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ABSTRACT

Decentralized sequential decision making
with asynchronous communication

Georgios Fellouris

We consider three statistical problems – hypothesis testing, change detection and

parameter estimation– when the relevant information is acquired sequentially by

remote sensors; all sensors transmit quantized versions of their observations to

a central processor, which is called fusion center and is responsible for making

the final decision. Under this decentralized setup, the challenge is to choose a

quantization rule at the sensors and a fusion center policy that will rely only on

the transmitted quantized messages.

We suggest that the sensors transmit messages at stopping times of their ob-

served filtrations, inducing in that way asynchronous communication between sen-

sors and fusion center. Based on such communication schemes, we propose fusion

center policies that mimic the corresponding optimal centralized policies. We prove

that the resulting decentralized schemes are asymptotically optimal under differ-

ent statistical models for the observations. These asymptotic optimality properties

require moderate, or even rare, communication between sensors and fusion center,

which is a very desirable characteristic in applications.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 The decentralized sequential setup

The study of sequential statistical problems started with the pioneering work of

A.Wald [63], which was motivated by the need for efficient sampling schemes during

World War II. Since then, there has been an enormous literature in sequential

methods and sequential analysis has become one of the most mature areas in

theoretical and applied statistics ([22], [42], [53]).

The main characteristic of a sequential problem is that the horizon of observa-

tions is not fixed in advance. Thus, apart from a decision rule for the underlying

statistical problem, the designer of a sequential scheme must also choose a stopping

rule which will determine when he should stop collecting observations.

The choice of a sequential policy is characterized by the following trade-off; a

quick decision allows any necessary action to be taken in time, however a longer

horizon of observations provides more information and leads to a more reliable

decision. Thus, the main goal in any sequential problem is to solve optimally this

trade-off.

In this thesis we study three statistical problems – hypothesis testing, change

detection and parameter estimation– when the available information is acquired

sequentially by remote sensors ; all sensors communicate with a central processor

(fusion center), which is responsible for making the final decision.
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When the sensors transmit all their observations to the fusion center, as it

is typically assumed in the classical theory of sequential analysis, then all the

relevant information is available to the decision maker and we say that we are in

a centralized setup.

However, a centralized setup is often non-realistic due to practical considera-

tions, such as the the need for data compression, smaller communication bandwidth

and robustness of the sensor network. These are crucial issues in application areas

such as signal processing, mobile and wireless communication, multisensor data

fusion, internet security, robot network and others [57]. In all these applications,

the fusion center receives only partially the sensor observations. For that reason,

we assume that each sensor needs to quantize its observations before transmitting

them to the fusion center. In other words, each sensor must send to the fusion

center mesagges that take values in a small-size alphabet. In this case, we say that

we are in a decentralized setup.

Therefore, apart from a sequential scheme at the fusion center, the decision

maker –under a decentralized setup– must also choose a communication scheme

at the sensors. A communication scheme consists of a sampling rule and a quanti-

zation rule. The first one determines the times at which the sensors communicate

with the fusion center, whereas the second specifies how the sensors quantize their

observations.

It is important to stress that the overall goal is not to optimize (in some sense)

the communication between sensors and fusion center, but to solve the under-

lying sequential statistical problem under the above communication constraints.

However, it is clear that the fusion center policy depends heavily on the chosen

communication scheme, since the decision maker can use only the available infor-

mation at the fusion center in order to determine its stopping rule and decision

rule.

Ideally, we would like to find a decentralized sequential scheme that minimizes

a certain performance measure over all admissible communication schemes and

fusion center policies. This is very difficult (essentially impossible) at this level of
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Figure 1.1: The decentralized setup

generality, therefore we resort to asymptotically optimal decentralized sequential

schemes.

Thus, if S is the optimal centralized sequential scheme with respect to a certain

performance measure J , then a sequential scheme S̃ will be asymptotically opti-

mal, if J [S]/J [S̃] → 1 as the horizon of observations goes to infinity. However, in

our framework, the designer of the scheme can control the flow of information at

the fusion center in many ways. Thus, not only he decides how long the sensors

keep collecting data (horizon of observations), but also how often they commu-

nicate with the fusion center (communication frequency), how often they sample

their underlying continuous-time processes (sampling frequency) or even the num-

ber of sensors K which are used. Therefore, it is not only legitimate but also

useful to consider asymptotic properties when we have high-frequency sampling,

frequent or rare communication or large number of sensors.

Moreover, in order to be able to distinguish between asymptotically optimal

schemes with qualitatively different behavior, we introduce different orders of

asymptotic optimality. Thus, as long as J [S] → ∞, we say that a (decentralized)

sequential scheme S̃ is asymptotically optimal of order-2, if J [S̃] − J [S] = O(1),
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and of order-3, if J [S̃]−J [S] = o(1), where by O(1) we denote an asymptotically

bounded term and by o(1) an asymptotically vanishing term. It is clear that, since

J [S] → ∞, order-3 asymptotic optimality implies order-2 asymptotic optimality

and this implies order-1 asymptotic optimality.

1.2 Communication schemes

Let us first of all denote by {F i
t} the observed filtration locally at sensor i and

by {Ft} the global filtration in the sensor network. Thus, if {ξit} is the observed

process at sensor i, then

F i
t = σ(ξis : 0 ≤ s ≤ t) , Ft = σ(ξis : 0 ≤ s ≤ t , i = 1, . . . ,K) (1.1)

Moreover, we denote by {0, . . . , d − 1} the available alphabet at all sensors.

We say that (τ in, z
i
n) is a communication scheme, if each {τ in} is an increasing

sequence of finite {F i
t}-stopping times and each zin is an F i

τ i
n
-measurable random

variable that takes values in {0, . . . , d− 1}, so that sensor i transmits at each time

τ in the message zin to the fusion center. Then, a stopping rule at the fusion center

is an {F̃t}-stopping time, where

F̃t = σ((τ in, z
i
n) : τ

i
n ≤ t , i = 1, . . . ,K), t ≥ 0 (1.2)

According to this definition of a communication scheme, each sensor may need

to remember at any given time all its previous observations in order to determine

its next communication time and message to the fusion center (full local memory).

However, this may not be a realistic assumption, since the memory requirements

that it imposes on the sensors are very large and may not be affordable in practice.

For that reason, we modify the definition of a communication scheme so that

each sensor does not keep any information regarding its observations before the

most recent communication (limited local memory). More specifically, we require

τ in to be an {F i
τ i
n−1,t

}-stopping time and each zin an F i
τ i
n−1,τ

i
n
-measurable random

variable, where

F i
τ i
n,t

= σ(ξis : τ
i
n ≤ s ≤ t), t ≥ τ in, n ∈ N. (1.3)
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Figure 1.2: Sensor Network

We can think of limited local memory as an intermediate case between full local

memory and no local memory, where each sensor does not keep any information

regarding its previous observations. Moreover, notice that this is a different notion

of limited local memory than the one used typically in the literature ([35], [62]),

where each sensor remembers all the quantized messages that it has transmitted

to the fusion center.

In the decentralized literature, it is usually implicitly assumed that all sensors

communicate at common, deterministic, equidistant times [62]. However, this is

not always a realistic assumption, since in practice it may be hard to force distant

sensors to transmit messages concurrently. In this thesis, inspired by the works in

([2] , [44], [45]), we suggest that the communication times should be non-trivial

stopping times with respect to the sensor observations (event-triggered sampling).

This will not only induce asynchronous communication between sensors and fusion

center, but – as we will prove– will lead to more efficient fusion center policies.

In particular, we focus on a special case of event-triggered sampling, which is
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called level-triggered (or delta or Lebesgue) and can be expressed as follows:

τ in = inf{t ≥ τ in−1 : ζ
i
t − ζiτ i

n−1
/∈ (−∆i,∆i)}

zin =











1, if ζiτ i
n
− ζi

τ i
n−1

≥ ∆i

0, if ζiτ i
n
− ζi

τ i
n−1

≤ −∆i

(1.4)

where each {ζit} is an {F i
t}-adapted process, i.e. locally observed at sensor i, and

∆i,∆i are positive constants.

Based on such communication schemes and mimicking the corresponding op-

timal centralized schemes, we propose and analyze novel decentralized sequential

schemes for the problems of hypothesis testing, quickest detection and parameter

estimation for a variety of probabilistic models for the sensor observations. In the

remaining part of the introduction we state our main findings and relate them to

the literature.

1.3 Sequential hypothesis testing

In sequential hypothesis testing the goal is to distinguish as soon as possible be-

tween two simple hypotheses for the sequentially acquired observations. This prob-

lem was introduced by Wald in [63], where he defined and proposed the celebrated

Sequential Probability Ratio Test (SPRT).

In the case of independent and identically distributed observations under both

hypotheses, Wald andWolfowitz [64] proved that the SPRTminimizes the expected

time for a decision under each hypothesis, while controlling the probabilities of

both types of error. Kiefer et.al [5] conjectured that the SPRT enjoys a similar

optimality property in the case of continuous-time processes with stationary and

independent increments. Shiryaev [51] proved this claim in the Brownian case

using the theory of optimal stopping and Irle and Schmitz [18] provided a rigorous

proof in the general case.

Liptser and Shiryayev [25] generalized the optimality of the SPRT in the case

of continuously observed Itô processes. In particular, they proved that the SPRT

minimizes the required information (in a Kullback-Leibler sense) for decision under
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both hypotheses, while controlling the probabilities of both types of error. Irle [17]

generalized this optimality for general continuous-path processes and more general

criteria.

In this thesis, we focus on decentralized sequential testing. Most of the relevant

work in this setup assumes that under each hypothesis the sensors take discrete-

time, independent and identically distributed observations and communicate with

the fusion center whenever they take an observation.

In this framework, Veeravalli et. al. [61] proposed five different formulations for

the decentralized testing problem, depending on the local memory that the sensors

possess and the feedback they may receive from the fusion center. Moreover, the

authors explained that all network configurations generate information structures

that are intractable to dynamic programming arguments with the only exception

the case of full feedback and local memory restricted to past decisions, where each

sensor remembers only its previous messages to the fusion center but it also has

access to the previous messages of all other sensors. In this case, the authors found

the optimal Bayesian decentralized test.

The case of no feedback and no local memory was treated in [58], while the

case of full local memory with no feedback in [12],[60] (also under a Bayesian

setting). However, in the last two cases no exactly optimal decentralized test has

been discovered (see [62] for a review). In the case of full local memory, the first

asymptotically optimal test was suggested by Mei [31]. According to this scheme,

each sensor performs its local SPRT and at every communication with the fusion

center it transmits its decision. The fusion center policy follows a consensus rule,

according to which the fusion center stops the first time that all sensors agree.

As we mentioned before, all the previous schemes require each sensor to com-

municate every time it acquires an observation (although Mei’s scheme has an

asynchronous flavor). This requirement was dropped in the decentralized sequen-

tial test proposed by Hussain [16], where level-triggered communication is com-

bined with an “asynchronous” SPRT at the fusion center. Hussain used the term

D-SPRT (decentralized SPRT ) to describe his scheme, however he did not support
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it with a strong theoretical justification.

Here, we prove that the D-SPRT is asymptotically optimal in the discrete-

time setup and we propose a continuous-time version of this decentralized test,

which we also prove to be asymptotically optimal. It should be underlined that

while the communication scheme for the D-SPRT is the same both in discrete and

continuous time, the fusion center policy that we suggest in continuous-time is

essentially model-free, since it relies on the path-continuity of the observed sensor

process and not on their dynamics. Thus, we are able to extend the properties of

the D-SPRT for more general communication schemes and observation models.

In order to state more precisely our results, we introduce the generic param-

eters γ and ∆, which control the horizon of observations and the frequency of

communication respectively, so that γ → ∞ implies a long horizon of observa-

tions, whereas ∆ → ∞(∆ → 0) implies a rare (frequent) communication between

sensors and fusion center.

Thus, when the sensor processes are independent and each sensor observes a

sequence of independent and identically distributed random variables,

• we prove that the D-SPRT is order-1 asymptotically optimal as γ → ∞ and

∆ → ∞ so that ∆ = o(γ) with the optimal rate being ∆ = O(
√
γ).

• we show that if the sensors observe independent Brownian motions only at

discrete times with a common sampling period h, then – for any fixed ∆–

the D-SPRT is order-2 asymptotically optimal as γ → ∞ and h → 0 so that

h1/4 = O(γ−1).

• we present simulation experiments which verify the above findings and show

that the D-SPRT performs better than other decentralized schemes in the

literature.

When the underlying sensor processes are independent Itô processes or corre-

lated Brownian motions,

• we prove that the continuous-time D-SPRT is order-2 asymptotically optimal

as γ → ∞ for any fixed ∆.
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• we present simulation experiments which show that the continuous-time D-

SPRT performs better than then discrete-time SPRT when the underlying

sensor processes are independent Brownian motions.

1.4 Quickest detection

The goal in statistical quality control is to monitor and improve the productivity

of industrial process. This area of statistics has dominated applications since the

introduction of the Shewhart charts [50] in the 1920s and has contributed signifi-

cantly to technological innovations and the increase in productivity since then. The

main method in statistical quality control is quickest detection or change-detection.

