay under a fixed false alarm rate constraint [13]. Also, it is
computationally simple because an updating formula exists for
the computation of the CUSUM statistics, which requires only
the current data sample (and the previous value of the CUSUM
statistic).

In many real world applications, the post-change distri-
bution is typically not precisely known since it represents
a switching to an anomalous state. In this case, a Gener-
alized Likelihood Ratio (GLR) test version of CUSUM has
been developed, which applies the GLR method to select
the unknown post-change distributions [14] and form the
corresponding test statistic. Unfortunately, this original GLR
version turns out to be computationally demanding because it
requires computations per sample, which increase linearly in
time without limit. The main reason for this disadvantage is
that the test statistic must be recomputed using GLR for each
possible changepoint location with every new observation.
A remedy also proposed in [14] is the window-limited GLR
test where the recomputation of the test statistic is limited to
changepoint locations within a window of fixed length starting
from the current time instant. The resulting scheme has been
shown to enjoy asymptotic optimality with proper selection of
the window size. Even though computations are now limited
since they are of the order of the selected window length, they
still tend to be considerable because for each time instant we
need to recompute the GLR statistic for each position within
the window.

In this article, we develop an alternative approach
for solving the problem of interest which we call
Window-Limited CUSUM (WLCUSUM). It consists in adopt-
ing a window-based estimate of the unknown post-change
parameters and, unlike the existing window-limited GLR,
we use the estimate in the updating formula of the classical
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CUSUM statistic. This updating mechanism is far more effi-
cient than its window-limited GLR counterpart and by proper
selection of the window size we can also guarantee asymptotic
optimality. In detail, we only require the sample size w →∞
as γ →∞ with w = o(log γ) while the window-limited GLR
require w = Θ(log γ) where γ is the average run length
requirement (see Remark 8 for details). We would like to
emphasize that the problem we consider is not joint detection
and estimation as in [15] and [16], where the two tasks
are regarded as equally important. Here, we are primarily
interested in detection, with estimation being an auxiliary
action that contributes towards our detection goal. For this
reason we only require the estimator to be consistent without
insisting on any explicit form.

Compared with existing CUSUM-like procedures employ-
ing estimates of post-change parameters, the proposed
WLCUSUM method applies to a far wider range of parametric
distributions and not only the exponential family which is
mostly the case with the available approaches. Our main
contributions in this work include: (i) Proof of asymptotic
optimality of the proposed WLCUSUM procedure under Lor-
den’s worst-case detection delay [17]. To achieve this goal,
we had to develop new upper bounds for overshoots over
a constant threshold for sums of data that are w-dependent.
(ii) Characterization of the optimal choice of the window size
to guide practical implementations and offer the best possible
performance for the proposed scheme. (iii) Development of
an alternative parallel version of WLCUSUM capable of
matching the performance of the optimal window without the
need to explicitly specify it.

We must also mention that one of the main characteristics
of WLCUSUM is its computational efficiency. The benchmark
window-limited GLR [14] requires a window size that is at
least as large as the detection delay, while in our detector
the optimal window has a size that is significantly smaller.
This difference in window size translates into an overall
computational complexity which, in our scheme is at least an
order of magnitude smaller than the corresponding complexity
of the window-limited GLR.

The remainder of this paper is organized as follows.
Section II reviews related work. Section III introduces the
adopted formulation and presents details of the proposed
detection procedure. Section V contains the theoretical anal-
ysis establishing the asymptotic optimality of the pro-
posed procedure and the form of the optimal window size.
Section VI presents a parallel implementation of the proposed
WLCUSUM with varying window sizes which is particu-
larly suited for practical implementation. Finally, Section VII
presents examples that demonstrate the performance of the
WLCUSUM procedure with comparisons to the corresponding
GLR scheme. For better readability of the main results, most
of our technical part is moved to the Appendix.

II. RELATED WORK

The study of online changepoint detection can be traced
back to the early work of Page [12] and has been studied
for several decades. Most articles consider the problem under
independent observations but there are also extensions to more

complicated data models; see [1], [2], [3], [18], [19], [20] for
thorough reviews in this field.

We distinguish two main tracks in sequential change detec-
tion: The first is the Bayesian approach, where a prior for the
time of change is assumed to be available. The second is the
minimax (non-Bayesian) formulation, where the changepoint
is considered to be deterministic but unknown. Interestingly,
both approaches can be put under the same mathematical
framework [21], [22] and, depending on the data model,
we can decide which formulation is most suitable to be
adopted.

The first exact optimality result in sequential change detec-
tion can be found in [23] where the focus is on detecting
a change in the drift of a Brownian motion. Following a
Bayesian approach, the change time is modeled as an inde-
pendent random variable that is exponentially distributed. For
non-Bayesian approaches, the CUSUM test is perhaps the
most popular change detection algorithm for the classical setup
of detecting a change from a known nominal to a known
alternative density. CUSUM, also known as the Page test [12],
was first shown to be asymptotically optimum in [17] when
observations are i.i.d. before and after the change. The exact
optimality of the CUSUM test under the same data model
was established in [13]. An alternative detection procedure
introduced in [24], even though it was developed by adopting
a minimax approach, presents very strong similarities to the
optimum Bayesian test developed in [23]. This sequential
detector, known as the Shiryaev-Roberts-Pollak (SRP) test,
enjoys a very strong asymptotic optimality property which,
unfortunately, was proven not to be exact [25]. We must also
mention that in the classical version of the problem, which
we discussed so far, the computation of the corresponding test
statistic of the CUSUM and the SRP test is straightforward
and can be implemented very efficiently.

When we consider parametric density families where the
parameters are unknown, CUSUM and SRP are used as
prototypes to develop variants which, at best, can enjoy asymp-
totic optimality. In particular, when the pre-change density is
known while the post-change contains unknown parameters,
there are two classes of tests in the literature that address
this problem: (i) The generalized likelihood ratio (GLR)
approach [14], where the detection statistic, at each time,
is computed by substituting the unknown parameter with its
maximum likelihood estimate using all potential post-change
data until the current time; (ii) The mixture likelihood ratio
procedure [3, Pages 418-423], where the detection statistic is
a weighted average of the corresponding log-likelihood ratio
by assuming a weight (prior distribution) on the post-change
parameters. Although the corresponding tests, as mentioned,
enjoy asymptotic optimality properties, a major drawback is
that their computational complexity can be high because their
detection statistic cannot be computed efficiently. In addition,
the score statistics were also used to avoid estimation of the
unknown parameters [26].

For the popular CUSUM test, many variants of the tradi-
tional version were proposed to improve the computational
efficiency when the post-change density contains unknown
parameters. To detect the change over a wide range of mean

Authorized licensed use limited to: University of Patras. Downloaded on August 22,2023 at 11:16:31 UTC from IEEE Xplore.  Restrictions apply. 



5992 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

shifts in quality control, the combined usage of CUSUM
and Shewhart charts was employed in [27] and [28], and
the simultaneous use of multiple CUSUM procedures with
different drift values was suggested in [29], [30], [31],
and [32]. Moreover, the case with finitely many post-change
distributions was considered and the joint detection/isolation
algorithm was proposed based on multiple hypotheses sequen-
tial probability ratio test [33], [34]. A different method known
as Adaptive CUSUM was first proposed in [29] and studied
further in [35], [36], [37], [38], [39], and [40]. The Adaptive
CUSUM continuously adjusts its statistic in order to efficiently
signal a one-step-ahead forecast in deviation from its target
value. For example, such a procedure has been considered
in [41], where the estimate is based on online algorithms such
as stochastic gradient descent, and the performance metrics
are related to the regret bounds of the online estimators.
The simple exponentially weighted moving average (EWMA)
estimate is the most common selection for the one-step-ahead
forecast. Optimality properties of the Adaptive CUSUM were
considered in [42] where the first-order asymptotic optimality
was established for the univariate exponential family while
extensions appear in [43]. Finally, a multi-stream Adaptive
CUSUM test was proposed in [44] establishing asymptotic
optimality for the case of Gaussian distributions.

III. PRELIMINARIES

A. Problem Setup

Suppose we have access to the multivariate data sequence
{ξt} with ξt ∈ Rk, which is sampled sequentially.
We assume that there are two probability density functions
(pdf) f∞(·), f0(·) and a deterministic time τ ∈ {0, 1, 2, . . .}
such that

ξt
i.i.d.∼

{
f∞(ξ), t = 1, 2, . . . , τ,

f0(ξ, θ), t = τ + 1, τ + 2, . . .
(1)

In other words τ is a changepoint, where the observations are
i.i.d. before and including τ following the pdf f∞(·), while for
times after τ they are again i.i.d. following f0(·, θ), which is
characterized by an unknown parameter vector θ ∈ Θ ⊆ RK

where Θ is a known subset of RK . If there is no constraint
on θ then we simply set Θ = RK . Throughout this paper we
assume that the pre-change distribution f∞(·) does not belong
to the post-change distributions with parameter set Θ.

We denote with P∞, E∞ the probability measure and
the corresponding expectation when all samples follow the
pre-change distribution (i.e., the change happens at ∞), Pθ

0, E
θ
0

when all data are under the post-change density with parameter
θ (the change happens at 0) and finally with Pθ

τ , Eθ
τ the

measure and expectation induced when the change happens
at time τ . We also denote with ξt2

t1 (t2 ≥ t1) the collection of
data {ξt1 , . . . , ξt2}.

We assume that f∞(·) is known since usually it can be
estimated from historical data by density estimation [45]
methods. We can also assume that f∞(·) is partially known
by extending our results to incorporate the estimation error
for f∞(·). However, we note that this estimation error can
be negligible as long as the volume of historical data is

sufficiently large. For the post-change density, we assume
that f0(·, θ) has a known form, but the parameter vector θ
is unknown, without any prior distribution that can capture its
statistical behavior. Our goal is to detect the changepoint τ as
quickly as possible from streaming data when it occurs, under
the constraint that the false alarm rate is properly controlled.

A sequential change detection test simply consists of a
stopping time T which denotes the time we stop and declare
that a change took place before time T . The stopping time
is adapted to the filtration {Ft}, Ft = σ{ξ1, . . . , ξt} with
F0 denoting the trivial sigma-algebra. This assures that only
available data are employed when we decide whether to stop or
not at each time t. Our intention is to use the classical CUSUM
test for the change detection problem. Since CUSUM requires
exact knowledge of the pre- and post-change densities, we will
replace the unknown parameter vector θ with a proper estimate
over available data. This estimate will be renewed with every
new data sample. Before presenting the details of our scheme,
let us first recall the CUSUM test and its corresponding
optimality properties.

B. The CUSUM Test

Fix the post-change parameter vector θ and suppose it is
known. This suggests that we are under the classical formula-
tion, where we would like to detect a change from a known
density f∞(·) to an alternative known density f0(·, θ). This
problem can be solved optimally with the CUSUM test. The
CUSUM statistic {St} is defined as

St = max
0≤k<t

t∑
j=k+1

log
f0(ξj , θ)
f∞(ξj)

,

which is essentially the (maximum) likelihood ratio statistics
as detailed in [3, Section 8.2.3]. The above CUSUM statistic
satisfies and is usually implemented through the following
update

St = S+
t−1 + log

f0(ξt, θ)
f∞(ξt)

, S0 = 0, (2)

where x+ = max{x, 0}. The update in (2) is applied every
time a new sample becomes available. The corresponding
CUSUM stopping time that signals the change is then defined
as

T = inf{t > 0 : St ≥ ν}, (3)

where ν > 0 is a constant threshold, the choice of which
needs to balance the false alarm rate and the detection delay.
The first time St hits or exceeds the threshold ν, we stop and
declare that a change took place before t. CUSUM is known
to solve exactly [13] the following challenging constrained
optimization problem

inf
T

sup
τ≥0

ess supEθ
τ [T − τ |Fτ , T > τ ],

subject to: E∞[T ] ≥ γ > 1, (4)

when the threshold ν is selected to satisfy the false alarm
constraint with equality, namely E∞[T] = γ. In other words,
among all stopping times that have an average false alarm
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period (also known as average run length, ARL) no smaller
than γ, the CUSUM stopping time T has the smallest worst-
case average detection delay (WADD). From (4) we observe
that for each possible changepoint τ we consider the average
detection delay conditioned on the worst possible data before
(and including) time τ ; this is a particular type of delay
measure proposed by Lorden [17]. It is well-known that
CUSUM regarding this worst-case performance is an equalizer
in the sense that ess supEθ

τ [T − τ |Fτ , T > τ ] is the same
for all changepoints τ ; therefore, for the computation of
the worst-case detection delay scenario, we can simply limit
ourselves to τ = 0 (i.e., Eθ

0[T]).
The analysis in this article will be asymptotic (for large

γ). For this reason, with the following lemma, we provide a
convenient asymptotic formula for the CUSUM performance.

Lemma 1 (Performance of Exact CUSUM): For threshold
ν = log γ the CUSUM test satisfies

E∞[T] ≥ γ, Eθ
0[T] =

log γ

I0

(
1 + Θ

(
1

log γ

))
, (5)

where I0 = Eθ
0

[
log f0(ξ1,θ)

f∞(ξ1)

]
is the Kullback-Leibler

information number (divergence) of the post- and pre-change
densities.

Proof: The performance of CUSUM, when expressed in
asymptotic terms, is usually given in the form of Eθ

0[T] =
ν
I0

(
1 + o(1)

)
(see [2]). However, here we would like to be

more explicit regarding the o(1) term in order to be able to
compare the case of known versus the case of estimated θ.
The proof of this formula can be found in [46, Lemma 1].

From Lemma 1 we conclude that if we know θ and apply
the CUSUM test defined in (2), (3) with threshold ν = log γ
then the corresponding CUSUM stopping time T enjoys an
asymptotic performance captured by (5). In fact no other
stopping time T that satisfies the same false alarm constraint
can have a limiting value (liminf) for the ratio Eθ

0[T ]/ log γ
I0

that is smaller than 1 as γ → ∞. This statement describes
the optimality of CUSUM in first-order asymptotic terms as
γ →∞.

IV. PROPOSED METHOD: WINDOW-LIMITED
CUSUM TEST

In a realistic case θ is unknown and, as we mentioned,
we may know instead a set Θ of possible values for θ.
Of course Θ = RK if there is no restriction on θ. If θ is not
exactly known then the CUSUM test cannot be applied in the
form of (2), (3). For this reason, as in the literature, we pro-
pose to replace the unknown θ with a consistent estimate.
Specifically we select a window of length w ≥ 1 and define
the Window-Limited CUSUM (WLCUSUM) test statistic {St}
for t > w similarly to (2):

St = S+
t−1 + log

f0(ξt, θ̂t−1)
f∞(ξt)

, Sw = 0, t = w + 1, w + 2, . . . ,

(6)

where θ̂t ∈ Θ is an estimate of θ. We are not going to adopt
any specific estimator, we only constrain the estimate θ̂t to
be based on the data {ξt, . . . , ξt−w+1} and to be consistent.

An obvious possibility would be the Maximum Likelihood
Estimator (MLE)

θ̂t = arg max
θ∈Θ

w−1∑
i=0

log f0(ξt−i, θ), (7)

which, as we will see in our analysis, enjoys certain desirable
optimality characteristics when employed in our proposed
detection scheme. For the stopping time, similarly to CUSUM,
we define

T = inf{t > w : St ≥ ν}, (8)

with ν > 0 is a constant threshold.
It is worth noting that the increment term

{log f0(ξt, θ̂t−1)/f∞(ξt)}t∈Z in (6) is w-dependent (defined
below); while the increment terms (log-likelihood ratios)
in the exact CUSUM (2) are independent. Due to such
w-dependency induced by the estimates which employ data
from the past, obtaining the formulas for the detection
performance is not a straightforward task.

Definition 1 (w-Dependence, [47]): A discrete-time
stochastic process (Yn)n∈Z is w-dependent if for all k, the
joint stochastic variables (Yn)n≤k are independent of the
joint stochastic variables (Yn)n≥k+w+1.

We must point out that several existing detection/estimation
methods propose to recalculate the estimate θ̂t at each time t
and perform a dual maximization. Such is, for example, the
popular GLR approach proposed in [14]

S̃t = max
0≤τ<t

sup
θ∈Θ

t∑
s=τ+1

log
f0(ξs, θ)
f∞(ξs)

.

Unfortunately, the above statistic does not possess any conve-
nient updating formula similar to (2) and requires a number
of operations per sample that increases linearly with time.
To remedy this serious computational handicap, a window-
limited version is commonly adopted where the search for
the maximum over τ is performed within a window of fixed
length w. Specifically, the following maximization replaces the
previous one

S̃t = max
t−w≤τ<t

sup
θ∈Θ

t∑
s=τ+1

log
f0(ξs, θ)
f∞(ξs)

. (9)

This clearly reduces the complexity to a fixed number of
operations per time update but, as we discuss in Remark 8,
it can still be quite demanding. In the following, we refer to
(9) as the window-limited GLR approach.

Unlike the window-limited GLR, we propose to employ,
as in [48], the classical CUSUM update in (2) where we simply
replace the unknown parameter θ with a consistent estimate,
thus preserving the computational efficiency of the original
CUSUM. The reason we expect this idea to be successful is
that when the data are under the post-change regime, θ̂t−1

will be close to the true θ if w is sufficiently large, and the
WLCUSUM statistic will exhibit a positive drift not differing
significantly from the exact CUSUM drift. On the other hand,
when the data follow the pre-change regime, we will show that
the estimate will impose a negative drift on the WLCUSUM
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statistic forcing the test to perform repeated restarts exactly
similarly to the case of the exact CUSUM. These claims will
be demonstrated through a rigorous analysis. Additionally,
we will obtain asymptotic formulas for the average false alarm
period and the worst-case average detection delay, which will
allow us to establish the asymptotic optimality of our proposed
detection scheme. Before starting our mathematical deriva-
tions, let us make some remarks and present our assumptions.

Remark 1: As can be seen from (6), we do not compute any
test statistic during the first w samples since we accumulate
these samples in order to obtain the first estimate θ̂w. The
test statistic is first computed at time w + 1 where we also
employ the first estimate θ̂w. Since we necessarily wait for w
time instances, it is understood that whatever average delay
we compute, it cannot be smaller than w. Asymptotically, this
fact is not disturbing because we will assure in Section V that
this initial waiting time w is negligible compared to the actual
detection delay required to detect the change. Of course, not
applying the test during the first w time instances is only
for analytical purposes, as this corresponds to the worst-case
average detection delay (as we prove in Lemma 4). In a
practical implementation, we can start testing earlier, and
our estimator at every time t can rely on the existing data
without necessarily waiting until w samples become available.
We discuss this point in more detail in Section VI when we
introduce a computationally convenient variant of our scheme.

Remark 2: The estimate θ̂t that we employ in our
test, as mentioned, is obtained by processing the samples
{ξt, . . . , ξt−w+1}. This assures that ξt and θ̂t−1 are inde-
pendent and the same is true between θ̂t and Ft−w (w-
dependency). As we are going to see, these facts play an
important role in our proofs.

Remark 3: We note that the name “window-limited
CUSUM” has been used in the literature, e.g., [49] and [14].
But they are all very different from our proposed scheme.
In detail, Lai’s definition of window-limited CUSUM statistics
is St = maxt−w<k<t

∑t
i=k+1 log f0(ξi,θ)

f∞(ξi)
, thus it also assumed

full knowledge of the pre- and post-change distributions.
Therefore, we must differentiate our algorithm from those in
the literature that usually refers to the above statistics and may
coincides with window-limited GLR in some senses, and is
non-recursive, while our proposed WL-CUSUM enjoys recur-
sive update and the estimator θ̂ is also differently constructed.

A. Assumptions and Useful Observations

Regarding the estimates {θ̂t} since it is not our intention
to promote any specific estimation method, we will impose
general characteristics that are enjoyed by most reasonable
estimators (such as MLE). In particular, we make the follow-
ing key assumptions for the estimator.
A1: Under the post-change regime Pθ

0, we assume that
Eθ

0[θ̂t] = θ (unbiased estimator1). If we write θ̂t = θ+Et,
the zero mean estimation error has a covariance matrix
of the form Eθ

0[EtE
⊺
t ] = 1

wΣ0

(
1 + o(1)

)
. Matrix Σ0 is

1In fact our analysis can also accommodate asymptotically unbiased esti-
mators provided that the norm square of the bias is o(1/w). It is for simplicity
that we limit ourselves to the unbiased case.

of the order of a constant when considered as a function
of w.