There, it is assumed that the distribution of the observed process changes at some

unknown time and the goal is to detect the change as soon as possible using the

sequentially acquired observations. For reviews on statistical control theory and

quickest detection we refer to [54] , [13] , [23], [4] , [42].

In this thesis, we focus on the CUSUM (Cumulative Sums) test, which has been

one of the most popular detection rules, both in theory and in application, since its

introduction by Page [39]. A strong theoretical argument in favor of the CUSUM

test was provided by Moustakides [33], who proved that the CUSUM is the optimal

detection rule according to the minimax criterion suggested by Lorden [28] in the

case of independent and identically distributed observations before and after the

change. In particular, it was shown in [33] that the CUSUM rule minimizes the

worst-case conditional expected delay given the worst possible history up to the

time of the change among detection rules with a period of false alarms larger than

a pre-specified constant.

In discrete time, the (exact) Lorden-optimality of the CUSUM rule was gener-

alized by Moustakides in [37] for a certain class of processes with dependent ob-

servations. Lai [24] established the asymptotic optimality of the CUSUM test for

general observation models. In continuous time, Shiryaev [52] proved the Lorden-

optimality of the CUSUM rule in the Brownian case and Moustakides [34] extended
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–under a modified Lorden’s criterion– the CUSUM optimality in the case of Itô

processes.

Unlike the SPRT which is also optimal under the Bayesian formulation of

sequential testing, the CUSUM is not optimal under the Bayesian formulation of

change-detection [51], where it is assumed that the change-point is a geometric

random variable independent of the observations. Actually, the CUSUM does

not optimize neither the other popular minimax criterion in the literature due to

Pollack [30]. For an insightful discussion regarding these criteria we refer to [36].

As it is the case for decentralized sequential testing, the decentralized change-

detection problem is typically set in a discrete-time setup and it is assumed that the

sensors communicate with the fusion center every time they take an observation.

Again, we can have different formulations depending on the local memory and the

feedback that is available at the sensors [62].

Veeravalli [62] solved the change detection problem in a Bayesian setting in

the case of full feedback and local memory restricted to past decisions. The cor-

responding results under a non-Bayesian formulation are given by Moustakides in

[35], where the fusion center policies are CUSUM statistics. In the case of no-local

memory and no feedback from the fusion center, Tartakovsky and Veeravalli [56]

proposed and studied decentralized schemes that use threshold quantization at the

sensors and CUSUM detection rules at the fusion center.

In the case of full-local memory, Mei [32] proposed an asymptotically optimal

detection rule, according to which each sensor performs its local CUSUM rule and

at every communication with the fusion center it transmits its decision. The fusion

center decision rule is a consensus rule, according to which the fusion center raises

an alarm when all sensors agree that the change has occurred. Comparisons of

this scheme with other decentralized and centralized alternatives are reported in

[55], where it is shown that Mei’s scheme may perform worse in practice than

asymptotically sub-optimal schemes.

In this thesis, we propose a novel decentralized detection rule, both in a

continuous-time and a discrete-time framework. The suggested scheme has the
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same communication scheme as the D-SPRT but uses a CUSUM rule at the fusion

center, thus we call it D-CUSUM (decentralized CUSUM).

In order to state more precisely our results, we recall the generic parameters γ

and ∆, where γ → ∞ implies a large horizon of observations and ∆ → ∞(∆ → 0)

implies very rare (frequent) communication between sensors and fusion center.

Then, when the sensor processes are independent and each sensor observes a se-

quence of independent and identically distributed random variables both before

and after the change, we prove that the D-CUSUM is order-1 asymptotically op-

timal as γ → ∞ and ∆ → ∞ so that ∆ = o(γ), with the optimal rate being

∆ = O(
√
γ). Moreover, we show that if the sensors observe independent Brow-

nian motions only at discrete times with a common sampling period h , then

the D-CUSUM is order-2 asymptotically optimal as γ → ∞ and h → 0 so that

h1/4 = o(γ−1), while ∆ is fixed.

Moreover, when the underlying sensor process are independent Itô processes

or correlated Brownian motions both before and after the change, we prove that

the continuous-time D-CUSUM is order-2 asymptotically optimal as γ → ∞ for

any fixed ∆ and order-1 asymptotically optimal as γ → ∞ and ∆ → ∞ so that

∆ = o(γ).

1.5 Sequential parameter estimation

The statistical inference of continuous-time stochastic processes has drawn the

attention of many probabilists and statisticians ([20], [43]). When one observes

independent Brownian motions with the same unknown drift, it is well-known that

the Maximum Likelihood Estimator (MLE) of the drift is unbiased, Gaussian and

has the smallest possible mean square error. However, these properties are not

preserved when the drifts are random.

In particular, when all drifts are linear with respect to an unknown and common

parameter, the MLE of this parameter can be computed explicitly, but is no longer

unbiased, Gaussian or optimal –in a mean square error sense– for finite horizons.
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However, as Liptser and Shiryayev showed in [25], a sequential version of the

MLE recovers these properties in this more general framework. Thus, even though

this parameter estimation problem may not be sequential by nature, a sequential

formulation is more natural, because it leads to an elegant, intuitive and efficient

solution in contrast to a fixed-horizon formulation.

In this thesis we focus on decentralized parameter estimation in the above

framework. In particular, we suggest and analyze a novel decentralized sequential

estimator, which is based on level-triggered communication at the sensors and

mimics the MLE at the fusion center.

In order to state more precisely the properties of this estimator, which we call

decentralized MLE (D-MLE), we recall the generic parameters γ and ∆, where

γ → ∞ implies a large horizon of observations and ∆ → ∞(∆ → 0) very rare

(frequent) communication between sensors and fusion center. Then, we prove that

as γ → ∞ and ∆ → ∞ the D-MLE is a consistent estimator as ∆ = o(γ) and

asymptotically normal and efficient (in a mean-square-error sense) as γ → ∞ and

∆ → ∞ as ∆ = o(
√
γ).

Finally, we suggest a modification of the D-MLE, which relies on between-

sensor communication, when the sensors observe correlated diffusion processes.

For additional literature on decentralized (non-sequential) parameter estimation

we refer to [46], [14], [15], [10].

1.6 Wald’s identities

Throughout this thesis we apply the celebrated Wald’s identities –as well as gen-

eralized versions of the classical identities– in order to analyze the suggested de-

centralized sequential schemes. For that reason we present here these identities in

the forms that we use them both in discrete and continuous time. For a review of

Wald’s identies and their applications to sequential analysis we refer to [21].
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1.6.1 Discrete-time techniques

1.6.1.1 Wald’s identities

Let (Ω,F ,P) be a probability space which hosts a sequence of independent and

identically distributed random variables {Xn} with E[|X1|] < ∞. We denote by

{FX
n } the filtration generated by {Xn}, i.e. FX

n = σ(X1, . . . , Xn), and we Sn =

X1+ . . .+Xn and µ = E[X1]. If additionally E[X2
1 ] < ∞, we set σ2 ≡ E[(X1−µ)2].

If T is an integrable {FX
n }-stopping time, then:

E[ST ] = µE[T ] , E[(ST − µ T )2] = σ2 E[T ]. (1.5)

where the second identity is of course valid as long as σ2 < ∞. An example of

such an integrable stopping time is the first time the random walk {Sn} exits the

interval (−A,B), i.e. T = inf{n ∈ N : Sn /∈ (−A,B)} The integrability of this

stopping time is based on the fact that for every n ∈ N there exist constants C > 0

and 0 < ρ < 1 (independent of n) so that P(T > n) ≤ Cρn.

1.6.1.2 Change of measure

Let (Ω,F) be a measurable space which hosts a sequence of random variables

(Xn)n∈N. We now consider two probability measures P and P̃, so that the joint

probability density function of the random vector (X1, . . . , Xn) is fn(x1, . . . , xn)

under P and gn(x1, . . . , xn) under P̃, i.e. for n ∈ N

(X1, . . . , Xn) ∼







fn(x1, . . . , xn) under P

gn(x1, . . . , xn) under P̃

We assume that for every n the functions fn and gn have common support, thus

we can define the likelihood-ratio process:

L0 = 1 , Ln =
gn(X1, . . . , Xn)

fn(X1, . . . , Xn)
, n ≥ 1 (1.6)

Then, Wald’s likelihood ratio identity (or else the fundamental identity of sequen-

tial analysis) states that for an arbitrary {FX
n }-stopping time T we have:

Ẽ[Y {T <∞}] = E[Y LT {T <∞}] (1.7)
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where Y is any FT -measurable random variable so that the right-hand side in (1.7)

is finite.

Notice that it is not required that the random variables {Xn} be independent

and identically distributed under P or P̃. Moreover, the stopping time T may

be finite under only one of the two measures, i.e. we may have P̃(T < ∞) <

1 = P(T < ∞). Finally, from (1.7) we can deduce that the likelihood ratio {Ln}

is a (P, {FX
n })- martingale. Indeed, if we set Y = 1 we obtain E[LT ] = 1 =

E[L0] for every bounded {FX
n }- stopping time T , which is a characterization of the

martingale property.

1.6.2 Continuous-time techniques

1.6.2.1 Wald’s identities

Let (Ω,F ,P, {Ft}) be a filtered probability space which hosts a zero-mean local

martingale {Mt}t≥0 and a finite-variation process {At}t≥0, which both have contin-

uous paths. We also denote by {〈M〉t} the quadratic variation process of {Mt}, i.e.

the unique, {Ft}-adapted, increasing, continuous process which makes M2 − 〈M〉

is a continuous local martingale. We set Xt = At +Mt, t ≥ 0.

If T is an {Ft}-stopping time so that E[〈M〉T ] < ∞, then we have:

E[XT ] = E[AT ] , E[(XT − AT )
2] = E[〈M〉T ] (1.8)

When {Xt} is a Brownian motion with drift µ and diffusion coefficient σ, i.e.

Xt = µt + σWt, then (1.8) implies that for any integrable {Ft}-stopping time T

we have:

E[XT ] = µE[T ] , E[(XT − µ T )2] = σ2E[T ] (1.9)

which is the direct generalization of (1.5).

1.6.2.2 Change of measure

We now restrict ourselves to the class of Itô processes, since we will focus on this

class of stochastic processes later. Thus, let (Ω,F ,P, {Ft}t≥0) be a filtered prob-
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ability space which hosts the standard Brownian motion {Wt} and the processes

{Xt}.

We say that {Xt} is an Itô process (relative to the Brownian motion {Wt}), if

there exist stochastic processes {bt} and {σt}, which are B[0,∞)×F-measurable,

{Ft}-adapted, satisfy

P
(

∫ t

0
|bs| ds < ∞, t ≥ 0

)

= P
(

∫ t

0
|σs|2 ds < ∞, t ≥ 0

)

= 1 (1.10)

and

P
(

Xt =

∫ t

0
bs ds+

∫ t

0
σs dWs, t ≥ 0

)

= 1.

In order to avoid unnecessary technicalities we assume that for each t ∈ [0, T ]

the random variables bt and σt are functionals of the path of X up to time t,

i.e. the processes {bt} and {σt} are {FX
t }-adapted, where FX

t = σ(Xs, 0 ≤

s ≤ t). Moreover, we assume that (Ω,F) is the space of continuous functions

on [0,∞) accompanied by its Borel σ-algebra and {Ft} the filtration generated

by the coordinate process Wt(ω) = ω(t), ω ∈ Ω. Therefore, P is the Wiener

measure, the unique probability measure on the canonical path space under which

the coordinate process {Wt} is a Brownian motion.

Suppose now that there exist B[0,∞)×F-measurable, {Ft}-adapted stochastic

processes {b̃t} and {θt}, so that σtθt = (b̃t − bt), t ≥ 0 and

P
(

∫ t

0
|b̃s| ds < ∞, t ≥ 0

)

= P
(

∫ t

0
|θs|2 ds < ∞, t ≥ 0

)

= 1 (1.11)

and consider the positive (P,Ft)-local martingale

Lt ≡ exp
{

∫ t

0
θs dWs − 0.5

∫ t

0
|θs|2 ds

}

, t ≥ 0, (1.12)

If {Lt} is an {Ft}-martingale, i.e. E[Lt] = 1, t ≥ 0, then we can define the

probability measure P̃(A) = E[Lt I(A)], A ∈ Ft and according to Girsanov’s

theorem there exists a (P̃, {Ft})-Brownian motion {W̃t} so that

Wt =

∫ t

0
θs ds+ W̃t , Xt =

∫ t

0
b̃s ds+

∫ t

0
σs dW̃s (1.13)

The stochastic process {Lt} is clearly a (P,Ft)-martingale when the processes

{bt}, {b̃t} {σt} reduce to constants and in general when they satisfy a Novikov or
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Kazamaki condition, i.e.

E[e0.5
∫ t
0
|θs|2 ds] < ∞ or E[e0.5

∫ t
0

θs dWs ] < ∞, 0 ≤ t < ∞. (1.14)

In order to obtain a version of Wald’s likelihood ratio identity in this context, it

is not necessary to assume (1.14), but it suffices to consider {Ft}-stopping times

T , so that

P̃
(

∫ T

0
|θs|2 ds < ∞

)

= P
(

∫ T

0
|θs|2 ds < ∞

)

= 1, t ≥ 0, (1.15)

Then:

Ẽ[YT ] = E[LT YT ] (1.16)

where {Yt} is any {Ft}-adapted process so that the above expectations are well-

defined.

Notice that when the processes {bt}, {σt}, {b̃t} reduce to constants, condition

(1.15) implies that T must be finite under both P and P̃.

Finally, if

P
(

∫ ∞

0
θ2s ds = ∞

)

= P̃
(

∫ ∞

0
θ2s ds = ∞

)

= 1 (1.17)

then the localizing stopping times

Tn = inf
{

t ≥ 0 :

∫ t

0
θ2s ds ≥ n

}

(1.18)

clearly satisfy (1.15) and so does the stopping time

S = inf{t ≥ 0 : Lt /∈ (−A,B)}. (1.19)

Again, when the processes {bt}, {σt}, {b̃t} are constants, condition (1.17) is triv-

ially satisfied.
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Chapter 2

Decentralized sequential

hypothesis testing

The structure of this chapter is as follows: we start with a review of central-

ized sequential testing with an emphasis on the Sequential Probability Ratio Test

(SPRT). We then define and analyze the proposed decentralized sequential test;

first in continuous time, when the observed process has continuous paths (Sec. 2.2)

and when it has discontinuous paths (Sec. 2.3) and then in the discrete time case

(Sec. 2.4).

2.1 Sequential testing under a centralized setup

Let {ξt = [ξ1t , . . . , ξ
K
t ]′}t≥0 be a K-dimensional stochastic process, each component

of which is observed sequentially at a different location or sensor. The flow of

information locally at sensor i is described by the filtration {F i
t}t≥0, whereas the

flow of information at the whole sensor network is described by {Ft}t≥0, where

F i
t = σ(ξis, 0 ≤ s ≤ t) , Ft = σ(ξis, 0 ≤ s ≤ t, i = 1, . . . ,K), t ≥ 0. (2.1)

We assume that the sensors acquire their observations sequentially and that they

communicate with a fusion center, as Fig. 2.1 suggests. The fusion center combines

the information it receives from all sensors and is responsible for making the final
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decision.

Figure 2.1: Sensor Network

We denote by P the distribution of the observed process (ξ1, . . . , ξK) and we

consider two simple hypotheses for P, i.e.

H0 : P = P0 , H1 : P = P1 , (2.2)

We assume that the probability measures P0, P1 are locally equivalent, but globally

singular, in the sense that they are equivalent when they are restricted to the σ-

algebra Ft for any t ∈ [0,∞), but singular when restricted to F∞. We denote by

{ut} the corresponding log-likelihood ratio process, i.e.

u0 = 1 , ut = log
dP1

dP0

∣

∣

∣

Ft

, 0 < t < ∞ (2.3)

The goal of the decision maker at the fusion center is to choose the correct hy-

pothesis combining in an efficient way the information it receives from the sensors.

Moreover, due to the sequential nature of the observations, the goal is to choose

the correct hypothesis as soon as possible.

Thus, a sequential test consists of a stopping rule, which determines when the

fusion center stops collecting data from the sensors, and a decision rule which de-

termines which of the two hypotheses should be chosen. Since these rules cannot
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anticipate the future and must rely exclusively on the fusion center data, the stop-

ping rule will be an {F̃t}-stopping time and the decision rule will be F̃T -measurable

binary random variable, where denote by {F̃t} the fusion center filtration, which

coincides with {Ft} under a centralized setup.

We will focus on the celebrated Sequential Probability Ratio Test (SPRT),

which was proposed by Wald in his seminal work [63], and is defined as follows

S = inf{t ≥ 0 : ut /∈ (−A,B)}

dS =







1, if uS ≥ B

0, if uS ≤ −A

(2.4)

where A,B are two positive constants. Thus, according to the SPRT, the decision

maker observes the log-likelihood ratio process {ut} until it crosses either a positive

or a negative threshold and chooses H1 in the first case and H0 in the second.

We review the properties of the SPRT first in continuous time when the sensors

observe Itô processes and jump diffusions and then in discrete time when the

sensors observe sequences of independent and identically distributed observations.

2.1.1 The case of Itô processes

2.1.1.1 Problem Formulation

Consider the hypothesis testing problem

H0 : ξt =

∫ t

0
σs · dWs , H1 : ξt =

∫ t

0
bs ds+

∫ t

0
σs · dWs (2.5)

where {Wt}t≥0 is a K-dimensional Brownian motion, bt {Ft}-adapted K-dimensional

vector and {σt} an {Ft}-adapted K × K matrix so that

Pj

(

∫ t

0

[

|bs|+ |σs|2 + θs · bs
]

ds < ∞
)

= 1, t ≥ 0 , j = 0, 1 (2.6)

where θt = b′t · (σ−1
t )′σ−1

t . Moreover, for the two measures to be globally singular,

we need to assume that

Pj

(

∫ ∞

0
θs · bs ds = ∞

)

= 1, j = 0, 1. (2.7)
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The log-likelihood ratio process {ut} takes the form

ut =

∫ t

0
θs · dξs − 0.5

∫ t

0
θs · bs ds (2.8)

and we can use it to implement the SPRT, which we defined in (2.4). We present

a realization of the SPRT under (2.5) in Fig. 2.2.

SPRT

t

u t

−A
0

B

0 S

dS = 1

dS = 0

Figure 2.2: A realization of the SPRT

2.1.1.2 SPRT performance characteristics

We can compute explicitly the SPRT error probabilities in terms of the thresholds

A,B. Indeed, with a a localization argument it can be shown that:

Ej

[

∫ S

0
θs · bs ds

]

< ∞, j = 0, 1 (2.9)

and that S is a finite stopping time under both hypotheses. Thus, we can perform

change of measure and obtain

P0(dS = 1) = E1[e
−uS

{dS=1}] , P1(dS = 0) = E0[e
uS

{uS=−A}] (2.10)
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Moreover, since the process {ut} has continuous paths, we have {dS = 1} = {uS =

B} and {dS = 0} = {uS = −A} and consequently

P0(dS = 1) = E1[e
−uS

{uS=B}] = e−BP1(dS = 1)

P1(dS = 0) = E0[e
uS

{uS=−A}] = e−AP0(dS = 0)
(2.11)

Therefore, we obtain:

P0(dS = 1) =
eB − 1

eB − e−A
, P1(dS = 0) =

eA − 1

eA − e−B
(2.12)

and

B = log
(1− P0(dS = 1)

P1(dS = 0)

)

, A = log
(1− P1(dS = 0)

P0(dS = 1)

)

. (2.13)

Thus, from (2.12) we have:

E1[uS ] = P1(dS = 1)B − P1(dS = 0)A = s(B,A)

−E0[uS ] = P0(dS = 0)A− P0(dS = 1)B = s(A,B)
(2.14)

where

s(x, y) =
(ex − 1)x − (1− e−y)y

ex − e−y
, x, y > 0 (2.15)

2.1.1.3 SPRT Optimality

Consider the optimization problems

inf
(T ,dT )

E1[uT ] and inf
(T ,dT )

E0[−uT ] (2.16)

where the infimum is taken over centralized sequential tests (T , dT ) which satisfy

the following properties:

P0(dT = 1) ≤ α , P1(dT = 0) ≤ β (2.17)

where α,β > 0 with α+β < 1. Thus, our goal is to find the centralized sequential

test that minimizes decision delay under both hypotheses while keeping both type-I

and type-II error probabilities bounded by α and β, respectively.

Liptser and Shiryaev proved in [26] – using change of measure and Jensen’s

inequality– that the SPRT solves concurrently the two optimization problems in
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(2.16) as long as the thresholds A,B are chosen so that the error probability

constraints in (2.17) are satisfied with equality. This implies that the optimal

SPRT thresholds A,B can be expressed in terms of α,β as follows

B = log
(1 − α

β

)

, A = log
(1− β

α

)

. (2.18)

Moreover, the optimal decision delay is given by (2.14) and from (2.14) follows

that

E1[uS ] = | logα|+ o(1) , −E0[uS ] = | log β|+ o(1) (2.19)

as α,β → 0 with α| log β|+ β| logα| = o(1).

Finally, we should note that both (2.18) and (2.14) are universal, in the sense

that they do not depend on the particular form of the dynamics in (2.5), but only

on the error probabilities α, β. Fig. 2.3 demonstrates the (universal) average run

length (ARL) curve of the SPRT for problem (2.5), that is, the plot of E1[uS ]

versus logα, where for simplicity we have set α = β.

0
5

10
15

20

Operating Characteristics of the SPRT

α

E 1
(u

S)

10−9 10−6 10−3 10−1

Figure 2.3: ARL curve of the SPRT for Itô processes
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2.1.1.4 Connections to other optimality criteria

Problem (2.16) is a generalization of the original formulation of sequential hypoth-

esis testing used in [63], where the goal is to find the sequential test that solves

the following minimization problems

inf
(T ,dT )

E1[T ] and inf
(T ,dT )

E0[T ] (2.20)

among centralized sequential tests (T , dT ) which satisfy (2.17).

Problems (2.20) and (2.16) are equivalent when {bt} and {σt} reduce to a real

vector (b1, . . . , bK) and a real matrix [σij ], respectively, in which case the sensors

observe correlated Brownian motions under both hypotheses. The optimality of

the SPRT in the framework was established for the first by Shiryaev in [51] using

the theory of optimal stopping.

Finally, we should mention that (2.16) is a special case of a more general

optimality property of the SPRT, which was revealed by Irle [17] and is valid for

even more general testing problems as long as {ut} has continuous paths. Thus,

the SPRT solves the following optimization problems

inf
(T ,dT )

E1[g(e
uT )] and inf

(T ,dT )
E0[g(e

uT )] (2.21)

where g : [0,∞) → R is an arbitrary convex function and (T , dT ) are central-

ized sequential tests that satisfy (2.17) and terminate almost surely under both

hypotheses.

2.1.1.5 Sufficient statistics

The optimality properties of the SPRT imply that the log-likelihood ratio process

{ut} is a sufficient statistic for the hypothesis testing problem (2.5), since the fusion

center is able to implement the optimal sequential test without any performance

loss as long as it has full access to {ut}.

Moreover, from (2.8) follows that u =
∑K

i=1 u
i, where

uit =

∫ t

0
θis dξ

i
s − 0.5

∫ t

0
θis b

i
s ds, 0 ≤ t < ∞ (2.22)
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where we denote by bi, θit the ith components of the vectors bt, θt. Therefore,

(u1, . . . , uK) is a vector of sufficient statistics, since for the implementation of the

SPRT it suffices that the fusion center receives {u1t , . . . , uKt } instead of the raw

sensor observations {ξ1t , . . . , ξKt }. Thus, if each process {uit} is {F i
t}-adapted, then

sensor i could observe and transmit to the fusion center the path of {uit} instead

of the path of {ξit}.

Of course, the process {uit} is not always {F i
t}-adapted in the general frame-

work of the testing problem (2.5), but only in some (important) special cases.

Indeed, this is true when the sensor processes ξ1, . . . , ξK are independent, in which

case {uit} corresponds to the marginal log-likelihood ratio of {ξit}, but also when

the sensors observe correlated Brownian motions under each hypothesis, in which

case each uit is a deterministic function of ξit and t.

2.1.2 SPRT for jump-diffusions

2.1.2.1 Problem formulation

We now assume that the observed sensor at each sensor i admits the following

decomposition:

ξit = σiY i
t +

N i
t

∑

j=1

Xi
j , Y

i
t = bit+W i

t , t ≥ 0 (2.23)

where {Y i
t } is a Brownian motion with drift biσi and diffusion coefficient σi, {N i

t} a

Poisson process with intensity λi and (Xi
n) a sequence of independent random vari-

ables with common density f i. We assume that {W i
t }, {N i

t} and {Xi
n} are indepen-

dent, therefore each process {ξit} has stationary and independent increments. In

particular, {ξit} is a jump-diffusion process if σi > 0 and a compound Poisson pro-

cess if σi = 0. We also assume that the triplets ({W i
t }, {N i

t}, {Xi
n}), i = 1, . . . ,K

are independent.

We consider the following testing problem

H0 : (b
i,λif i) = (bi0,λ

i
0, f

i
0), ∀i , H1 : (b

i,λif i) = (bi1,λ
i
1, f

i
1), ∀i (2.24)
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where λi
0,λ

i
1 are known positive constants, bi0, b

i
1 known real constants and f i

0(·), f i
1(·)

known densities with common support for each i = 1, . . . ,K.

Due to the assumption of independence across sensors, the log-likelihood ratio

process {ut} admits the decomposition ut =
∑K

i=1 u
i
t for any t ≥ 0, where

uit = [µiY
i
t − 0.5|µi|2t] + [ρiN

i
t − (λi

1 − λi
0)t] +

N i
t

∑

l=1

hi(X
i
l )

= µiY
i
t −

[

0.5|µi|2 + (λi
1 − λi

0)
]

t+

N i
t

∑

l=1

[

ρi + hi(X
i
l )
]

,

where

ρi = log
λi
1

λi
0

, hi(·) = log
f i
1(·)
f i
0(·)

(2.25)

and

µi =







bi1−bi0
σi , if σi > 0

0, if σi = 0

The optimality of the SPRT in this setup (and generally in the case of processes

with stationary and independent increments) was conjectured initially by Kiefer

et.al [5], but a formal proof of this statement was given by Irle and Schmitz in [18].