A2: Under the pre-change regime P∞, we assume that
E∞[θ̂t] = θ∞. If we write θ̂t = θ∞ + Et, the zero
mean estimation error has a covariance matrix of the form
E∞[EtE

⊺
t ] = 1

wΣ∞(1+o(1)
)
. Matrix Σ∞ is of the order

of a constant as a function of w.
With A1, we require our estimator, when applied to
post-change data to provide reliable estimates of the correct
parameter vector θ. We expect the quality of our estimate
to improve with increasing window size w, since the error
covariance matrix is inversely proportional to w. When applied
to pre-change data, the estimator behavior is described by A2.
We assume that it provides estimates close to some value θ∞,
where θ∞ is estimator dependent. For example, in the case of
the MLE, we have that

θ∞ = arg max
θ

E∞[log f0(ξ1, θ)],

which is the limiting form of (7) after we normalize with
the window size w and invoke the Law-of-Large Numbers.
We note that the MLE satisfies A1 and A2 since MLE is
asymptotically unbiased (satisfying the footnote 1) under mild
conditions [50]. Let us now continue with our assumptions.
The next assumption refers to the Kullback-Leibler (KL)
information numbers and the second moment of the log-
likelihood ratio.
A3: Consider the two KL information numbers and the second

moment of the log-likelihood ratio under the Pθ
0 measure

I0 = Eθ
0

[
log

f0(ξ1, θ)
f∞(ξ1)

]
,

I∞ = −E∞

[
log

f0(ξ1, θ∞)
f∞(ξ1)

]
,

J0 = Eθ
0

[(
log

f0(ξ1, θ)
f∞(ξ1)

)2
]

.

We assume that all three quantities are strictly positive
and bounded for every θ ∈ Θ of interest.

We see that I∞ involves the parameter value θ∞, which is
estimated when the data are under the pre-change regime. This
information number can be strictly positive if, for example,
the pre-change density f∞(·) cannot be expressed as the
post-change density f0(·, θ∞) for some particular value θ∞ ∈
Θ that belongs to the allowable set of post-change parameter
values. Unfortunately, the analysis that follows does not cover
the case where f∞(·) = f0(·, θ∞) and it requires significant
technical modifications to address this particular possibility.
On the other hand we can avoid the occurrence of this case
by defining a suitable set Θ that does not contain θ∞.

In our derivations, we will encounter quantities that resem-
ble the KL information numbers and the second moment of
the log-likelihood ratio introduced in Assumption A3, but with
the parameter θ replaced by an estimate. In particular, we will
be interested in the following alternatives:

Î0 = Eθ
0

[
log

f0(ξt, θ̂t−1)
f∞(ξt)

]
,
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Î∞ = −E∞

[
log

f0(ξt, θ̂t−1)
f∞(ξt)

]
,

Ĵ0 = Eθ
0

(log
f0(ξt, θ̂t−1)

f∞(ξt)

)2
 .

Due to Assumptions A1 and A2 we expect Î0, Î∞, and Ĵ0 to
be close to their exact counterparts I0, I∞, J0. In fact we can
specify their relationship more precisely by applying a Taylor
expansion on log

(
f0(ξt, θ̂t−1)/f∞(ξt)

)
around the mean of

θ̂t−1 and retaining the first three terms. Additionally, we could
make suitable assumptions on the smoothness of f0(ξ, θ) to
guarantee the effectiveness of these approximations. In order
to avoid these common technicalities, we propose to simply
assume that such an expansion is valid without more details.
This will allow us to focus on the more interesting question
of the WLCUSUM asymptotic optimality, which will require
a number of novel results due to the w-dependency of the
approximate log-likelihood ratios {log

(
f0(ξt, θ̂t−1)/f∞(ξt)

)
}.

Consequently, our last assumption expresses how Î0, Î∞,Ĵ0 are
related to I0, I∞, J0.
A4 (Taylor Expansion Based Approximations): The quanti-

ties Î0, Î∞, and Ĵ0 can be written as

Î0 = I0 −
1

2w
trace{Σ0F0}

(
1 + o(1)

)
,

Î∞ = I∞ +
1

2w
trace{Σ∞F∞}

(
1 + o(1)

)
,

Ĵ0 = J0 +
1
w

trace{Σ0Q0}
(
1 + o(1)

)
, (10)

where F0, F∞, Q0 are matrices of the order of a constant
with respect to the window size w.

By applying Taylor expansion on the approximate log-
likelihood function, it is possible to identify the exact form of
F0, F∞, Q0 in (10) for unbiased estimators satisfying Assump-
tions A1 and A2. We present this in the following lemma.

Lemma 2: The matrices entering in (10) in Assumption A4
have the following form

F0 = Eθ
0

[(
∇θf0(ξ1, θ)
f0(ξ1, θ)

)(
∇θf0(ξ1, θ)
f0(ξ1, θ)

)⊺]
,

F∞ = E∞

[(
∇θf0(ξ1, θ∞)
f0(ξ1, θ∞)

)(
∇θf0(ξ1, θ∞)
f0(ξ1, θ∞)

)⊺

− ∇θθf0(ξ1, θ∞)
f0(ξ1, θ∞)

]
,

Q0 = F0 + Eθ
0

[(
log

f0(ξ1, θ)
f∞(ξ1)

){
∇θθf0(ξ1, θ)

f0(ξ1, θ)

−
(
∇θf0(ξ1, θ)
f0(ξ1, θ)

)(
∇θf0(ξ1, θ)
f0(ξ1, θ)

)⊺}]
,

where ∇θθf0(ξ, θ) denotes the Hessian of f0(ξ, θ) with respect
to θ.

Proof: Demonstrating the validity of these formulas
presents no particular difficulty. We apply Taylor expansion
on log

(
f0(ξt, θ̂t−1)/f∞(ξt)

)
with respect to θ̂t−1 around its

mean θ and retain the first three terms. Then we make use of
the independence between ξt and θ̂t−1 and therefore between
ξt and Et−1 (the estimation error of θ̂t−1). The first order

term in the expansion has average 0 because Et−1 is zero
mean. Consequently, we end up with the expectation of the
second order term with respect to Et−1 while, as we assumed,
higher order terms are regarded as negligible and captured by
the o(1) components in (10). In order to obtain the desired
results we must also note that Eθ

0[∇θf0(ξ1, θ)/f0(ξ1, θ)] =
0, Eθ

0[∇θθf0(ξ1, θ)/f0(ξ1, θ)] = 0 and that for a deter-
ministic matrix Q, we can write E[E⊺

t−1QEt−1] =
E[trace{QEt−1E

⊺
t−1}] = trace{QE[Et−1E

⊺
t−1]}. Computa-

tions are straightforward, thus we omit further details.
Remark 4 (Examples of Gaussian Distribution): We

provide a concrete example of the quantities above under
Gaussian distributions. Assume one-dimensional Gaussian
mean shift from N(0, 1) to N(θ, 1) with post-change mean
equal to 1, and assume the set Θ = {θ : θ ≥ 0.5} as
the possible post-change mean values. When using the
maximum likelihood estimator, we have θ̂t = 1

w

∑w−1
i=0 ξt−i

if 1
w

∑w−1
i=0 ξt−i ≥ 0.5 and θ̂t = 0.5 otherwise. Under the

post-change regime, the asymptotic distribution of θ̂t is
N(θ, 1/w), while under the pre-change regime, θ̂t converges
in probability to 0.5. In this case we have θ = 1, θ∞ = 0.5,
I0 = θ2/2, I∞ = 0.52/2, J0 = θ4/4 + θ2, and Fisher
information F0 = 1, F∞ = 1, Q0 = F0 − θ2/2 = 1/2, and
Î0 ≈ I0−1/(2w), Î∞ = 1/8+o(1/w), Ĵ0 ≈ J0 +1/(2w). It is
worthwhile commenting that when the pre-change distribution
is non-normal, the parameter set Θ will equal to R and the
MLE θ̂t is asymptotically normal under mild conditions for
both the pre- and post-change regimes.

Let us now make some useful observations regarding
the quantities we introduced above. From Equation (10)
we deduce that the window size w must be larger than
trace{Σ0F0}/I0 so that Î0 > 0, a property which is necessary
for successful detection. Indeed, only when Î0 > 0, the
WLCUSUM statistic will exhibit a positive drift after change,
forcing the corresponding statistic to increase and finally
exceed the positive threshold. Meanwhile, we require the
pre-change drift −Î∞ to be negative; this holds in general for
any w and any estimate as we discuss in detail in Section V.

We note from its definition that F0 is the Fisher Information
matrix. Since for any unbiased estimator we have validity
of the Cramer-Rao Lower Bound, namely Σ0 ≽

(
F0

)−1
,

we conclude that

trace{Σ0F0} = trace{F
1
2
0 Σ0F

1
2
0 } ≥ trace

{
F

1
2
0 F−1

0 F
1
2
0

}
= K;

(11)

where, we recall that K is the dimension of the parameter
vector θ. Therefore, the maximum likelihood estimate asymp-
totically maximizes the approximate KL information number
Î0, thus resulting in the smallest detection delay among all
consistent estimators.

Consider now the mismatched version of the KL information
number Eθ

0 [log(f0(ξ1, ϑ)/f∞(ξ1))] with ϑ ̸= θ, then

Eθ
0

[
log

f0(ξ1, ϑ)
f∞(ξ1)

]
= Eθ

0

[
log

f0(ξ1, θ)
f∞(ξ1)

]
+ Eθ

0

[
log

f0(ξ1, ϑ)
f0(ξ1, θ)

]
≤ Eθ

0

[
log

f0(ξ1, θ)
f∞(ξ1)

]
= I0.
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This observation and the fact that I0 is constant allows us to
deduce that

Eθ
0

[
log

f0(ξt, θ̂t−1)
f∞(ξt)

∣∣∣Ft−1

]
≤ I0

⇒ Î0 = Eθ
0

[
log

f0(ξt, θ̂t−1)
f∞(ξt)

]
≤ I0, (12)

which will be used in the derivations that follow.

V. THEORETICAL ANALYSIS

We are now ready to analyze the proposed WLCUSUM test.
We begin by considering next the average false alarm.

Lemma 3 (ARL of WLCUSUM): The WLCUSUM defined
in (6),(8) satisfies

E∞[T] ≥ eν .

Additionally, for the drift under the pre-change regime,
we have −Î∞ = E∞[log f0(ξt,θ̂t−1)

f∞(ξt)
] < 0.

Proof: We compute the average false alarm period using
similar ideas as in [3, Lemma 8.2.1]. For t > w let us define
a Shiryaev-Roberts like statistic {Lt} through the recursion

Lt = (Lt−1 + 1)
f0(ξt, θ̂t−1)

f∞(ξt)
, Lw = 0.

Interestingly, {Lt} preserves the characteristic martingale
property with respect to the P∞ measure enjoyed by the
classical Shiryaev-Roberts (SR) test statistic

Lt = (Lt−1 + 1)
f0(ξt, θ)
f∞(ξt)

, L0 = 0,

even when we replace θ with the estimates {θ̂t}. Indeed we
observe that

E∞[Lt − t|Ft−1] = E∞

[
(Lt−1 + 1)

f0(ξt, θ̂t−1)
f∞(ξt)

− t
∣∣∣Ft−1

]
= Lt−1 − (t− 1).