In particular, it was shown that the SPRT solves the optimization problems in

(2.20) among sequential tests that satisfy (2.17). Notice that since E1[ut],E0[−ut]

are linear functions of t under the hypothesis testing problem (2.24), thus the

optimization problems (2.16) and (2.20) are equivalent.

Since the log-likelihood ratio process {ut} for problem (2.24) does not have

continuous paths, the random variable uS is no longer binary, since it may exceed

the thresholds −A and B. Thus, the overshoot η = (uS − B)+ − (uS + A)− is a

non-trivial random variable and we cannot derive closed-form expressions for the

thresholds A and B and the SPRT performance in terms of the error probabilities

α,β.

Nevertheless, we can show that B ≤ | logα| and A ≤ | log β| and we also have

that

E1[uS ] = (1 − β)B − βA+ E1[η] , E0[−uS ] = (1 − α)A − αB + E0[η] (2.26)
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Therefore, if the expected overshoots Ej [η], j = 0, 1 are asymptotically bounded,

i.e. Ej [η] = O(1), j = 0, 1 as α,β → 0, then we obtain

E1[uS ] ≤ | logα|+O(1) , E0[−uS ] ≤ | log β|+O(1) (2.27)

which is an asymptotic upper bound for the performance of the SPRT under (2.24)

and will turn out to be sufficient for our purposes.

2.1.3 SPRT in discrete-time

Suppose that each sensor i acquires sequentially the discrete-time observations

ξit, t = 0, 1, 2, . . .. We assume that (ξ1t , . . . , ξ
K
t )t∈N is a sequence of independent

random vectors so that for each t ∈ N:

H0 : (ξ
1
t , . . . , ξ

K
t ) ∼ Q0 , H1 : (ξ

1
t , . . . , ξ

K
t ) ∼ Q1 (2.28)

where Q0 and Q1 are known Borel probability measures on RK . We assume that

there is a probability measure Q that dominates both Q0 and Q1 and we denote by

f0 and f1 the corresponding Radon-Nikodym derivatives. Then, the log-likelihood

ratio process that corresponds to this hypothesis-testing problem takes the form:

ut =
t

∑

l=1

log
f1(ξ1l , . . . , ξ

K
l )

f0(ξ1l , . . . , ξ
K
l )

, t = 0, 1, 2, . . . (2.29)

and the SPRT (S, dS) becomes:

S = inf{t ∈ N : ut /∈ (−A,B)}

dS =







1, if uS ≥ B

0, if uS ≤ −A,

(2.30)

Wald and Wolfowitz proved in [64] the optimality of the SPRT for the above

testing problem in the sense of (2.20). Since the observations {(ξ1t , . . . , ξKt )}t∈N
are independent and identically distributed, it is straightforward to see that (2.16)

and (2.20) are equivalent optimization criteria.

Moreover, the overshoot η = (uS − B)+ − (uS + A)− is non-zero with prob-

ability 1 (see Fig. 2.4). Nevertheless, we can show that B = O(| logα|) and
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SPRT
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u t
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Figure 2.4: Discrete-time SPRT

A = O(| log β|) as α,β → 0 and also

E1[uS ] ≤ | logα|+O(1) , E0[−uS ] ≤ | log β|+O(1) (2.31)

as long as u1 has a finite second moment, in which case Ej [η], j = 0, 1 are bounded

uniformly in A and B [27]. Finally, notice that the optimality of the SPRT does

not require the assumption of independence across sensors.

2.2 Decentralized sequential testing for Itô processes

In this section we propose and study a decentralized sequential test for the hy-

pothesis testing problem (2.5), i.e. when each sensor observes the path of some

Itô process under each hypothesis. We refer to the introduction for details on the

decentralized setup and the relevant literature.

The fundamental assumption that we make is that each local sufficient statistic

{uit} -defined in (2.22)- is {F i
t}-adapted. This means that the following will be

valid as long as the sensors observe either independent Itô processes or correlated



CHAPTER 2. DECENTRALIZED SEQUENTIAL TESTING 28

Brownian motions under each hypothesis (see the 2.1.1.5). This assumption is

crucial not only for the properties of the suggested decentralized scheme to hold,

but also for the scheme to be implementable in the first place.

Finally, as we also discuss in the introduction, the scheme that we propose and

analyze in this section is a continuous-time version of the decentralized sequential

test proposed in [16] under a discrete-time setup. Despite the fact that these two

versions have some important differences, we use the name D-SPRT (Decentralized

SPRT) to describe the suggested scheme in both setups.

2.2.1 Communication scheme and quantization rule

We suggest that sensor i communicates with the fusion center at the {F i
t}-stopping

times (τ in)n∈N which are defined recursively as follows:

τ in = inf{t ≥ τ in−1 : u
i
t − uiτ i

n−1
/∈ (−∆i,∆i))}, n ∈ N. (2.32)

The thresholds ∆i,∆i are positive constants, whose values are chosen by the de-

signer of the scheme and are known at the fusion center. Thus, according to (2.32),

sensor i monitors its local sufficient statistic ui and communicates when its value

has either increased by ∆i or decreased by ∆i in comparison to its value at the

previous communication with the fusion center. We illustrate this communication

scheme in Fig. 2.5.

Therefore, under (2.32), the number of signals that have been transmitted from

sensor i up to time t is random and we will denote it by mi
t = max{n : τ in ≤ t}.

Moreover, the sensors do not transmit their signals concurrently to the fusion

center, thus (2.32) induces asynchronous communication in the sensor network.

The communication scheme (2.32) is naturally coupled with the following quan-

tization rule: “at any time τ in sensor i should inform the fusion center whether

uiτ i
n
− ui

τ i
n−1

≥ ∆i or uiτ i
n
− ui

τ i
n−1

≤ −∆i .” Sensor i can communicate this infor-

mation by transmitting the signals:

zin =











1, if uiτ i
n
− ui

τ i
n−1

≥ ∆i

0, if uiτ i
n
− ui

τ i
n−1

≤ −∆i

(2.33)
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Level−triggered  communication
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Figure 2.5: Level-triggered communication

and for that purpose it needs only a binary alphabet.

Moreover, since each process {uit} is continuously observed and has continuous

paths, we actually have: uiτ i
n
− ui

τ i
n−1

∈ {∆i,−∆i} for every n ∈ N. This means

that we can replace the inequalities in (2.33) with equalities. Moreover, it implies

that the fusion center can recover the exact value of ui at any communication time

τ in, since for every n ∈ N we have:

uiτ i
n
=

n
∑

j=1

[

uiτ i
j
− uiτ i

j−1

]

=
n
∑

j=1

[

∆i z
i
j −∆i (1 − zij)

]

. (2.34)

2.2.2 Fusion center policy

Since the fusion center does not receive any information about ui between com-

munication times, we suggest that it approximates ui at some arbitrary time t as

follows

ũit = uiτ i
n
, t ∈ [τn, τn+1) (2.35)

which –due to (2.34)– is equivalent to

ũit =
n
∑

j=1

[

∆i z
i
j −∆i(1− zij)

]

, t ∈ [τn, τn+1) (2.36)
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Thus, the process {ũit} is defined to recover the exact value of ui at any com-

munication time τ in and to stay flat in between. Consequently, it is a piecewise

constant process which jumps at the communication times (τ in) and its jumps are

either upward of size ∆i or downward of size ∆i. Notice that {ũit} is a model-free

approximation of {uit}, since it does not rely on any distributional properties of

{uit} but only on the continuity of its paths. We illustrate this approximation in

Fig. 2.6. The policy that we suggest at the fusion center is simply to replace

Fusion center approximation 

t

u~ ti

Figure 2.6: Fusion center local approximations

the global likelihood-ratio u =
∑K

i=1 u
i in the the definition (2.4) of the SPRT by

ũ =
∑K

i=1 ũ
i. In other words, we suggest the following sequential test at the fusion

center:

S̃ = inf{t ≥ 0 : ũt /∈ (−Ã, B̃)}

dS̃ =







1, if ũS̃ ≥ B̃

0, if ũS̃ ≤ −Ã

(2.37)

where again the thresholds Ã, B̃ are chosen so that the error probability constraints

in (2.16) are satisfied with equality. This is a valid decentralized sequential test,

since its implementation at the fusion center requires only the transmission of the

one-bit data {zin} from the sensors. Moreover, since (S̃, dS̃) mimics the SPRT
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(S, dS), we call it decentralized SPRT (D-SPRT), adopting the term that was

coined in [16] for the discrete-time analogue of this scheme.

2.2.3 Asymptotic optimality of order 2

The (asymptotic) performance of the D-SPRT is characterized by the following

proposition:

Proposition 1. For any fixed values of the sampling thresholds {∆i,∆i}, the D-

SPRT is asymptotically optimal of order-2 in the sense of (2.16), i.e.

E1[uS̃ ] − E1[uS ] = O(1) , E0[−uS̃ ] − E0[−uS ] = O(1) (2.38)

as α,β → 0 so that α| log β|+ β| logα| = O(1). In particular,

E1[uS̃ ] − E1[uS ] ≤ 3C + o(1) , E0[−uS̃ ] − E0[−uS ] ≤ 3C + o(1) (2.39)

where C =
∑K

i=1(∆i +∆i).

It is an immediate corollary that in the Brownian case where the processes

{bt} and {θt} reduce to real vectors [b1, . . . , bK ]′ and [θ1, . . . , θK ]′, the D-SPRT is

order-2 asymptotically optimal also in the sense of (2.20). In particular, we have:

Ej [S̃] − Ej [S] ≤
3C

0.5
∑K

i=1 θi bi
+ o(1), j = 0, 1. (2.40)

Proof. We start by observing that for any time t we have:

|ut − ũt| ≤ C , |ũt − ũt−| ≤ C. (2.41)

The first inequality in (2.41) implies that |uS̃ − ũS̃ | ≤ C. The second inequality

provides a bound on the size of the jumps of the piecewise constant process ũ and

it implies that

ũS̃ − B̃ ≤ C , ũS̃ + Ã ≥ −C, (2.42)

since S̃ corresponds to a jump time of ũ.
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From the first inequality in (2.41) it follows that S̃ is upper bounded pathwise

by the following stopping time: R = inf{t ≥ 0 : ut /∈ (−Ã − C, B̃ + C)} and

consequently we have:

Ej

[

∫ S̃

0
θs · bs ds

]

≤ Ej

[

∫ R

0
θs · bs ds

]

< ∞, j = 0, 1 (2.43)

The first inequality in (2.43) follows from S̃ ≤ R and the positivity of the quadratic

form θt · bt = b′t · (σ−1
t )′σ−1

t · bt, whereas the second inequality from condition (2.7)

and the fact that R is an SPRT test.

Therefore, with a change of measure we obtain

α = P0(dS̃ = 1) = E1[e
−u

S̃ {d
S̃
=1}]

= E1

[

e(−u+ũ)
S̃
−ũ

S̃
{ũ

S̃
≥B̃}

]

≤ eC−B̃

Taking logarithms on both sides we have B̃ ≤ | logα|+C and in a similar way we

can show that Ã ≤ | log β|+C. Then, using these inequalities together with (2.41)

and (2.42), we get:

E1[uS̃ ] = E1[(u − ũ)S̃ ] + E1[ũS̃ ]

≤ C + (B̃ + C) ≤ | logα|+ 3C.
(2.44)

The desired inequality (2.39) now follows from (2.19) and (2.44).

2.2.4 Comparison with the discrete-time centralized SPRT

As we discussed before, the D-SPRT is a valid decentralized sequential test, since

its implementation requires the communication of only one-bit messages. However,

since the fusion center is able to recover the exact sensor observations at the

corresponding communication times, it is meaningful to compare the D-SPRT

with the discrete-time centralized SPRT, which is based on the transmission of the

exact sensor observations to the fusion center at the times t = 0, h, 2h, . . ., where

h > 0. Since we do not have closed-form expressions for the performance of neither

of the two schemes, we need to resort to simulations.
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We perform this comparison for the following hypothesis testing problem:

H0 : ξ
i
t = W i

t H1 : ξ
i
t = W i

t + bit, t ≥ 0 (2.45)

where (W 1, . . . ,WK) is a K-dimensional Brownian motion and b1, . . . , bK known,

non-zero constants. Thus, we assume that each sensor i observes either a standard

Brownian (H0) or a Brownian motion with constant drift bi (H1). Under this model

for the observations, the increments {ξinh−ξi(n−1)h} are independent and identically

distributed, and consequently the discrete-time centralized SPRT is also order-2

asymptotically optimal (with respect to the continuous-time centralized SPRT).

For the comparison to be fair, we need to equate the expected intersampling

periods E0[τ i1] and E1[τ i1] with the constant period h, so that the two schemes

require the same communication rate between sensors and fusion center on average.

Indeed, using Wald’s identity together with (2.14)-(2.15), we have:

E0[τ
i
1] = E1[τ

i
1] = h ⇔ E0[−uiτ i

1
] = E1[u

i
τ i
1
] = 0.5|bi|2h

⇔ s(∆i,∆i) = s(∆i,∆i) = 0.5|bi|2h
(2.46)

Thus, if we set ∆i = ∆i = ∆i, (2.46) becomes s(∆i,∆i) = 0.5 |bi|2 h and for

any given drift bi we can compute the sampling period h that corresponds to the

threshold ∆i and vice-versa. For example, in the simulations in Fig. 2.7 we chose

K = 2, b1 = b2 = 1 and ∆i = ∆i = ∆i = 2 for each sensor i, thus h had to be

equal to 3.0462.

From Fig. 2.7 we can see that the distance between the D-SPRT and the opti-

mal continuous-time SPRT remains bounded, which agrees with (2.39). Moreover,

the D-SPRT exhibits a distinct performance improvement over the discrete time

centralized SPRT which is applied after canonical deterministic sampling.

2.2.5 Rare communication / many sensors

The inequalities (2.39) imply that – with a fixed number of sensors and with a fixed

communication rate between sensors and fusion center – the distance between the

D-SPRT and the continuous-time centralized SPRT is bounded for any horizon
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Figure 2.7: D-SPRT versus SPRT

of observations. The question we want to answer now is what happens if the

communication between sensors and fusion center is very infrequent (∆i,∆i → ∞)

and/or the number of sensors very large (K → ∞).

In this case, it is a direct consequence of (2.19) and (2.39) that the D-SPRT is

asymptotically optimal of order-1, i.e.

Ej [uS̃ ]

Ej [uS ]
→ 1, j = 0, 1, (2.47)

as long as C ≡
∑K

i=1(∆i+∆i) = o(| logα|) = o(| log β|) as α,β → 0 with α| log β|+

β| logα| = O(1). Thus, the D-SPRT remains asymptotically optimal, even with

∆i,∆i → ∞ or K → ∞, as long as Ã, B̃ are much larger than C =
∑K

i=1(∆i+∆i),

however in this case it loses its second-order optimality.

2.2.6 Level-triggered communication as repeated local SPRT’s

Let us now restrict ourselves in the case that the sensor processes ξ1, . . . , ξK are

independent. Then, the local sufficient statistic {uit} -see (2.22)- corresponds to the

log-likelihood ratio of {ξit} and the level-triggered communication scheme (2.32)-

(2.33) can be seen as a series of repeated local SPRTs. This observation leads to
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an interesting representation for the thresholds ∆i,∆i and an interesting interpre-

tation for {ũit}.

Indeed, comparing (2.32)-(2.33) with (2.4), it becomes clear that the pair

(τ i1, z
i
1) corresponds to an SPRT (2.4) with test statistic {uit} and thresholds

−∆i,∆i. Thus, the message zi1 that sensor i transmits to the fusion center at

τ i1 is the decision of this local SPRT; we can think of this message as a preliminary

decision of sensor i for the testing problem (2.5) or more precisely for its local

testing problem:

H0 : ξ
i
t =

∫ t

0
σii
s dW i

s , t ≥ 0

H1 : ξ
i
t =

∫ t

0
bis ds+

∫ t

0
σii
s dW i

s , t ≥ 0,

(2.48)

At time τ i1 sensor i repeats exactly the same procedure; thus, it starts a new SPRT

with test-statistic {uit−ui
τ i
1

}t≥τ i
1
and thresholds −∆i, ∆i and at time τ i2 it transmits

to the fusion center the decision zi2 of this second local SPRT.

Similarly, at any time τ in−1 sensor i starts a new SPRT with test-statistic

{uit − ui
τ i
n−1

}t≥τ i
n−1

and thresholds −∆i, ∆i and at time τ in it transmits to the

fusion center the decision zin of this nth local SPRT.

Notice that for each sensor i the processes {uit}t∈[τ i
n−1,τ

i
n]

and the pairs (τ in −

τ in−1, z
i
n) are not independent and identically distributed, even if the underlying

process ξi has the Markov property. The only exception is the Brownian case

(bit = bi,σii
t = σii), where each ξi not only has the strong Markov property but

also restarts probabilistically at the stopping times (τ in).

However, since τ in − τ in−1 is an SPRT stopping time (for every n ∈ N) with

thresholds −∆i,∆i, then Ej [uiτ i
n
−ui

τ i
n−1

] will be given by (2.14) with A,B replaced

by ∆i,∆i, that is:

E1[u
i
τ i
n
− uiτ i

n−1
] = s(∆i,∆i) , −E0[u

i
τ i
n
− uiτ i

n−1
] = s(∆i,∆i) (2.49)

Similarly, although the error probabilities P1(zin = 0) and P0(zin = 1) vary with n,

they are all described by (2.18) so that:

∆i = log
P1(zin = 1)

P0(zin = 1)
, −∆i = log

P1(zin = 0)

P0(zin = 0)
, n ∈ N. (2.50)
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Therefore, it becomes clear that ∆i corresponds to the log-likelihood ratio of the

event {zin = 1} and −∆i to the log-likelihood ratio of {zin = 0} for every n ∈ N.

This means that ũiτ i
n
-defined in (2.34)- would be the log-likelihood ratio of the

vector (zi1, . . . , z
i
n) if the signals zi1, . . . , z

i
n were independent under each hypothesis.

However, this is true only in the Brownian case, where zi1, . . . , z
i
n are not only

independent but also identically distributed under each hypothesis. Therefore, we

can think of ũiτ i
n
as a hypothetical log-likelihood ratio for the vector (zi1, . . . , z

i
n),

which treats the signals zi1, . . . , z
i
n as independent even if they are not.

2.2.7 Specification of the thresholds

The thresholds ∆i,∆i determine the rate of communication between sensor i and

the fusion center. From (2.42) it follows that smaller values for ∆i,∆i lead to more

frequent communication and better D-SPRT performance. But in practice very

frequent communication may be very expensive and the network may not be able

to support it.

Thus, the choice of the thresholds ∆i, ∆i at sensor i basically depends on how

often sensor i is allowed to communicate with the fusion center. Consequently,

we could specify the desired expected period of communication at sensor i under

each hypothesis and choose ∆i, ∆i in order to attain these targets. We actually

performed such a specification with (2.46) in the Brownian case.

The problem with this approach is that –unless we are in the Brownian case–

the times (τ in − τ in−1)n are not independent and identically distributed, thus their

expectations Ej [τ in − τ in−1] will vary with n. Therefore, it is not possible to attain

certain targets for Ej [τ in − τ in−1] for every n ∈ N with only the two free parameters

∆i,∆i. In order to do that, we would need to adapt the thresholds ∆i,∆i at each

communication time, but this choice has certain practical difficulties (see next

section).

However, we can follow a different approach and specify target values for

Ej [uiτ i
n
− ui

τ i
n−1

] instead of Ej [τ in − τ in−1] under each hypothesis Hj , j = 0, 1. Then,

if the sensor processes are independent, from the previous section it follows that
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the quantities E0[uiτ i
n

− ui
τ i
n−1

] and E1[uiτ i
n

− ui
τ i
n−1

] have the same values for all

n ∈ N and these values are given by (2.49). Therefore, it suffices to solve the two

non-linear equations in (2.49) in order to compute the appropriate values for ∆i

and ∆i.

Apart from its practical advantages, this specification also has a very intuitive

interpretation; we choose the thresholds ∆i and ∆i that guarantee that a cer-

tain amount of information has been accumulated between any two consecutive

communications from sensor i.

2.2.8 Time-varying thresholds

We can generalize the D-SPRT by replacing ∆i and ∆i with two sequences of

positive thresholds {∆i
n} and {∆i

n}, so that sensor i communicates with the fusion

center at the times

τ in = inf{t ≥ τ in−1 : u
i
t − uiτ i

n−1
/∈ (−∆i

n,∆
i
n)}, n ∈ N (2.51)

and at time τ in it transmits the binary signal:

zin =











1, if uiτ i
n
− ui

τ i
n−1

≥ ∆
i
n

0, if uiτ i
n
− ui

τ i
n−1

≤ −∆i
n

(2.52)

The thresholds ∆
i
n and ∆i

n can be random, as long as they are F i
τ i
n−1

∧ F̃ i
τ i
n
-

measurable random variables. This means that each sensor i must specify the

thresholds ∆
i
n,∆

i
n for its nth transmission by time τ in−1 and must transmit these

values (together with the message zin) to the fusion center at time τ in.

For example, if we wanted the expected time between any two consecutive com-

munications to be equal to a fixed constant h under both hypotheses, then each

pair ∆
i
n,∆

i
n should be chosen to satisfy Ej [τ in − τ in−1|F i

τ i
n−1

] = h, j = 0, 1. Notice

however that there is no closed-form expression for the conditional expectation on

the left-hand side, thus the specification of ∆
i
n,∆

i
n is not straightforward. More-

over, communicating the values of the thresholds to the fusion center requires a

larger alphabet at each sensor and restricts the thresholds that can be chosen in

practice.
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Of course, the thresholds {∆i
n} and {∆i

n} do not have to depend on the sensor

observations; instead, they can be deterministic sequences which become known at

sensor i and at the fusion center from the beginning (at time t = 0). For example,

the sequences {∆i
n} and {∆i

n} can be chosen in advance so that the same amount

of information is accumulated at each sensor between any two communications.

This can be achieved using (2.49), from which we obtain:

E1[u
i
τ i
n
− uiτ i

n−1
] = s(∆

i
n,∆

i
n) , −E0[u

i
τ i
n
− uiτ i

n−1
] = s(∆i

n,∆
i
n) (2.53)

In any case, assuming the communication scheme (2.51)-(2.52) can be imple-

mented, we suggest that the fusion center approximates {uit} with

ũit =
n
∑

j=1

[

∆
i
j z

i
j −∆i

j(1 − zij)
]

, τ in ≤ t < τ in+1, (2.54)

and implements the D-SPRT (2.37) with test-statistic ũ =
∑K

i=1 ũ
i.

It is clear that (2.54) is a generalization of (2.36) and it allows the fusion center

to recover the values of each {uit} at the corresponding communication times (2.51).

Moreover, {ũt} satisfies the inequalities in (2.41) as long as C ≡ supnCn < ∞,

where we define Cn =
∑K

i=1(∆
i
n +∆i

n).

Consequently, it can be shown – in exactly the same way as in the case of

constant thresholds– that the D-SPRT satisfies (2.38) and is order-2 asymptotically

optimal as long as the thresholds {∆i
n} and {∆i

n} are uniformly bounded in n and

i.

2.2.9 Non-parallel boundaries

Another way we can extend the communication scheme (2.32)-(2.33) is to use linear

instead of parallel boundaries, so that sensor i communicates with the fusion center

at the stopping times:

τ in = inf{t ≥ τ in−1 : u
i
t − uiτ i

n−1
/∈ (−∆i + δi(t − τ in−1) , ∆i − δi(t − τ in−1))} (2.55)

and at time τ in it transmits the binary signal

zin =











1, if uτ i
n
− ui

τ i
n−1

≥ ∆i − δi(τ in − τ in−1)

0, if uτ i
n
− ui

τ i
n−1

≤ −∆i + δi(τ in − τ in−1)
(2.56)
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where ∆i,∆i, δi, δi are positive constants, chosen by the designer of the scheme

and known to the fusion center. Since the linear boundaries in (2.55) intersect

(see Fig.2.8), the intercommunication times (τ in − τ in−1)n are bounded. This is an

important difference with the case of parallel boundaries (δi = δi = 0) where the

times between two consecutive communications are almost surely finite but not

bounded.

  Linear boundaries

 

u ti

τ1
i

Δi δi

−
Δ i

0
Δ i

Linear boundaries

u ti

τ1
i τ2

i

−
Δ i

0
Δ i

Figure 2.8: Event-triggered communication with linear boundaries.

We suggest that the fusion center approximates the process {uit} with

ũit =

mi
t

∑

j=1

[

[∆i − δi(τ
i
j − τ ij−1)] z

i
j + [−∆i + δi(τ

i
j − τ ij−1)](1 − zij)

]

, t ≥ 0, (2.57)

and the global log-likelihood ratio u =
∑K

i=1 u
i with ũ =

∑K
i=1 ũ

i (see fig. 2.9).

Then, {ũt} satisfies the inequalities in (2.41), i.e. for all t ≥ 0 we have: |ut−ũt| ≤ C

and |ũt − ũt−| ≤ C, where C =
∑K

i=1(∆i +∆i).

Consequently, if we replace the global log-likelihood ratio u =
∑K

i=1 u
i in the

definition of the SPRT (2.4) with the test-statistic ũ =
∑K

i=1 ũ
i, the resulting

sequential test will satisfy (2.39) and consequently it will be asymptotically optimal

of order-2; the proof for this result is exactly the same as in the case of parallel
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Figure 2.9: Local approximations at the fusion center

boundaries. However, we can no longer use (2.49) in order to specify the values of

∆i,∆i.

There is nothing special about linear boundaries in the above argument. Thus,

we can replace (2.55)-(2.56) with the following non-linear boundaries

τ in = inf{t ≥ τ in−1 : u
i
t − uiτ i

n−1
/∈ (gi(t − τ in−1), hi(t − τ in−1))}

zin =











1, if uiτ i
n
− ui

τ i
n−1

≥ gi(t − τ in−1)

0, if uiτ i
n
− ui

τ i
n−1

≤ hi(t − τ in−1)

(2.58)

where each hi(t) is a decreasing continuous function with hi(0) = ∆i and each

gi(t) an increasing continuous function with gi(0) = −∆i.