The last equality is true because given Ft−1 we have θ̂t−1

fixed, therefore f0(ξt, θ̂t−1) is a legitimate probability density
for ξt. The martingale property of {Lt − t} and usage of
Optional Sampling allows us to write for any stopping time T
with finite expectation that

E∞[LT − T ] = E∞[Lw − w] = −w ⇒ E∞[T ]− w = E∞[LT ].

(13)

Let us now recall the WLCUSUM update in (6) which after
exponentiation can be equivalently written as

eSt = max{eSt−1 , 1} f0(ξt, θ̂t−1)
f∞(ξt)

, eSw = 1.

Using induction, the fact that eSw+1 = Lw+1 and that for
x ≥ 0, x + 1 ≥ max{x, 1}, it is straightforward to prove
that for t > w we have Lt ≥ eSt . This suggests that the
SR-statistic is larger than the exponential of the WLCUSUM
statistic. With this observation and using (13) we can now
write

eν ≤ E∞[eST ] ≤ E∞[LT] = E∞[T]− w ≤ E∞[T],

which proves the desired inequality. We also observe
that for any θ we have E∞[log f0(ξ1,θ)

f∞(ξ1)
] < 0, there-

fore E∞[log f0(ξt,θ̂t−1)
f∞(ξt)

|Ft−1] < 0, which in turn implies

E∞[log f0(ξt,θ̂t−1)
f∞(ξt)

] = −Î∞ < 0.
Equating the lower bound eν provided by Lemma 3 to the

desired average false alarm period γ, assures that the false
alarm constraint E∞[T] ≥ γ is satisfied. Consequently, the
threshold we select to use is equal to

ν = log γ. (14)

Consider now the negative drift −Î∞ mentioned in the
lemma that appears under the pre-change regime. The drift
under the P∞ measure must be negative, because this assures
restarts of the process and also that the average false alarm
period will be an exponential function of the threshold. Since
the drift is equal to −Î∞, we have that Î∞ must be positive.
As we argued in the proof of Lemma 3 the approximate KL
information number Î∞ is indeed positive, and using (10) we
can study how the estimator affects this positive value. From
(10) we can see that the first term of Î∞ on the right-hand side
is positive. One may wonder whether the second term due to
the estimation error may also contribute to the positivity of
Î∞. Of course, the sign of this term is estimator-dependent.
However, in the case of the MLE, it is easy to see that
−F∞ is the Hessian of E∞[log f0(ξ1, θ)] evaluated at the point
θ∞ where this function is maximized.2 Consequently, −F∞
is negative definite and therefore F∞ positive definite. This
means that the sign of trace{F∞Σ∞} will be positive as well,
contributing to the positivity of Î∞ and therefore the negativity
of the drift. We must, however, emphasize that other estimators
do not necessarily share this desirable property and positivity
is assured for sufficiently large window w.

The next step in our analysis consists in computing the
worst-case average detection delay of WLCUSUM. In the fol-
lowing lemma, we present an important property for our detec-
tion strategy, which is also shared by the classical CUSUM
and considerably facilitates the performance computation.

Lemma 4 (Worst-Case Average Detection Delay): For any
changepoint τ ≥ 0 we have that

ess supEθ
τ [T − τ |T > τ, Fτ ]

≤ w + Eθ
τ

[
Eθ

τ [(Tτ − τ − w)1{Tτ >τ+w}|ξτ+w
τ+1 ]

]
= Eθ

0[T].

Proof: Consider first a change at τ = 0. Since we start
testing at w + 1 we can write

Eθ
0[T] = w + Eθ

0

[
Eθ

0[(T − w)1{T>w}|ξw
1 ]
]
.

Suppose now that the change happens at τ then for t > τ +w
it is clear that the test statistic St is larger than the test statistic
St,τ generated by starting the WLCUSUM at time τ + w +
1 and using the samples {ξτ+w, . . . , ξτ+1} to form the first
estimate θ̂τ+w. This suggests that if we use St,τ instead of St

in (8) then we will stop at a time Tτ that satisties Tτ ≥ T.
Clearly we also have that Tτ is independent from Fτ , because

2Provided of course that this value is not on the border of the allowable
parameter set Θ and corresponds to an unconstrained optimizer.
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in St,τ the data Fτ are not being used. With these observations
in mind we can write

Eθ
τ [T − τ |T > τ, Fτ ]

≤ w + Eθ
τ [(T − τ − w)1{T>τ+w}|T > τ, Fτ ]

= w + Eθ
τ

[
Eθ

τ [(T − τ − w)1{T>τ+w}|ξτ+w
τ+1 , Fτ ]|T > τ, Fτ

]
≤ w + Eθ

τ

[
Eθ

τ [(Tτ−τ−w)1{Tτ >τ+w}|ξτ+w
τ+1 ,Fτ ]|T > τ, Fτ

]
= w + Eθ

τ

[
Eθ

τ [(Tτ − τ − w)1{Tτ >τ+w}|ξτ+w
τ+1 ]

]
= Eθ

0[T].

The last equality is true because starting the procedure at τ +
w + 1 when the change occurs at τ does not employ any
information from Fτ , consequently it is independent from Fτ .
Therefore, statistically this is the same as starting at w+1 with
the change occurring at 0.

The analysis of Eθ
0[T] is not simple due to the particular

updating rule of St. Since we are only interested in finding a
suitable upper bound, we are going to introduce an alternative
stopping time T′, which is easier to analyze. Its definition and
connection to T are presented in the following lemma.

Lemma 5: Assume that the observations follow the
post-change regime and that Î0 > 0. For t > w define the
process {Ut} using the recursion

Ut = Ut−1 + log
f0(ξt, θ̂t−1)

f∞(ξt)
, Uw = 0, (15)

and the stopping time

T′ = inf{t > w : Ut ≥ ν},

then T′ stops a.s. and we have T′ ≥ T.
Proof: Because Sw+1 = Uw+1 = log f0(ξw+1,θ̂w)

f∞(ξw+1)
and

x+ = max{x, 0} ≥ x, using induction it is simple to prove
that St ≥ Ut for t > w. This of course implies that Ut

will require more time than St to reach the same threshold
ν, which means that T′ ≥ T. Consequently, Eθ

0[T
′] ≥ Eθ

0[T].
The fact that T′ will stop a.s. is guaranteed by the positivity
of Î0 = Eθ

0[log f0(ξt,θ̂t−1)
f∞(ξt)

].
Finding a bound for Eθ

0[T
′] is simpler because as we

see from its definition in (15) we have that Ut is a sum
of stationary (but w-dependent) terms. The estimate we are
looking for is provided in the next theorem which identifies,
with the help of Lemma 5, an upper bound for the performance
of the WLCUSUM test.

Theorem 1 (WADD of WLCUSUM): Assume Î0 > 0.
We have the following upper bound for the worst-case per-
formance of WLCUSUM

Eθ
0[T] ≤ Eθ

0[T
′]

≤
log γ + Ĵ0

Î0
+
(

Ĵ0
Î0

log γ
) 1

2
+ wI0 +

(
Ĵ0
Î0

I0w
) 1

2

Î0
, (16)

where Î0 and Ĵ0 were defined in Assumption A4.
Proof: The complete proof of our claim involves several

steps. We provide a proof sketch in three steps. First, from
Lemma 4 we have that the worst-case average detection delay
equals to Eθ

0[T], thus we only need to bound Eθ
0[T]. Second,

we apply the Wald’s identity for w-dependent samples to
bound the expected stopping time Eθ

0[T
′] for process {Ut} in

(15), this is an upper bound for the detection delay Eθ
0[T] based

on Lemma 5. Finally, we substitute the threshold ν = log γ
according to Lemma 3 to ensure the ARL satisfies E∞[T] ≥ γ.
Details can be found in the Appendix.

Remark 5: If we fix the window size w then from Theo-
rem 1 we have that the upper bound of the worst-case average
detection delay of WLCUSUM can be written as

Eθ
0[T] ≤ log γ

Î0

(
1 + o(1)

)
.

Because from (12) we have Î0 < I0 this means that we
cannot assure first-order asymptotic optimality with fixed
w. From (10) we see that the difference between the opti-
mum denominator I0 (enjoyed by the exact CUSUM) and
Î0 obtained by our proposed stopping time is (asymptotically)
equal to (1/w)trace{Σ0F0}. As we argued in (11) the factor
trace{Σ0F0} due to the Cramer-Rao Lower Bound cannot
become smaller than the length K of the parameter vector,
which corresponds to the best possible performance since it
maximizes the denominator Î0. We recall that this optimal
value is attained asymptotically by the MLE.

In order for WLCUSUM to be first-order asymptotically
optimum, it is necessary to increase w with the average run
length constraint γ in a manner that guarantees that w remains
negligible compared to the optimum CUSUM performance but
grows sufficiently fast so that it provides efficient estimates of
θ. Since the CUSUM detection delay increases as log γ (see
Lemma 1) this means that we must select w = o(log γ). At the
same time, to obtain improved estimates, we must let w →∞
as γ → ∞. These observations will be taken into account to
decide the appropriate growth rate of w.

From Lemma 1 we deduce that the classical CUSUM stop-
ping time T satisfies

Eθ
0[T]/

log γ

I0
= 1 + Θ

(
1

log γ

)
.

Since CUSUM is (strictly) optimum [13], we have

Eθ
0[T]/

log γ

I0
≤ Eθ

0[T]/
log γ

I0
.

Using the results of Theorem 1 and properly selecting the
increase rate of w, in the next theorem, we demonstrate
that WLCUSUM enjoys the desired first-order asymptotic
optimality.

Theorem 2 (Asymptotic Optimality of WLCUSUM): If the
window size w satisfies w →∞ as γ →∞ with w = o(log γ),
then

Eθ
0[T]/

log γ

I0
≤ 1 + Θ

(
1√

log γ

)
+ Θ

(
1
w

)
+ Θ

(
w

log γ

)
.

The maximal convergence speed to unity is 1 + Θ
(

1√
log γ

)
and is achieved when w = Θ

(√
log γ

)
.

Proof: Using (10) we note that the ratio Ĵ0/̂I0 in the
numerator in (16) is a function of w, which for sufficiently
large w can be bounded by a constant that does not depend
on w. If we select w = o(log γ) but w → ∞ as γ → ∞,
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replace it in the upper bound in (16) and also use (10) for the
denominator then we can write

Eθ
0[T]

log γ
I0

≤
1 + Θ( 1

log γ ) + Θ( 1√
log γ

) + Θ( w
log γ ) + Θ(w1/2

log γ )

1 + Θ( 1
w )

.