2.3 Decentralized sequential testing for jump-diffusions

In the previous section we introduced and analyzed a decentralized sequential test

for the hypothesis testing problem (2.5), i.e. when the sensors observe Itô processes

under each hypothesis. This suggested decentralized scheme consisted of:

• the event-triggered communication scheme (τ in) − (zin), defined in (2.32)-
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(2.33),

• the approximations {ũit} to the local sufficient statistics {uit}, defined in

(2.36),

• and the fusion center policy (S̃, dS̃), defined in (2.37).

We proved (2.41), which means that the performance loss of the D-SPRT is

bounded for any fixed rate of communication and error probabilities. This prop-

erty implies order-2 asymptotic optimality for small error probabilities and any

fixed rate of communication and order-1 asymptotic optimality for small error

probabilities and infrequent communication. Moreover, we saw that we can con-

sider more general communication schemes, such as (2.51)-(2.52) or (2.55)-(2.56),

without affecting the asymptotic optimality properties of the scheme.

In this section we consider the case where the observed sensor processes and

consequently the log-likelihood ratio {ut} do not have continuous paths. In this

case, the fusion center can no longer implement the model-free approximations

(2.36) and we cannot have a bounded performance loss such as (2.41).

Our goal is to show that if we restrict ourselves to independent sensors which

observe Lévy processes, then we can modify the fusion center policy so that the

resulting scheme preserves the order-1 asymptotic optimality in a certain sense.

This decentralized sequential scheme is the direct analogue of the scheme proposed

in [16] in a discrete-time setup and their analysis are almost identical for that reason

we do not prove here the results but refer to the discrete-time case.

2.3.1 Overshoot accumulation

As before, we assume that the global log-likelihood ratio {ut} admits the decom-

position u =
∑K

i=1 u
i so that each {uit} is {F i

t}-adapted and we consider the

event-triggered communication scheme (τ in) − (zin) described by (2.32)-(2.33)

As soon as we remove the assumption that each {uit} has continuous paths,

the fusion center is not able to recover the values of {uit} at the times (τ in)n∈N and

consequently it cannot use (2.35) to approximate {uit}.
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Indeed, (2.34) is no longer true and is replaced by:

uiτ i
n
=

n
∑

j=1

[

uiτ i
j
− uiτ i

j−1

]

=
n
∑

j=1

[

∆i z
i
j −∆i (1 − zij)

]

+
n
∑

j=1

ηij , n ∈ N, (2.59)

where by {ηin} we denote the overshoots

ηin = (uiτ i
n
− uiτ i

n−1
−∆i)

+ − (uiτ i
n
− uiτ i

n−1
+∆i)

−, n ∈ N, (2.60)

whose values do not become known to the fusion center (notice however that ηin is

non-zero only if τ in is a jump time of {uit}).

Moreover, (2.60) implies that unlike the case of continuous-path observations,

the approximation (2.35), i.e. ũit = uiτ i
n
, t ∈ [τn, τn+1) is not equivalent to (2.36),

i.e.

ũit =

mi
t

∑

j=1

[

∆i z
i
j −∆i(1 − zij)

]

. (2.61)

However, the latter approximation is implementable, thus it would be interesting

to see if it is possible to use this.

For simplicity let us assume that the jumps of {uit} are bounded, which implies

that the overshoots (ηin)n∈N are also bounded. Then, from (2.36) and (2.59) we

have:

|ũit − uit| ≤ (∆i +∆i) + sup
n

|ηin| m̃i
t, t ≥ 0, (2.62)

where by m̃i
t we denote the number of transmissions from sensor i up to time t

which were associated with a non-zero overshoot, i.e. m̃i
t = max{n : τ in ≤ t , ηin 1=

0}.

Therefore, for the global approximation ũ =
∑K

i=1 ũ
i we have:

|ũt − ut| ≤ C + θ m̃t , |ũt − ũt−| ≤ C, t ≥ 0, (2.63)

where θ = maxi supn |ηin| , C =
∑K

i=1(∆i +∆i) , m̃t =
∑K

i=1 m̃
i
t.

(2.63) is the analogue of (2.41) in the case of discontinuous processes (with

bounded jumps) and shows that the distance between {ut} and {ũt} is unbounded.

This implies that the discontinuity of the sensor processes generates overshoots



CHAPTER 2. DECENTRALIZED SEQUENTIAL TESTING 43

whose accumulation can deteriorate significantly the quality of the D-SPRT. More-

over, it implies that in this context we need a different analysis than in the case of

sensor processes with continuous paths.

However, using the approximation (2.36) the fusion center ignores completely

the overshoots {ηin} and behaves as if the sensor processes had continuous paths.

Therefore, it is reasonable to expect that if we replace (2.36) with an approxi-

mation that incorporates the underlying sensor dynamics and approximates the

overshoots, we could mitigate the performance loss associated with the overshoot

accumulation.

A natural way to do so is to work directly with the log-likelihood ratio that cor-

responds to the fusion center filtration, {F̃t}, instead of trying to approximate the

log-likelihood ratio that corresponds to the global filtration in the sensor network,

{Ft}. This approach will lead to an approximation of the overshoots, however

it will not enjoy the universality of (2.36), which is an approximation completely

independent of the sensor dynamics. Indeed, in order to compute explicitly the

log-likelihood ratio that corresponds to the fusion center filtration, we need to

impose some structure on the sensors dynamics.

2.3.2 D-SPRT for jump-diffusions

2.3.2.1 Problem formulation

We assume that each sensor process {ξit} has stationary and independent incre-

ments and its paths have finitely many jumps. Moreover, we assume that the sensor

processes are independent under each hypothesis. Thus, we restrict ourselves to

the testing problem described by (2.23) and (2.24).

In this context the log-likelihood ratio process {ut} can be written as the sum

of the local log-likelihood ratios {uit}. Moreover, we can apply the level-triggered

communication scheme (2.32)-(2.33), which determines the flow of information at

the fusion center.

It is important to emphasize that sensor i sends to the fusion center not only the

bits (zin)n, but also -implicitly- the intercommunication periods (δin = τ in − τ in−1)n.
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Thus, the local filtration {F i
t} at sensor i is “approximated” at the fusion center

by

F̃ i
t = σ((zij , δ

i
j), j = 1, . . . ,mi

t), t ≥ 0. (2.64)

whereas the global filtration at the fusion center is:

F̃t = σ((zij , δ
i
j), j = 1, . . . ,mi

t, i = 1, . . . ,K), t ≥ 0. (2.65)

Due to the Lévy structure of the sensor processes and their independence under

each hypothesis, the pairs (zin, δ
i
n)n∈N are independent and identically distributed

and we denote their joint pdf under Hj by pij(z, δ), j = 0, 1.

Thus, the testing problem (2.24) at the sensors becomes at the fusion center

H0 : (z
i
n, δ

i
n) ∼iid pi0(z, δ), ∀ i , H1 : (z

i
n, δ

i
n) ∼iid pi1(z, δ), ∀ i (2.66)

2.3.2.2 The likelihood ratio at the fusion center

First of all, we observe that we can write:

pi1(z, δ) = πi
1 g

i
1(δ|z) {z=0} + (1− πi

1) g
i
1(δ|z) {z=1},

pi0(z, δ) = (1 − πi
0) g

i
0(δ|z) {z=0} + πi

0 g
i
0(δ|z) {z=1},

(2.67)

where πi
1 = P1(zin = 0),πi

0 = P0(zin = 1) and by gij(δ|z) we denote the conditional

pdf of δin given that zin = z under Hj , j = 0, 1.

Thus, πi
1 is the probability that sensor i exceeds the lower threshold −∆i

under H1, whereas πi
0 is the probability that sensor i exceeds the upper threshold

∆i under H0. In other words, we can think of πi
0 and πi

1 as the local type I and

type II error probabilities, respectively.

Moreover, the marginal pdf’s gij of δin under Hj , j = 0, 1 take the form:

gi0(δ) = πi
0 g

i
0(δ|z = 1) + (1 − πi

0) g
i
1(δ|z = 0)

gi1(δ) = πi
1 g

i
1(δ|z = 0) + (1 − πi

1) g
i
1(δ|z = 1)

(2.68)

Suppose now that we are at time t and that the fusion center has observed the

mi
t = k pairs (zi1, δ

i
1), . . . , (z

i
k, δ

i
k) from sensor i. Since τ ik =

∑k
l=1 δ

i
l we can write:

{mi
t = k} = {δi1+ · · ·+δik ≤ t < δi1+ · · ·+δik+δik+1} = {0 ≤ t−τ ik < δik+1} (2.69)
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and using the independence of the pairs we have:

Pj(m
i
t = k; (zi1, δ

i
1), . . . , (z

i
k, δ

i
k))

= Pj(0 ≤ t − τ ik < δik+1; (z
i
1, δ

i
1), . . . , (z

i
k, δ

i
k))

= [1− Gi
j(t − τ ik)]

(

k
∏

n=1

pij(z
i
n, δ

i
n)

)

{τ i
k≤t},

(2.70)

where Gi
j(δ) =

∫ δ
0 gij(x)dx is the cdf of δin and gij(δ) is the marginal pdf defined in

(2.68).

Using (2.67) we have:

P1(m
i
t = k; (zi1, δ

i
1), . . . , (z

i
k, δ

i
k)) =

(

[1− Gi
1(t − τ ik)]

k
∏

n=1

gi1(δ
i
n|zin) {τ i

k≤t}

)

×
k
∏

n=1

(1 − πi
1)

zin (πi
1)

1−zin

and similarly:

P0(m
i
t = k; (zi1, δ

i
1), . . . , (z

i
k, δ

i
k)) =

(

[1− Gi
0(t − τ ik)]

k
∏

n=1

gi0(δ
i
n|zin) {τ i

k≤t}

)

×
k
∏

n=1

(πi
0)

zin (1 − πi
0)

1−zin

In both expressions, the second factor in the right-hand side is the likelihood of

the 1-bit data {zi1, . . . , zik} and the first factor is the likelihood of the intersampling

periods {δi1, . . . , δik} conditioned on the 1-bit data {zi1, . . . , zik}.

The corresponding likelihood ratio then is:

dP1

dP0

∣

∣

∣

F̃ i
t

= eũ
i
t ×

[1− Gi
1(t − τ ik)]

[1− Gi
0(t − τ ik)]

×
mi

t
∏

n=1

gi1(δ
i
n|zin)

gi0(δ
i
n|zin)

, t ≥ 0 (2.71)

where ũit is the log-likelihood ratio of the 1-bit data that have been transmitted

from sensor i up to time t, i.e.

ũit =

mi
t

∑

j=1

λi
j , λi

j = Λiz
i
j − Λi(1 − zij) (2.72)

where

Λi = log
1− πi

1

πi
0

, Λi = log
1 − πi

0

πi
1

. (2.73)
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Combining all sensors and using their independence, we obtain the likelihood ratio

that refers to the total information F̃t accumulated at the fusion center until time

t:
dP1

dP0

∣

∣

∣

F̃t

= eũt × Lt (2.74)

where ũt =
∑K

i=1 ũ
i
t is the log-likelihood ratio of the 1-bit signals that have been

transmitted from all sensors up to time t, i.e.

ũt =
K
∑

i=1

mi
t

∑

j=1

[Λiz
i
j − Λi(1 − zij)] (2.75)

whereas Lt represents the likelihood ratio of the intersampling periods conditioned

on the 1-bit data, i.e.

Lt =
K
∏

i=1





[1− Gi
1(t − τ ik)]

[1− Gi
0(t − τ ik)]

×
mi

t
∏

n=1

gi1(δ
i
n|zin)

gi0(δ
i
n|zin)



 (2.76)

2.3.2.3 The partial log-likelihood ratio as test-statistic

The full log-likelihood ratio (2.74) is the ideal test-statistic at the fusion center.

However, in order to use it, we need to be able to compute both {ũt} and {Lt}.

The computation of {ũt} requires the knowledge of the quantities {Λi,Λi}, which

were defined in (2.73). These quantities are not known explicitly, however they

can be pre-computed using simulations. The same is not true for {Lt} for which

we neither have closed-form expressions nor we can use simulations.

Therefore, the full likelihood ratio at the fusion center is essentially decomposed

into a tractable and an intractable part. We choose to use only the tractable part,

thus we approximate {ut} with the marginal log-likelihood ratio {ũt} which was

defined in (2.75).

Notice that (2.75) has exactly the same form as (2.34) with the difference

that the thresholds ∆i,∆i have been replaced by the log-likelihood ratios Λi, Λi.

Therefore, the distance between {ut} and {ũt} will remain unbounded.

We emphasize that the motivation for using the “partial” log-likelihood ratio

{ũt} is the simplicity of the resulting sequential test, which allows us to ignore
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the intractable term {Lt} and does not require the fusion center to record the

interarrival times that correspond to each sensor.

Then, the sequential test at the fusion center is

S̃ = inf{t ≥ 0 : ũt /∈ (−Ã, B̃)}

dS̃ =







1, if ũS̃ ≥ B̃

0, if ũS̃ ≤ −Ã

(2.77)

The sequential test (2.77) is the continuous-time analogue of the scheme proposed

in [16], thus we will also call it D-SPRT.