(17)

All Θ(·) terms in the right-hand side converge to 0 and
the overall convergence rate is dominated by the slowest
term among:

{
Θ( 1

w ), Θ( 1√
log γ

), Θ( w
log γ )

}
. Note that the best

possible convergence rate towards 1 is obtained when we
select w = Θ

(√
log γ

)
. Therefore w ∼

√
log γ is the optimal

choice but any window size w satisfying w →∞ as γ →∞
with w = o(log γ) is sufficient to guarantee the first-order
optimality.

The immediate consequence of Theorem 2 is the asymptotic
optimality of WLCUSUM since

1 = lim
γ→∞

Eθ
0[T]/

log γ

I0
≤ lim

γ→∞
Eθ

0[T]/
log γ

I0

≤ lim
γ→∞

{
1 + Θ

(
1√

log γ

)
+ Θ

(
1
w

)
+ Θ

(
w

log γ

)}
= 1,

when selecting w = o(log γ) with w →∞ as γ →∞, which
proves that Eθ

0[T]/ log γ
I0

attains the same nonzero limit as the
optimum Eθ

0[T]/ log γ
I0

and is therefore asymptotically optimum
as well. As we have indicated, the optimal convergence rate
towards 1 is of the form Θ

(
(log γ)−

1
2
)

using the optimum
window size w = Θ

(√
log γ

)
. Although there is a definite loss

in performance as compared to the rate of the exact CUSUM
which is Θ

(
(log γ)−1

)
(Lemma 1), our scheme still enjoys

asymptotic optimality.
Remark 6: One may claim that the specific rate we obtained

is a consequence of the crude upper bound O(
√

ν) we
established for the average overshoot (see Appendix, proof
of Theorem 1), and we could have obtained better results if
this bound were a constant as in the i.i.d. case [51]. In fact a
constant would have resulted in a term of the form Θ( 1

log γ )
in place of the Θ( 1√

log γ
) we have now in the numerator of

(17). For the computation of the convergence rate, this would
have led to the smallest power satisfying β = min{α, 1− α}
instead of β = min{α, 1 − α, 1

2}. However, if we maximize
min{α, 1 − α} we still obtain that the best power rate is
equal to 1

2 which is achieved when α = 1
2 or equivalently

w = Θ(
√

log γ).
Remark 7 (Comparison With Window-Limited GLR): In

order for the window-limited GLR procedure in (9) to enjoy
first-order asymptotic optimality, the window size w must
also grow with γ in a certain rate. In particular w must
satisfy lim inf w/ log γ > I−1

0 and log w = o(log γ) to ensure
effective detection [14], namely window at least as large
as the CUSUM average detection delay. In the proposed
WLCUSUM procedure, we only require a window size
w = o(log γ) with w → ∞ as γ → ∞, which can be
much smaller, even negligible, than the requirement in the
window-limited GLR.

In addition to the optimal order w = Θ
(√

log γ
)

obtained
in Theorem 2, we also provide a detailed characterization of
the constant terms, which will be helpful for choosing the

appropriate window size in practice. It should be mentioned
that when the post-change quantities are unknown in practice,
we can use the parallel variant in Section VI instead.

Lemma 6 (Optimal Window Size): The optimal window
size that minimizes the upper bound of the WADD of
WLCUSUM given in (16) is

w =

√
trace{Σ0F0}

I0
√

2

√
log γ

{
1 + Θ

(
1

(log γ)
1
4

)}
.

Proof: Substitute (10) for Î0 and Ĵ0 in (16) and note that
the upper bound in (16) can be written as

log γ

I0

{
1 +

(
J0

I0

) 1
2 1

(log γ)
1
2

+
I0

log γ
w

+
trace{Σ0F0}

I0

1
2w

+ Θ

(
w

1
2

log γ

)
+ Θ

(
1

w2

)}
.

Given from Theorem 2 that the optimum w we are seeking
satisfies w = Θ(

√
log γ), the previous expression can be

further simplified as follows

log γ

I0

{
1 +

(
J0

I0

) 1
2 1

(log γ)
1
2

+
I0

log γ
w

+
trace{Σ0F0}

I0

1
2w

+ w
1
2 Θ

(
1

log γ

)}

≤ log γ

I0

{
1 +

(
J0

I0

) 1
2 1

(log γ)
1
2

+
I0

log γ
w

+
trace{Σ0F0}

I0

1
2w

+
w

1
2 D

log γ

}
,

for some constant D coming from the definition of Θ(·).
Minimizing the last expression over w yields the following
equation for the derivative

I0
log γ

− trace{Σ0F0}
I0

1
2w2

+
1

2w
1
2

D

log γ
= 0.

Finding a more precise form for the optimum w since we know
its order of magnitude, amounts to selecting w = C

√
log γ

(
1+

Θ
(
(log γ)−ρ

))
, ρ > 0 and specifying C and ρ. Substituting

into the previous equation we obtain
I0

log γ
− trace{Σ0F0}

2I0C2 log γ

(
1−Θ

(
1

(log γ)ρ

))
+ Θ

(
1

(log γ)
5
4

)
=

I0
log γ

− trace{Σ0F0}
2I0C2 log γ

+ Θ

(
1

(log γ)
5
4

)
−Θ

(
1

(log γ)1+ρ

)
= 0,

where for |ϵ| ≪ 1 we used the approximation 1/(1 + ϵ)2 ≈
1 − 2ϵ. As we can see there are two terms which are of
different order of magnitude therefore we need to make them
0 separately. This means

I0
log γ

− trace{Σ0F0}
I0

1
2C2 log γ

= 0,

Θ

(
1

(log γ)
5
4

)
−Θ

(
1

(log γ)1+ρ

)
= 0.

The first results in C =
√

trace{Σ0F0}/I0
√

2 and the second
in ρ = 1

4 . This completes the proof of the lemma.
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VI. PARALLEL WLCUSUM

Although the proposed WLCUSUM procedure in (6) and (8)
enjoys first-order optimality, there are some practical concerns:
(i) for any fixed w, the WLCUSUM procedure will start after
observing w samples, which leads to a delay at least w; (ii) the
optimal window size derived in Lemma 6 might be unknown
when the post-change signal strength I0 is unknown; of course
we can impose a pre-set lower bound on I0 and design the
window size according to this lower bound, but this may
lead to larger than necessary detection delays. In this section,
we provide a variant to WLCUSUM that can resolve the above
issue being also suitable for practical implementation.

In case the optimal window size is difficult to estimate
beforehand, we propose to perform parallel WLCUSUMs with
different window sizes. More specifically, we run in parallel
multiple WLCUSUMs with window sizes ranging from 1 up to
some maximal value W . For each window size w, we denote
the corresponding test statistic with St(w). At each time instant
t, all statistics are compared to a common threshold ν and the
first time TP any of the statistics hits or exceeds ν is the
time the parallel WLCUSUM will stop. If to each statistic we
associate the corresponding stopping time T(w), then it is also
true that the parallel WLCUSUM satisfies

TP = min
1≤w≤W

{T(w)}. (18)

In adopting this approach, we do not wait for W samples
in order to start the detection procedure. Indeed the first
WLCUSUM with w = 1 has to wait for only one sample
and then perform tests continuously. Furthermore, we do not
need to specify an exact window size beforehand. In a sense
by running in parallel multiple windows, it is mostly the best
window that tends to be the first to stop.

The maximal window W does not have to be different from
what we estimated in our previous analysis. Also, the average
detection delay at τ = 0 is still the worst case compared with
any other change time τ > 0, i.e., the analysis in Lemma 4 can
be modified to cover TP as well and we can easily demonstrate
that the parallel WLCUSUM, with a suitable maximal window
size W , is also first-order asymptotically optimal matching
the performance of WLCUSUM with the optimal window.
We provide the necessary proof of this claim in the next lemma
and the discussion that follows.

Lemma 7: The average run length of the Parallel
WLCUSUM with maximum window size W satisfies

E∞[TP] ≥ 1
W

eν .

Proof: Recall that St(w) denotes the statistic of the
WLCUSUM with window size w. Similarly to Lemma 3, let
us define a Shiryaev-Roberts like statistic {Lt(w)}, under a
window size w, through the recursion

Lt(w) =
(
Lt−1(w)+1

) f0(ξt, θ̂t−1)
f∞(ξt)

, Lw(w) = 0, t ≥ w+1.

Following the arguments in Lemma 3, we have Lt(w) ≥
eSt(w) for t > w and {Lt(w)} preserves the characteristic
martingale property with respect to the P∞ measure. Applying
Optional Sampling, we have E∞[LT (w) − T ] = −w for

any stopping time T with finite expectation. The parallel
WLCUSUM statistic can be written as max1≤w≤W {St(w)}
with the corresponding stopping time satisfying TP = inf{t >
0 : max1≤w≤W {St(w)} ≥ ν}. For the stopping time we have

eν ≤ e
max

1≤w≤W
{STP

(w)}
≤ max

1≤w≤W
{LTP

(w)} ≤
W∑

w=1

LTP
(w).

Taking expectations under P∞ on both sides yields

eν ≤
W∑

w=1

(E∞[TP]− w) < WE∞[TP],

which proves the desired inequality.
Equating the lower bound 1

W eν provided by Lemma 7 to
the desired average false alarm period γ > 1 assures that the
false alarm constraint E∞[TP] ≥ γ is satisfied. Consequently,
the threshold we select to use is equal to

ν = log(Wγ) (19)

as opposed to log γ we use for a single window.
For the average detection delay, note that the delay of the

parallel WLCUSUM will certainly be no larger than the delay
of each individual WLCUSUM procedure. Therefore, using
(18) and Theorem 1 we can write

Eθ
0[TP] ≤ min

1≤w≤W
Eθ

0[T(w)]

≤ min
1≤w≤W

log(Wγ)+Ĵ0
Î0

+
(

Ĵ0
Î0

log(Wγ)
) 1

2
+wI0+

(
Ĵ0
Î0

I0w
) 1

2

Î0
,

where Ĵ0, Î0 are the estimated information numbers under
window size w. Comparing the previous upper bound to the
one obtained in (16) we can see that if log W = o(

√
log γ)

the two upper bounds are asymptotically equivalent for each
w. This implies that the parallel WLCUSUM performs the
optimization with respect to w automatically without the need
of prior manual selection. Of course this is true as long as
W exceeds the value of the optimum window and at the
same time conforms with the requirement log W = o(

√
log γ).

Regarding the last constraint it is trivially satisfied by the
window sizes we employ namely W = Θ

(
(log γ)α

)
. Indeed

if we consider W = Θ
(
(log γ)α

)
with 1 > α > 1

2 then
log W = Θ(log log γ) = o(

√
log γ) but also W exceeds the

optimum window size since the latter satisfies Θ
(√

log γ
)
.

Remark 8: The computational complexities of
WLCUSUM, parallel WLCUSUM, and window-limited
GLR can be ordered as follows:

WLCUSUM < parallel WLCUSUM < window-limited GLR.

Although all three procedures with the appropriate choice of
window size are first-order asymptotically optimal, they differ
in the number of operations needed per update. To form a
more precise idea about the requirements in computation, let
us assume that the estimation process needs constant com-
plexity per estimate when considering estimates of windows
of consecutive sizes. This is because it can compute each
estimate by updating the estimate of the previous size. This
is for example the case when computing arithmetic averages
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Fig. 1. (a) Detection delays for univariate normal mean-shift from 0 to
θ = 1, barrier ϑ = 0.5; (b) Corresponding optimal window size as a function
of ARL for WLCUSUM.

of samples of increasing windows since these estimates can
be performed recursively. For the same estimation problem if
we are interested only in a single window then the complexity
of the estimator is proportional to the window size. Of course
complexity can be significantly higher when estimates need to
be obtained through iterative solutions.

Let us start with WLCUSUM with window size w. Its
complexity is Θ(w) since we compute the estimate with com-
plexity Θ(w) and then update the corresponding statistic with
a constant number of operations. The parallel WLCUSUM
with maximal window W will require Θ(W ) operations
to compute all the estimates of consecutive window sizes
and Θ(W ) operations to update the corresponding statistics
(constant number of operations per statistic), therefore the total
complexity is still Θ(W ). In the case of the window-limited
GLR if w is the size of the adopted window then we need
Θ(w) to compute the estimates of the consecutive smaller
window sizes. Then, each such estimate is applied to all the
samples in the smaller window to form an approximation of
the corresponding log-likelihood ratio. The total complexity
required by these updates is Θ(1) + · · · + Θ(w) = Θ(w2).
The overall complexity for estimation and updates is Θ(w) +
Θ(w2) = Θ(w2).

Fig. 2. Detection delays of different methods for univariate normal mean-shift
with (a) θ = 0.5 and (b) θ = 0.3.

For WLCUSUM if we consider the optimal window size
w = Θ(

√
log γ), this results in complexity Θ(

√
log γ) per

time update. For the parallel WLCUSUM with a maximal
window size W = Θ

(
(log γ)α

)
and 1 > α > 1

2 to cover
the optimal window size, we need complexity Θ

(
(log γ)α

)
.

In the case of the window-limited GLR we know that w
must be at least of the same order as the detection delay
therefore w = Θ(log γ), suggesting that the corresponding
computational complexity is Θ

(
(log γ)2

)
. As we can see

the difference in number of operations between the two
versions of WLCUSUM and the window-limited GLR is
significant.

VII. EXPERIMENTS

Simulation studies are performed to compare WLCUSUM
and parallel WLCUSUM to the exact CUSUM and the
window-limited GLR. In the exact CUSUM all parame-
ters are considered known and the corresponding detec-
tion delay is optimum [13]. In all experiments, the average
detection delay and average false alarm period are obtained
using direct estimation and averaging over 1000 independent
trials.
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Fig. 3. Detection delay for multivariate normal mean-shift from 0 to θ with (a) ∥θ∥ = 1, ϑ = 0.5, K = 5; (b) ∥θ∥ = 1, ϑ = 0.5, K = 10;
(c) ∥θ∥ = 0.3, ϑ = 0.1, K = 5; (d) ∥θ∥ = 0.3, ϑ = 0.1, K = 10.

A. Univariate Normal Mean-Shift

We consider a normal mean-shift example. Let f∞(·) be
a canonical Gaussian pdf N(0, IK) and f0(·, θ) a Gaussian
N(θ, IK). Since f0(·, θ) with θ = 0 is equal to f∞(·) we
impose a constraint on θ in order to avoid the two densities
becoming equal. For the mean θ we assume that θ ∈ Θ =
{θ : ∥θ∥ ≥ ϑ > 0} where the barrier value ϑ is considered
known and can be interpreted as the smallest signal strength
that we are interested in detecting. For our estimate of the
mean we employ the MLE with the solution projected onto
the allowable parameter set Θ. Specifically

θ̂t =
θ̄t∥∥θ̄t

∥∥ max{
∥∥θ̄t

∥∥ , ϑ}, where θ̄t =
1
w

w−1∑
s=0

ξt−s.

We first present a suite of numerical results for the one-
dimensional (K = 1) case with varying signal strengths. In the
first setting, we set θ = 1 and ϑ = 0.5. Figure 1(a) depicts
the worst-case expected detection delay versus the average
false alarm period (ARL), where the black line corresponds
to the exact CUSUM procedure which lies below all the
other curves. The red line corresponds to WLCUSUM with

optimal window size with Figure 1(b) depicting how the opti-
mal window must change as a function of ARL (theoretical
and simulations). In Figure 1(a) with blue we can also see
the parallel WLCUSUM procedure with maximal window
size W = 15. For comparison we also present in green
the window-limited GLR defined in (9) with a window size
of 30 (chosen to be larger than log ARL/I0 as explained in
Remark 7) and in yellow with an insufficient window size 10.
In the latter we notice the remarkable performance degradation
if we do not use the appropriate window. Regarding our pro-
posed methods we observe that the parallel WLCUSUM has
nearly similar performance as the WLCUSUM with optimal
window size, without requiring any prior specification of the
optimal window. The window-limited GLR (with sufficient
window size), in this scenario exhibits a smaller detection
delay than both versions of WLCUSUM but at the expense of
a higher computational cost as explained in Remark 8. Finally,
we compare all procedures with the CUSUM test under
minimal signal strength in black dashed line, i.e., we calculate
the CUSUM test using densities of N(0.5, 1) and N(0, 1).

For the optimal window size depicted in Figure 1(b) we
simulated sizes varying from 1 to 15 and for each ARL value
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we selected the size with the smallest detection delay. This
is depicted by the blue curve. With red we have plotted the
theoretical optimal value obtained in Lemma 6. We observe
a relatively good agreement between the two possibilities for
large ARL values which is to be expected since our theoretical
results are asymptotic.

In Figure 2(a) and (b) we performed similar experiments
but under more difficult detection scenarios. In particular in
(a) we consider the change in the mean from 0 to θ =
0.5 with a barrier value of ϑ = 0.25 while in (b) from
0 to θ = 0.3 with barrier ϑ = 0.1. Again both versions
of WLCUSUM have comparable performance however now
the window-limited GLR, despite its high complexity as a
result of the corresponding large windows, does not enjoy
better performance than WLCUSUM. In fact in the second
more challenging detection example it is clearly worse than
WLCUSUM. In addition, we see that the CUSUM under
minimum signal strength also becomes much worse as ARL
becomes large and is worse than WLCUSUM in the second
more challenging detection example.

B. Varying Dimensions

To illustrate the performance on multivariate distributions,
we performed simulations with varying parameter dimensions.
As shown in (11), the dimension of θ will affect the appropri-
ate choice of window size as well as the quantities Î0, Î∞, and
Ĵ0. We consider two dimensions: K = 5 and K = 10. In both
cases we simulate two different mean changes (i) from 0 to θ
with ∥θ∥ = 1 and barrier ϑ = 0.5, and (ii) from 0 to θ with
∥θ∥ = 0.3 and ϑ = 0.1. The appropriate range of window
sizes is chosen based on Lemma 6.

Figure 3(a) and (b) depicts the detection delay of the com-
peting schemes under a large change namely from 0 to θ
with ∥θ∥ = 1 and barrier value ϑ = 0.5 for the two lengths
K = 5, 10. We can see in Figure 3(a) and (b) that in both cases
the window-limited GLR exhibits a smaller detection delay
compared to WLCUSUM but, as we explained, at the expense
of a significantly higher computational complexity. However
this advantage tends to disappear when the detection problem
becomes more challenging as in the case of the small change
in the mean from 0 to ∥θ∥ = 0.3 with barrier ϑ = 0.1. This
is clearly depicted in Figure 3(c) and (d) where WLCUSUM
is antagonistic to GLR for both lengths K = 5, 10. Of course
we must not forget that this performance of WLCUSUM
is enjoyed at a significantly lower computational complexity
level as compared to the window-limited GLR.

C. Different Parametric Families

We also consider the case with non-Gaussian pre-change
distribution and Gaussian post-change distributions, i.e., the
pre- and post-change does not belong to the same parametric
family. In this case, the post-change parameter set Θ can be
set as large as the entire space RK . We assume the pre-change
distribution is a Laplace distribution with mean zero and vari-
ance 1, i.e., the density function f∞ = 1√

2
exp{−

√
2|x|}; and

the post-change distribution is a normal distribution N(µ, σ2).
Therefore, the pre-change distribution does not belong to the

Fig. 4. Detection delays of different methods for univariate shift from Laplace
to Normal distributions with (a) µ = 0, σ2 = 1 and assume known σ2;
(b) µ = 0, σ2 = 4 and assume unknown σ2.

post-change distribution family for any µ and σ, and we can
safely choose the parameter set Θ as the entire parameter
space.

In Figure 4(a) and (b) we performed experiments under two
different detection scenarios. In particular in (a) we consider
the post-change distribution being N (0, 1), i.e., although the
distribution shifts from Laplace to Normal, their mean and
variance remain the same. We assume the post-change variance
σ2 is known and only estimate the mean parameter during
the detection procedure. Furthermore, in (b) we consider the
post-change distribution being N (0, 4) and assume σ2 is
unknown, so we have to estimate the post-change mean
and variance jointly through maximum likelihood estimate.
In such case, we have the parameter space Θ = {−∞ <
µ < ∞, σ2 > 0}. Again both versions of WLCUSUM have
comparable performance. The window-limited GLR, despite
its high complexity as a result of the corresponding large
windows (especially for (a) where the change is challenging to
detect), does not enjoy better performance than WLCUSUM.

VIII. CONCLUSION

In this work we consider the sequential change detection
problem with known pre-change distribution and unknown
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post-change distribution but in certain parametric forms.
We propose a window limited CUSUM procedure that uses
a sliding window to perform online estimate for the unknown
post-change parameter. A careful analysis on the average run
length and detection delay shows the asymptotic optimality of
the proposed method, with a window size much smaller than
that required by window-limited GLR approach. The proposed
framework also opens opportunities for several future research
directions. For example, we may consider more efficient (such
as “one-sample update” via stochastic gradient descent) esti-
mate of the post-change parameter. Moreover, we may also try
to relax the current constraint that the pre-change distribution
must be a known distance away from the post-change distri-
bution sets. The extension to joint detection and estimation is
also worthwhile investigating in the future.