2.3.3 Asymptotic optimality and design implications

We now state the performance of the D-SPRT in the above framework. As ex-

pected, the performance loss incurred by the D-SPRT is no longer bounded, how-

ever it turns out that their ratio of the D-SPRT over the SPRT performance will

be close to 1 as long as ∆i,∆i are large but smaller than Ã, B̃. In particular,

∆i,∆i should be around the square root of Ã and B̃.

First of all, in order to avoid unnecessary complications, we assume that there

is some quantity ∆ so that ∆i,∆i = Θ(∆) as ∆ → ∞ and that α = Θ(β). Then

we can prove the following result:

Proposition 2. If we let α → 0 and ∆ → ∞, then:

|Ej [uS̃ ] − Ej [uS ]| ≤
| logα|
Θ(∆)

+Θ(∆), j = 0, 1. (2.78)

Consequently, the D-SPRT (S̃, dS̃) is asymptotically optimal of order-1, in the

sense that
Ej [uS̃ ]

Ej [uS ]
−→ 1, j = 0, 1 (2.79)

as long as ∆ = o(| logα|).

Moreover, the optimal choice for the divergence rate of ∆ is ∆ = O(
√

| logα|)

in which case then we have:

Ej [uS̃ ] − Ej [uS ]

Ej [uS ]
= O(| logα|−1/2), j = 0, 1, (2.80)
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We skip the proof of this result since it is essentially identical to the corre-

sponding proof in the discrete-time context, which we present in the end of the

next section.

It is interesting to note that despite the fact that the underlying processes are

assumed to be continuously observed, the D-SPRT cannot be order-2 asymptoti-

cally optimal when the observed paths are not continuous.

On the other hand, under (2.24) the D-SPRT has exactly the same order-

1 asymptotic optimality that it enjoys in the case of Itô processes (see (2.47)).

Thus, the D-SPRT has the same behavior for both problems (2.5) and (2.24) when

∆i,∆i → ∞. The difference of course is that under (2.5) smaller values for ∆i,∆i

improve the performance of the D-SPRT, whereas this is no longer true under

(2.24) due to the overshoot effect.

2.4 Decentralized sequential testing in discrete time

We now consider the discrete-time sequential testing problem (2.28), thus we as-

sume that sensor i observes a sequence (ξit)t∈N of independent and identically

distributed random variables under each hypothesis. We additionally assume in-

dependence across sensors, thus the global log-likelihood ratio {ut} –defined in

(2.29)– admits the decomposition ut =
∑K

i=1 u
i
t, where {uit} is the marginal log-

likelihood ratio that corresponds to the sequence {ξit}.

2.4.1 Level-triggered communication and overshoot effect

Before we define the suggested communication scheme in this framework, we should

underline that in discrete time a sensor is able to communicate with the fusion

center every time it takes an observation. In other words, every observation time

can be a communication time, i.e. τ in = n, n ∈ N. However, insisting on the idea

that the sensors should communicate with the fusion center only when they have

an important message to transmit, we propose the same communication scheme

as in the continuous time case. Thus, we suggest that sensor i communicate with
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the fusion center at the times

τ in = inf{t ≥ τ in−1 : u
i
t − uiτ i

n−1
/∈ (−∆i,∆i)}, n ∈ N, (2.81)

transmitting the messages

zin =











1, if uiτ i
n
− ui

τ i
n−1

≥ ∆i

0, if uiτ i
n
− ui

τ i
n−1

≤ −∆i

(2.82)

which informs the fusion center whether ui has increased at least by∆i or decreased

at least by ∆i in comparison to its value at the previous communication time,

where ∆i,∆i are positive constants, fixed in advance and known to the fusion

center. Notice that the number of times that sensor i has communicated with the

fusion center up to time t is random, it takes values in {0, 1, . . . , t} and we denote

it by mi
t = max{j : τ ij ≤ t}.

As in the case of Lévy processes, the fusion center cannot recover the value

of ui at the communication times (τ in)n using the signals (zin)n. Indeed, (2.34) is

replaced by

uiτ i
n
=

n
∑

j=1

[∆iz
i
j −∆i(1 − zij)] +

n
∑

j=1

ηij , n ∈ N (2.83)

where with ηin we denote the overshoot

ηin = (uiτ i
n
− uiτ i

n−1
−∆i)

+ + (uiτ i
n
− uiτ i

n−1
+∆i)

−, n ∈ N (2.84)

to which the fusion center does not have access. Notice moreover that the over-

shoots (ηin) are non-zero with probability 1, thus every transmission is associated

with an overshoot which deteriorates the D-SPRT performance (whereas in the case

of jump diffusions the overshoots have positive probability to be 0). We illustrate

the overshoot effect under a discrete-time setup in Fig. 2.10. Despite this differ-

ence, it is clear that the discrete-time framework shares a lot of similarities with the

case of continuously observed Lévy processes, since the probabilistic structure in

both problems is the same (independent sensors, iid observations/increments) and

in both setups there is an overshoot effect. Therefore, we can argue in exactly the
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Figure 2.10: Overshoots in level-triggered communication

same way as in the jump-diffusion case and suggest the following approximation

to the local log-likelihood ratio uit

ũit =
n
∑

j=1

[Λiz
i
j − Λi(1 − zij)], τ in ≤ t < τ in (2.85)

where

Λi = log
P1(zin = 1)

P0(zin = 1)
, −Λi = log

P1(zin = 0)

P0(zin = 0)
. (2.86)

and the following sequential test at the fusion center

S̃ = inf{t ∈ N : ũt /∈ (−Ã, B̃)}

dS̃ =







1, if ũS̃ ≥ B̃

0, if ũS̃ ≤ −Ã

(2.87)

In Fig. 2.11 we show that using the statistic {ũit} mitigates to some extent the

overshoot effect.

2.4.2 Asymptotic optimality and design implications

Before we state the main result, we introduce some quantities that will be useful

in the statement of the result and its proof. Thus, we denote by θ the maximal
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Figure 2.11: Fusion center approximation in discrete-time (continuation of 2.10)

expected overshoot:

θ = max
j

max
i

Ej [|ηi1|]. (2.88)

Moreover, we assume that there is some quantity ∆ so that ∆i,∆i = Θ(∆) as

∆ → ∞ and that α,β → 0 so that α = Θ(β). We then have the following result.

Proposition 3. If we let α → 0 and ∆ → ∞, then:

|Ej [uS̃ ] − Ej [uS ]| ≤ θ
| logα|
Θ(∆)

+Θ(∆), j = 0, 1. (2.89)

Moreover, if ∆ = o(| logα|), the D-SPRT is asymptotically optimal of order-1, i.e.

Ej [uS̃ ]

Ej [uS ]
−→ 1, j = 0, 1. (2.90)

Finally, the optimal divergence rate for ∆ is ∆ = O(
√

| logα|), in which case we

have:
Ej [uS̃ ] − Ej [uS ]

Ej [uS ]
= O(| logα|−1/2), j = 0, 1. (2.91)

Therefore, in order to optimize the asymptotic performance of the D-SPRT,

the local thresholds ∆i,∆i should be large, but smaller than Ã, B̃; in particular,

∆i,∆i should be around the square root of Ã, B̃. This result reflects the trade-

off in the heart of the discrete-time D-SPRT. On the one hand, small thresholds
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{∆i,∆i} allow the overshoot to be large and aggravate the inflicted performance

loss. On the other hand, large thresholds {∆i,∆i} stabilize the overshoot but

delay the communication between sensors and fusion center and the corresponding

decision at the fusion center. We illustrate this trade-off in a “microscopic” level

in Fig. 2.12 and in a “macroscopic” level in Fig. 2.13.

The proof of this proposition is quite involved and we present in the end of this

chapter. Before we do that, in the next section we explore how the performance

of the D-SPRT can be improved dramatically with oversampling at the sensors.
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Figure 2.12: Small vs. Large Thresholds and overshoot effect

2.4.3 Oversampling and order-2 asymptotic optimality

The previous proposition implies that the performance loss of the discrete-time

D-SPRT is unbounded and that asymptotic optimality can be achieved only if we

let ∆i,∆i → ∞. However, it is easy to see from (2.89) that for any fixed thresholds

{∆i,∆i} the inflicted performance loss becomes asymptotically bounded as long

as we let θ → 0 so that θ = O(| logα|−1).

Therefore, if we fix the thresholds ∆i,∆i, the D-SPRT will have a bounded

distance from the SPRT as long as the overshoot parameter θ vanishes at a certain
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t
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Figure 2.13: Small vs. large Thresholds and overshoot effect.

rate with the horizon of observations. Of course, for this result to be of practical

interest, the designer of the scheme should be able to control the overshoot pa-

rameter θ and make it as small as possible, just like he can control the horizon of

observations through Ã, B̃ and the rate of communication through ∆i,∆i. It turns

out that this is indeed possible in some cases, as the one that we now present.

Suppose that the underlying sensor processes are independent Brownian mo-

tions, so that the underlying hypothesis testing problem is:

H0 : ξ
i
t = W i

t H1 : ξ
i
t = W i

t + bit, t ≥ 0 (2.92)

where (W 1, . . . ,WK) is a K-dimensional Brownian motion and b1, . . . , bK known

constants. If each sensor i observes its underlying process {ξit} continuously, then

(2.92) is a special case of (2.5) and the resulting D-SPRT is order-2 asymptotically

optimal.

On the other hand, if all sensors observe their underlying process only at the

discrete-times t = 0, h, 2h, . . ., as it is the case in practice, then the hypothesis

testing problem (2.92) becomes

H0 : ξ
i
nh − ξ(n−1)h ∼iid N (0, h), ∀i H1 : ξ

i
nh − ξ(n−1)h ∼iid N (bih, h), ∀i (2.93)
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which is a special case of (2.28), therefore (2.89) characterizes the asymptotic

performance of the discrete-time D-SPRT.

We will now show that in the context of problem (2.93) we can control the

overshoot parameter θ through the sampling period h at the sensors. In particular,

we will prove that θ = O(h1/4).

In order to establish this claim, we start by the log-likelihood ratio of the

Brownian increments {ξith − ξi(t−1)h}t∈N, which is

uit =
t

∑

n=1

[

−0.5|bi|2h+ bi(ξ
i
nh − ξi(n−1)h)

]

, t ∈ N. (2.94)

Setting

τ i1 = inf{t > 0 : uit ≤ −∆i}; τ i1 = inf{t > 0 : uit ≥ ∆i}. (2.95)

we can write

τ i1 ≡ inf{t > 0 : uit /∈ (−∆i,∆i)} = min{τ i1, τ i1}

ηi1 ≡ (uiτ i
1
−∆i)

+ − (uiτ i
1
+∆i)

−

= (uiτ i
1
−∆i) {ui

τi
1

≥∆i}
− (uiτ i

1
+∆i) {ui

τi
1

≤−∆i}

(2.96)

and we have the following upper bound on Ej [|ηi1|]:

Ej [|ηi1|] ≤ Ej [u
i
τ i
1
−∆i] + Ej [−(uiτ i

1
+∆i)]. (2.97)

Then, from [27] we obtain the following upper bounds on the two terms of the

right-hand side:

sup
∆i>0

Ej [u
i
τ i
1
−∆i] ≤

[

r + 2

r + 1

Ej [|0i1|r+1]

|Ej [0i1]|

]1/r

,

sup
∆i>0

Ej [−(uiτ i
1
+∆i)] ≤

[

r + 2

r + 1

Ej [|0i1|r+1]

|Ej [0i1]|

]1/r
(2.98)

where r ≥ 1. Setting r = 2 we get:

sup
∆i>0

E1[u
i
τ i
1
−∆i] = O(h1/4) , sup

∆i>0
−E0[u

i
τ i
1
+∆i] = O(h1/4). (2.99)

and consequently θ = maximaxj Ej [|ηi1|] = O(h1/4), which was the claim we

wanted to prove. Therefore, the designer of the scheme can force θ to tend to

0 by letting h → 0.
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We can now state the following proposition.

Proposition 4. Consider the hypothesis testing problem (2.93) and the discrete-

time D-SPRT where the thresholds ∆i,∆i are arbitrary and fixed. If we let h → 0

and α → 0 so that h1/4 · | logα| = O(1), the discrete-time D-SPRT becomes order-2

asymptotically optimal, i.e. Ej [uS̃ ] − Ej [uS ] = O(1), j = 0, 1.

This proposition reconciles the behavior of the D-SPRT in discrete and contin-

uous time. In particular, it specifies how frequent the sampling at the sensors must

be for the assumption of “continuous-time” to be valid. Moreover, it implies that

the sensors should sample their underlying continuous-time processes as frequently

as possible without worrying very much about the choice of the thresholds ∆i,∆i.

Indeed, if the sensor processes are sampled “sufficiently” fast, the resulting perfor-

mance loss is bounded, whereas the D-SPRT performance becomes a decreasing

function of the thresholds {∆i,∆i} and the latter will be determined exclusively

by the cost of communication and the available budget.

It is important to underline that this property of the D-SPRT is not at all

trivial and is not necessarily shared by other decentralized schemes. We illustrate

this point with some simulation experiments. We set K = 2, b1 = b2 = 1 and

we consider two values for the sampling period h and the thresholds ∆i = ∆i, i.e.

h = 1, 0.1 and ∆i = ∆i = 1, 2. We compare the discrete time D-SPRT with the

optimal discrete time SPRT and also with the test suggested by Mei in [31], which

is asymptotically optimal.