APPENDIX

Proof of Theorem 1: Recall the definition of the process
{Ut} is Ut = Ut−1 + log f0(ξt,θ̂t−1)

f∞(ξt)
with Uw = 0, and

the corresponding stopping time T′ = inf{t > w : Ut ≥
ν}. For the expectation Eθ

0[UT′ ] we cannot apply the usual
form of Wald’s identity because the terms under the sum are
w-dependent. Indeed, while log f0(ξt,θ)

f∞(ξt)
is independent from

Ft−1, when we replace the unknown θ with the estimate
θ̂t−1 then log f0(ξt,θ̂t−1)

f∞(ξt)
depends on Ft−1 and is independent

only from Ft−w−1 due to the w-dependency of the estimates
{θ̂t}. There exists version of Wald’s identity for dependent
samples [52] and for our analysis we are going to borrow
ideas from this work but we intend to present all the details
for our particular case.

For simplicity let us denote with ℓt = log f0(ξt,θ̂t−1)
f∞(ξt)

, then
we observe that for t > w we can write

Eθ
0[UT′ ] = Eθ

0

 T′∑
t=w+1

ℓt


= Eθ

0

 T′+w∑
t=w+1

ℓt

− Eθ
0

 T′+w∑
t=T′+1

ℓt

 . (20)

Consider the two terms in (20) separately. For the first we
have

Eθ
0

 T′+w∑
t=w+1

ℓt

 = Eθ
0

[ ∞∑
t=w+1

ℓt1{T′≥t−w}

]

= Eθ
0

[ ∞∑
t=w+1

Eθ
0 [ℓt|Ft−w−1]1{T′≥t−w}

]

= Eθ
0

[ ∞∑
t=w+1

Eθ
0 [ℓt]1{T′≥t−w}

]
= Eθ

0 [ℓw+1] Eθ
0[T

′] = Î0E
θ
0[T

′],

with the second equality being true since 1{T′≥t−w} is
Ft−w−1-measurable and the third equality being valid because
ℓt = log f0(ξt,θ̂t−1)

f∞(ξt)
is independent from Ft−w−1.

Consider now the second term in (20), we observe that

Eθ
0

 T′+w∑
t=T′+1

ℓt

 = Eθ
0

[ ∞∑
t=w+1

ℓt1{t>T′}1{T′≥t−w}

]

= Eθ
0

[ ∞∑
t=w+1

Eθ
0 [ℓt|Ft−1]1{t>T′}1{T′≥t−w}

]

≤ Eθ
0

[ ∞∑
t=w+1

I01{t>T′}1{T′≥t−w}

]
= wI0, (21)

where for the inequality we used (12). Combining the two
expressions we conclude that

Î0E
θ
0[T

′]− wI0 ≤ Eθ
0[UT′ ]

⇒ Eθ
0[T

′] ≤ Eθ
0[UT′ ] + wI0

Î0
=

Eθ
0[UT′ − ν] + ν + wI0

Î0
.

(22)

The next step involves the control of the expectation of
the overshoot Rν = UT′ − ν. In the case where Ut is a
sum of i.i.d. terms, we have from [51] an elegant result
that bounds the average overshoot uniformly over all ν by a
constant. Unfortunately, we were not able to produce a similar
conclusion for the w-dependent case. Instead we developed an
upper bound that increases as

√
ν. The good news is that even

with this cruder bound, the asymptotic characteristics of our
scheme will turn out to be of the same order as the ones we
would have enjoyed with a constant upper bound applied on
the average overshoot.

We borrow ideas from [51] and modify them to accommo-
date the w-dependency. For any threshold x > 0 define T′x to
be the corresponding stopping time

T′x = inf{t > w : Ut ≥ x},

and denote the overshoot function as Rx = UT′x
− x. Define

a sequence of stopping times {τj} with τ0 = w and

τj = inf

t > τj−1 :
t∑

s=τj−1+1

ℓs > 0

 , j ≥ 1,

and the corresponding ladder variables zj =
∑τj

s=τj−1+1 ℓs >

0. Due to the positivity of Î0 = Eθ
0[ℓt] we have that under

the Pθ
0 measure the stopping times are all a.s. finite. We can

now see that Uτj =
∑j

i=1 zi, in fact Ut increases only at
the stopping times {τj}. For any given threshold ν, in order
to stop at T′ν the statistic Ut needs an increase at T′ν , which
means that there exists a random index jν such that τjν

= T′ν .
Due to this fact we can write Rν =

∑jν

j=1 zj − ν. Following
the same steps as in [51], we observe that Rx is a piecewise
linear function and all pieces having slope −1, thus we have∫ ν

0

Rx dx =
∫ UT′ν

0

Rx dx −
∫ UT′ν

ν

Rx dx

=
1
2


jν∑

j=1

z2
j − R2

ν

 . (23)
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By definition 0 < zj and zj =
∑τj−1

t=τj−1+1 ℓt + ℓτj
with∑τj−1

t=τj−1+1 ℓt ≤ 0, then we have 0 < ℓτj
and 0 < zj ≤ ℓτj

,
which implies z2

j ≤ ℓ2τj
≤
∑τj

t=τj−1+1 ℓ2t . Substituting in (23)
yields

2
∫ ν

0

Rx dx ≤
jν∑

j=1

τj∑
t=τj−1+1

ℓ2t − R2
ν

=
T′∑

t=w+1

ℓ2t − R2
ν ≤

T′+w∑
t=w+1

ℓ2t − R2
ν .

If we take the expectation of the previous expression and use
Jensen’s inequality on the last term we obtain

0 ≤ 2
∫ ν

0

Eθ
0[Rx] dx ≤ Eθ

0

 T′+w∑
t=w+1

ℓ2t

− (Eθ
0[Rν ])2

=
Ĵ0

Î0
Eθ

0

 T′+w∑
t=w+1

ℓt

− (Eθ
0[Rν ])2

=
Ĵ0

Î0
Eθ

0

 T′∑
t=w+1

ℓt +
T′+w∑

t=T′+1

ℓt

− (Eθ
0[Rν ])2

=
Ĵ0

Î0
Eθ

0

UT′ +
T′+w∑

t=T′+1

ℓt

− (Eθ
0[Rν ])2

=
Ĵ0

Î0
Eθ

0

Rν + ν +
T′+w∑

t=T′+1

ℓt

− (Eθ
0[Rν ])2

=
Ĵ0

Î0

Eθ
0[Rν ] + ν + Eθ

0

 T′+w∑
t=T′+1

ℓt

− (Eθ
0[Rν ])2

≤ Ĵ0

Î0

{
Eθ

0[Rν ] + ν + wI0
}
− (Eθ

0[Rν ])2.

The first equality is true because Eθ
0[
∑T′+w

t=w+1 ℓ2t ] = Ĵ0E
θ
0[T

′]
and Eθ

0[
∑T′+w

t=w+1 ℓt] = Î0E
θ
0[T

′]. Also for the last inequality
we used (21). From the nonnegativity of the integral we have
(Eθ

0[Rν ])2 ≤ Ĵ0
Î0

{
Eθ

0[Rν ] + ν + wI0
}

, from which we conclude

that Eθ
0[Rν ] ≤ Ĵ0

Î0
+
(
Ĵ0
Î0

ν
) 1

2 +
(
Ĵ0
Î0

I0w
) 1

2 . Given also from (14)
that ν = log γ, substituting in (22) produces the desired upper
bound.

REFERENCES

[1] H. V. Poor and O. Hadjiliadis, Quickest Detection. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[2] D. Siegmund, Sequential Analysis: Tests Confidence Intervals (Springer
Series in Statistics). New York, NY, USA: Springer-Verlag, 1985.

[3] A. Tartakovsky, I. Nikiforov, and M. Basseville, Sequential Analysis:
Hypothesis Testing and Changepoint Detection (Monographs on Statis-
tics and Applied Probability). London, U.K.: CRC Press, 2015.

[4] L. Xie, S. Zou, Y. Xie, and V. V. Veeravalli, “Sequential (quickest)
change detection: Classical results and new directions,” IEEE J. Sel.
Areas Inf. Theory, vol. 2, no. 2, pp. 494–514, Jun. 2021.

[5] L. Xie, Y. Xie, and G. V. Moustakides, “Asynchronous multi-sensor
change-point detection for seismic tremors,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2019, pp. 787–791.

[6] J. Shi and S. Zhou, “Quality control and improvement for multistage
systems: A survey,” IIE Trans., vol. 41, no. 9, pp. 744–753, Jul. 2009.

[7] T. L. Lai, “Sequential changepoint detection in quality control and
dynamical systems,” J. Statist. Soc. Ser. B, vol. 57, pp. 613–658,
Sep. 1995.

[8] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural Health Monitor-
ing, vol. 90. Hoboken, NJ, USA: Wiley, 2010.

[9] S. Li, Y. Xie, M. Farajtabar, A. Verma, and L. Song, “Detecting changes
in dynamic events over networks,” IEEE Trans. Signal Inf. Process. Over
Netw., vol. 3, no. 2, pp. 346–359, Jun. 2017.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 1–58, Jul. 2009.

[11] A. G. Tartakovsky, “Rapid detection of attacks in computer networks by
quickest changepoint detection methods,” in Data Analysis for Network
Cyber-Security. London, U.K.: Imperial College Press, 2014, pp. 33–70.

[12] E. S. Page, “Continuous inspection schemes,” Biometrika, vol. 41,
nos. 1–2, pp. 100–115, 1954.

[13] G. V. Moustakides, “Optimal stopping times for detecting changes in
distributions,” Ann. Statist., vol. 14, no. 4, pp. 1379–1387, Dec. 1986.

[14] T. Leung Lai, “Information bounds and quick detection of parameter
changes in stochastic systems,” IEEE Trans. Inf. Theory, vol. 44, no. 7,
pp. 2917–2929, May 1998.

[15] J. Chen, Y. Zhao, A. Goldsmith, and H. V. Poor, “Optimal joint detection
and estimation in linear models,” in Proc. 52nd IEEE Conf. Decis.
Control, Dec. 2013, pp. 4416–4421.

[16] G. V. Moustakides, G. H. Jajamovich, A. Tajer, and X. Wang, “Joint
detection and estimation: Optimum tests and applications,” IEEE Trans.
Inf. Theory, vol. 58, no. 7, pp. 4215–4229, Jul. 2012.

[17] G. Lorden, “Procedures for reacting to a change in distribution,” Ann.
Math. Statist., vol. 42, no. 6, pp. 1897–1908, Dec. 1971.

[18] M. Basseville and I. V. Nikiforov, Detection Abrupt Changes: Theory
Application (Prentice-Hall Information and System Sciences Series).
Englewood Cliffs, NJ, USA: Prentice-Hall, 1993.

[19] A. G. Tartakovsky, Sequential Change Detection Hypothesis Testing:
Gen. Non-IID Stochastic Models Asymptotically Optimal Rules (Mono-
graphs on Statistics and Applied Probability). New York, NY, USA:
CRC Press, 2020.

[20] V. V. Veeravalli and T. Banerjee, “Quickest change detection,” in Aca-
demic Press Library in Signal Processing: Array and Statistical Signal
Processing, vol. 3. Cham, Switzerland: Springer, 2014, pp. 209–255.

[21] G. V. Moustakides, “Sequential change detection revisited,” Ann. Statist.,
vol. 36, no. 2, pp. 787–807, Apr. 2008.

[22] A. G. Tartakovsky and G. V. Moustakides, “State-of-the-art in Bayesian
changepoint detection,” Sequential Anal., vol. 29, no. 2, pp. 125–145,
Apr. 2010.

[23] A. N. Shiryaev, “On optimum methods in quickest detection problems,”
Theory Probab. Appl., vol. 8, no. 1, pp. 22–46, Jan. 1963.

[24] M. Pollak, “Optimal detection of a change in distribution,” Ann. Statist.,
vol. 13, no. 1, pp. 206–227, Mar. 1985.

[25] A. S. Polunchenko and A. G. Tartakovsky, “On optimality of the
Shiryaev–Roberts procedure for detecting a change in distribution,” Ann.
Statist., vol. 38, no. 6, pp. 3445–3457, Dec. 2010.

[26] C. Kirch and J. Tadjuidje Kamgaing, “On the use of estimating functions
in monitoring time series for change points,” J. Stat. Planning Inference,
vol. 161, pp. 25–49, Jun. 2015.

[27] J. M. Lucas, “Combined shewhart-CUSUM quality control schemes,” J.
Quality Technol., vol. 14, no. 2, pp. 51–59, Apr. 1982.

[28] J. O. Westgard, T. Groth, T. Aronsson, and C. H. de Verdier, “Combined
Shewhart-CUSUM control chart for improved quality control in clinical
chemistry,” Clin. Chem., vol. 23, no. 10, pp. 1881–1887, Oct. 1977.

[29] R. S. Sparks, “CUSUM charts for signalling varying location shifts,” J.
Quality Technol., vol. 32, no. 2, pp. 157–171, Apr. 2000.

[30] Y. Zhao, F. Tsung, and Z. Wang, “Dual CUSUM control schemes
for detecting a range of mean shifts,” IIE Trans., vol. 37, no. 11,
pp. 1047–1057, Nov. 2005.

[31] Y. Yu, O. H. M. Padilla, D. Wang, and A. Rinaldo, “A note on online
change point detection,” 2020, arXiv:2006.03283.

[32] G. Romano, I. Eckley, P. Fearnhead, and G. Rigaill, “Fast online
changepoint detection via functional pruning CUSUM statistics,” 2021,
arXiv:2110.08205.

[33] I. V. Nikiforov, “A generalized change detection problem,” IEEE Trans.
Inf. Theory, vol. 41, no. 1, pp. 171–187, 1995.

[34] T. Leung Lai, “Sequential multiple hypothesis testing and efficient
fault detection-isolation in stochastic systems,” IEEE Trans. Inf. Theory,
vol. 46, no. 2, pp. 595–608, Mar. 2000.

Authorized licensed use limited to: University of Patras. Downloaded on August 22,2023 at 11:16:31 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: WINDOW-LIMITED CUSUM FOR SEQUENTIAL CHANGE DETECTION 6005

[35] S. Abbasi and A. Haq, “Optimal CUSUM and adaptive CUSUM charts
with auxiliary information for process mean,” J. Stat. Comput. Simul.,
vol. 89, no. 2, pp. 337–361, Jan. 2019.

[36] S. Abbasi and A. Haq, “New adaptive CUSUM charts for process mean,”
Commun. Statist.-Simul. Comput., vol. 49, no. 11, pp. 2944–2962,
Nov. 2020.

[37] W. Jiang, L. Shu, and D. W. Apley, “Adaptive CUSUM procedures
with EWMA-based shift estimators,” IIE Trans., vol. 40, no. 10,
pp. 992–1003, Aug. 2008.

[38] Y. Luo, Z. Li, and Z. Wang, “Adaptive CUSUM control chart with
variable sampling intervals,” Comput. Statist. Data Anal., vol. 53, no. 7,
pp. 2693–2701, May 2009.

[39] L. Shu and W. Jiang, “A Markov chain model for the adaptive
CUSUM control chart,” J. Quality Technol., vol. 38, no. 2, pp. 135–147,
Apr. 2006.

[40] Z. Wu, J. Jiao, M. Yang, Y. Liu, and Z. Wang, “An enhanced adap-
tive CUSUM control chart,” IIE Trans., vol. 41, no. 7, pp. 642–653,
May 2009.

[41] Y. Cao, L. Xie, Y. Xie, and H. Xu, “Sequential change-point detec-
tion via online convex optimization,” Entropy, vol. 20, no. 2, p. 108,
Feb. 2018.

[42] G. Lorden and M. Pollak, “Sequential change-point detection procedures
that are nearly optimal and computationally simple,” Sequential Anal.,
vol. 27, no. 4, pp. 476–512, Nov. 2008.

[43] Y. Wu, “Detecting changes in a multiparameter exponential family by
using adaptive CUSUM procedure,” Sequential Anal., vol. 36, no. 4,
pp. 467–480, Oct. 2017.

[44] Q. Xu and Y. Mei, “Multi-stream quickest detection with unknown post-
change parameters under sampling control,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2021, pp. 112–117.

[45] B. W. Silverman, Density Estimation for Statistics and Data Analysis
(Monographs on Statistics and Applied Probability). London, U.K.:
Chapman & Hall, 1986.

[46] Q. Xu, Y. Mei, and G. V. Moustakides, “Optimum multi-stream sequen-
tial change-point detection with sampling control,” IEEE Trans. Inf.
Theory, vol. 67, no. 11, pp. 7627–7636, Nov. 2021.

[47] S. Janson, “Runs in m-dependent sequences,” Ann. Probab., vol. 12,
no. 3, pp. 805–818, 1984.

[48] L. Xie, Y. Xie, and G. V. Moustakides, “Sequential subspace change
point detection,” Sequential Anal., vol. 39, no. 3, pp. 307–335, Jul. 2020.

[49] T. Jacob and R. K. Bansal, “Sequential change detection based on
universal compression algorithms,” in Proc. IEEE Int. Symp. Inf. Theory,
Jul. 2008, pp. 1108–1112.

[50] E. L. Lehmann and G. Casella, Theory Point Estimation. Cham,
Switzerland: Springer, 2006.

[51] G. Lorden, “On excess over the boundary,” Ann. Math. Statist., vol. 41,
no. 2, pp. 520–527, Apr. 1970.

[52] G. V. Moustakides, “Extension of Wald’s first lemma to Markov pro-
cesses,” J. Appl. Probab., vol. 36, no. 1, pp. 48–59, Mar. 1999.

Liyan Xie received the B.Sc. degree in statistics from the University of
Science and Technology of China in 2016 and the Ph.D. degree in indus-
trial engineering from the Georgia Institute of Technology in 2021. She
is currently an Assistant Professor with the School of Data Science, The
Chinese University of Hong Kong, Shenzhen. Her research interests include
the intersection between statistics and optimization, with a primary focus on
sequential change detection and their applications in sensor networks and
healthcare. She was a recipient of the 2020 ARC Student Fellowship and the
IDEaS-TRIAD Research Scholarships from the Transdisciplinary Research
Institute for Advancing Data Science (TRIAD) at Georgia Tech. She was
awarded the Finalist of the INFORMS QSR Student Paper Competition and
the Runner-Up for the INFORMS Computing Society Student Paper Prize
in 2019.

George V. Moustakides (Life Senior Member, IEEE) received the Diploma
degree in electrical and mechanical engineering from the National Techni-
cal University of Athens, Greece, in 1979, the M.Sc. degree in systems
engineering from the Moore School of Electrical Engineering, University
of Pennsylvania, Philadelphia, in 1980, and the Ph.D. degree in electrical
engineering and computer science from Princeton University, Princeton, NJ,
USA, in 1983. In 2007, he joined the Department of Electrical and Computer
Engineering, University of Patras, Patras, Greece, where he is currently
an Emeritus Professor. He held various long-term positions in the past: a
Junior and Senior Researcher with INRIA, France; a Professor with the
University of Thessaly, Greece; and a long-term Visiting Professor with
Rutgers University. He has also been a Visiting Scholar and an Adjunct
Professor with Princeton University, the University of Pennsylvania, Columbia
University, the University of Maryland, the Georgia Institute of Technology,
the University of Southern California, the University of Illinois at Urbana–
Champaign, Rutgers University, and Aalto University, Finland. His research
interests include sequential detection, statistical signal processing, and statis-
tical machine learning. From 2011 to 2014, he served as an Associate Editor
for Detection and Estimation Theory and an (inaugural) Associate Editor
for Sequential Methods for the IEEE TRANSACTIONS ON INFORMATION
THEORY from 2016 to 2018.

Yao Xie (Member, IEEE) received the Ph.D. degree in electrical engineering
(mathematics) from Stanford University. She was a Research Scientist with
Duke University. She is the Coca-Cola Foundation Chair and Professor at
the Georgia Institute of Technology in the H. Milton Stewart School of
Industrial and Systems Engineering and an Associate Director of the Machine
Learning Center. Her research interests include the intersection of statistics,
machine learning, and optimization in providing theoretical guarantees and
developing computationally efficient and statistically powerful methods for
problems motivated by real-world applications. She received the National
Science Foundation (NSF) CAREER Award in 2017, the INFORMS Wagner
Prize Finalist in 2021, and the INFORMS Gaver Early Career Award for
Excellence in Operations Research in 2022. She is the Area Chair of NeurIPS
and ICML. She is currently an Associate Editor of IEEE TRANSACTIONS ON
INFORMATION THEORY, IEEE TRANSACTIONS ON SIGNAL PROCESSING,
Journal of the American Statistical Association, Theory and Methods, Sequen-
tial Analysis: Design Methods and Applications, and INFORMS Journal on
Data Science.

Authorized licensed use limited to: University of Patras. Downloaded on August 22,2023 at 11:16:31 UTC from IEEE Xplore.  Restrictions apply. 