Fig. 2.14 depicts the K-L divergence of the competing schemes. We recall that

in this case the K-L divergence is proportional to the expected detection delay.

The reason that we decided to present the former measure instead of the latter

is because the K-L divergence is independent of the size of the samples while the

detection delay varies drastically with this quantity (smaller samples tend to need

more time to reach the same threshold).

We observe that D-SPRT exhibits a notable performance improvement when

we go from the value h = 1 to h = 0.1. This is in complete accordance with

our previous analysis since h = 0.1 generates likelihood ratios and overshoots of
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(a)

(b)

Figure 2.14: Performance of centralized and decentralized tests for Brownian Mo-

tions
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smaller size than h = 1. The optimum SPRT on the other hand and Mei’s scheme

are relatively insensitive to this change of size in the samples. For D-SPRT, it

is basically the error accumulation expressed though the difference |ut − ũt| that

improves as we use smaller h, incurring an overall performance improvement. What

is also worth emphasizing for the D-SPRT is that the communication frequency

(expressed in continuous time) between the sensors and the fusion center stays

relatively unchanged under both values of h while in the other two schemes it

increases by a factor of 10.

Finally, in Fig. 2.14 we can also observe that the performance of the D-SPRT,

as a function of the local threshold value ∆i = ∆i = ∆, is not monotone. Indeed,

case ∆ = 2 is better than ∆ = 1 for smaller values of α. Additionally, the error

probability values where ∆ = 2 prevails are increasing with the size of the samples.

This performance can be explained by our analysis. We recall that the optimum

local threshold is Θ(
√

θ| logα|) suggesting that the error probability where any

specific ∆ is optimum is roughly α = Θ(exp(−∆2/θ)). Consequently, a larger

threshold delivers better performance at a smaller error probability and this value

is an increasing function of the size θ of the samples.

2.4.4 Proof

In this section we prove inequality (2.89), which is the analogue of inequality

(2.39) and guarantees the asymptotic optimality of the D-SPRT in discrete-time.

We prove the result only under H1 with the understanding that the proof is almost

identical under H0.

We start with the main idea of the proof and discuss the additional complica-

tions that are presented in the discrete-time setup. First of all, we observe that

|ũt− ũt−1| ≤ C ′ =
∑K

i=1(Λi+Λi), which is the analogue of the second inequality in

(2.41). From this observation it is clear that ũS̃−B̃ ≤ C ′. Moreover, we recall that

for the discrete-time centralized SPRT we have E1[uS ] ≥ | logα| + o(1), therefore
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–following the same steps as in the proof of (2.39)– we have:

E1[uS̃ − uS ] ≤ E1[|uS̃ − ũS̃ |] + E1[ũS̃ ] − E1[uS ]

≤ E1[|uS̃ − ũS̃ |] + B̃ + C ′ − | logα|+ o(1)

≤ E1[|uS̃ − ũS̃ |] + (B̃ − | logα|) + C ′ + o(1)

(2.100)

In the case of Itô processes, both E1[|uS̃ − ũS̃ |] and B̃ − | logα| were bounded by

C =
∑K

i=1(∆i +∆i) due to the pathwise inequality |ut − ũt| ≤ C, t ≥ 0. However,

a similar inequality is no longer true in discrete time due to the emergence of the

overshoots.

Therefore, in order to prove (2.89) we essentially have two establish appropriate

upper bounds for B̃ − | logα| and E1[|uS̃ − ũS̃ |], i.e. to estimate the overshoot

accumulation.

2.4.4.1 Connecting the thresholds Ã, B̃ with the error probabilities α,β

Lemma 1.

B̃ ≤ | logα| , Ã ≤ | log β| (2.101)

Proof. Let us assume for simplicity that at any given time the fusion center receives

at most one message from the sensors. This will allow us to prove the result

avoiding difficulties in the notation, but we remove this assumption in the end of

the proof.

First of all, we denote by zn the nth binary message that arrives at the fusion

center irrespectively of the sensor which sent it and by kn the identity of the sensor

which transmitted the nth sample. The flow of information at the fusion center

is then described by the filtration {Cn}, where Cn = σ((z1, k1) . . . , (zn, kn)). The

fusion center likelihood under Hj after the arrival of the first n messages is:

Pj((z1, k1), . . . , (zn, kn)) = Pj(k1, . . . , kn)
n
∏

l=1

Pj(zl|z1, . . . , zl−1, k1, . . . , kn)

= Pj(k1, . . . , kn) ·
n
∏

l=1

Pj(zl|kl)
(2.102)

The first equality uses simply the definition of conditional probability. The second

equality is based on the fact that zl (the value of the lth transmitted message at the
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fusion center) is independent of all other messages {(zj , kj), j 1= l} conditionally

on kl (the identity of the sensor from which the lth message was transmitted). For

the third equality we simply used our notation that a sample coming from sensor

i is denoted as zi.

The likelihood ratio after the arrival of the nth message is

P1((z1, k1), . . . , (zn, kn))

P0((z1, k1) . . . , (zn, kn))
= φn e

ṽn (2.103)

where –recalling the definition of the log-likelihood ratios Λi,Λi– we define

φn =
P1(k1, . . . , kn)

P0(k1, . . . , kn)

ṽn =
n
∑

j=1

[Λkj zj + Λkj (1− zj)].
(2.104)

The process ṽn is of course closely related to the process ũt. Note that ũt is

expressed in terms of the global time t, whereas ṽn in terms of the number of

messages n received by the fusion center. To explicitly specify their dependence,

let {τn} be the increasing sequence of communication times between any sensor

and the fusion center, where τn is the time instant (in global time) that the fusion

center receives its nth message. Then the two processes are related through the

equality ṽn = ũτn .

The fusion center policy can also be expressed in terms of number of messages

at the fusion center as

Ñ = inf{n ∈ N : ṽn /∈ (−Ã, B̃)}

d
Ñ

=







1, if ṽ
Ñ

≥ B̃

0, if ṽ
Ñ

≤ −Ã,

(2.105)

and we clearly have T̃ = τ
Ñ

and d
T̃

= d
Ñ
. Now, Ñ is a {Cn}-stopping time

which represents the number of messages that are collected by the fusion center

until a decision is reached by D-SPRT, whereas d
Ñ

is C
Ñ
-measurable random

variable which represents the D-SPRT decision rule.
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Since {d
Ñ

= 0} = {ṽ
Ñ

≤ −Ã} ∈ C
Ñ
, with a change of measure we have

β = P1(dÑ
= 0) = E1[ {ṽ

Ñ
≤−Ã}] = E0[e

ṽ
Ñ φ

Ñ {ṽ
Ñ

≤−Ã}] ≤ e−Ã E0[φÑ
],

(2.106)

and taking logarithms in both sides we obtain Ã ≤ | log β| + log E0[φÑ
], thus

it suffices to show that E0[φÑ
] = 1. But {φn} is a likelihood ratio, thus it is

a (P0, {Cn})-martingale with P0-expectation equal to 1. Therefore, it suffices to

show that we can apply optional sampling theorem. This is possible due to the

special form of the {Cn}-stopping time Ñ .

Indeed, since Ñ is a P0-a.s. finite stopping time, it suffices to show that

E0[|φÑ
|] < ∞ and limn→∞ E0[φn {n<Ñ }] = 0. Since φn is a Cn-measurable random

variable and {n < Ñ } ∈ Cn, from a change of measure we obtain

E0[φn {n<Ñ }] = E1[e
−ṽnφ−1

n φn {n<Ñ }]

= E1[e
−ṽn

{n<Ñ }] ≤ emax{Ã,B̃}P1(n < Ñ ) → 0
(2.107)

as n → ∞. Notice that the inequality is due to the fact that −Ã < ṽn < B̃ for

n < Ñ , whereas for the limit we have used the fact that Ñ is P1-a.s. finite.

Similarly, we have

E0[|φÑ
|] = E0[φÑ

] = E1[e
−ṽ

Ñ φ−1
Ñ

φ
Ñ
] = E1[e

−ṽ
Ñ ] ≤ emax{Ã,B̃}+C′

< ∞ (2.108)

Therefore, we can apply the optional sampling theorem and obtain E0[φÑ
] = 1,

which proves the first inequality in (2.89). The second inequality can be shown in

an analogous way.

Of course, two or more sensors can transmit a message at the same time, thus

we need to modify the previous proof. However, this is straightforward; we can

denote by zn and kn the vector of transmitted messages and labels, respectively,

at the nth time the fusion center receives messages from the sensors. For example,

if the first messages that the fusion center receives come concurrently from sensor

1 and sensor 3, then we have k1 = (1, 3). Moreover, if sensor 1 has transmitted an

“upward” message and sensor 3 a “downward” one, then we have z1 = (1, 0) and

the log-likelihood ratio becomes ṽ1 = Λ1 − Λ3.
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2.4.4.2 Asynchronous Wald’s identities

Let us set ζin = f(δin, z
i
n, η

i
n), where δin = τ in − τ in−1 and f(δ, z, η) is an arbitrary

Borel function. Since the triplets (δin, z
i
n, η

i
n)n∈N are independent and identically

distributed, it follows that {ζin} is also a sequence of independent and identically

distributed random variables under each hypothesis.

For each i we consider the following filtration Ci
n ≡ Fτ i

n
, n ∈ N and in the

following lemma we connect {Ft}-stopping times and {Ci
n}-stopping times.

Lemma 2. Let T be an arbitrary {Ft}-stopping time. Then, for each i, the random

variable mi
T + 1 is an {Ci

n}-stopping time, where mi
t = max{n : τ in ≤ t}.

Proof. For any n ∈ N we have:

{mi
T + 1 = n} = {mi

T = n − 1} = {τ in−1 ≤ T < τ in}

= {T < τ in−1}c ∩ {T < τ in}

= {T ≤ τ in−1 − 1}c ∩ {T ≤ τ in − 1}

(2.109)

Then, since T is an {Ft}-stopping time, we have:

{mi
T + 1 = n} ∈ Fτ i

n−1−1 ∩ Fτ i
n−1 ⊂ Fτ i

n
≡ Ci

n. (2.110)

Lemma 3. If T is a Pj-integrable {Ft}-stopping time and Ej [|ζi1|] < ∞, then:

Ej

[

mi
T
+1

∑

n=1

ζin

]

= Ej [m
i
T + 1]E[ζi1] (2.111)

If moreover ζin ≥ 0, then:

Ej

[

mi
T

∑

n=1

ζin

]

≤ (Ej [m
i
T ] + 1) E[ζi1] (2.112)

whereas if |ζin| ≤ M , then:

∣

∣

∣
Ej

[

mi
T

∑

n=1

ζin

]

− Ej [m
i
T ] Ej [ζ

i
1]
∣

∣

∣
≤ 2M (2.113)
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Proof. Since {ζn} is a {Ci
n}-adapted sequence of independent and identically dis-

tributed random variables with finite mean andmi
T +1 an integrable {Ci

n}-stopping

time, (2.111) is a classical Wald’s identity. The integrability of mi
T +1 follows from

the integrability of T , since mT ≤ T .

For (2.112) it suffices to observe that since ζin ≥ 0 we have:

Ej

[

mi
T
+1

∑

n=1

ζin

]

≤ Ej

[

mi
T
+1

∑

n=1

ζin

]

= Ej [m
i
T + 1]E[ζi1] (2.114)

For (2.113), we have:

Ej

[

mi
T
+1

∑

n=1

ζin

]

− Ej

[

mi
T

∑

n=1

ζin

]

= Ej [ζ
i
mi

T
+1]

Ej [m
i
T + 1]Ej [ζ

i
1] − Ej

[

mi
T

∑

n=1

ζin

]

= Ej [ζ
i
mi

T
+1]

Ej [m
i
T ]Ej [ζ

i
1] − Ej

[

mi
T

∑

n=1

ζin

]

= Ej [ζ
i
mi

T
+1] − Ej [ζ

i
1]

(2.115)

and consequently since |ζin| ≤ M we have:

∣

∣

∣
Ej

[

mi
T

∑

n=1

ζin

]

− Ej [m
i
T ]Ej [ζ

i
1]
∣

∣

∣
≤ |Ej [ζ

i
mi

T
+1]|+ |Ej [ζ

i
1]| ≤ 2M (2.116)

Lemma 4. Suppose that E0[eζi1 ] = 1. If T is a Pj-finite {Ft}-stopping time, then

E0

[

mi
T
+1

∏

n=1

eζin
]

= 1 (2.117)

If moreover ζin ≥ −M where M is some positive constant, then:

E0

[

mi
T

∏

n=1

eζin
]

≤ eM (2.118)

Proof. (2.117) is a direct consequence of the so-called Wald’s likelihood-ratio iden-

tity, since {
∏n

l=1 e
ζl} is a {Ci

n}-martingale with P0-expectation equal to 1 and

mi
T + 1 an {Ci

n}-stopping time. For (2.118) we observe:

1 = E0

[

mi
T
+1

∏

n=1

eζin
]

= E0

[

e
ζ
mi

T
+1

mi
T

∏

n=1

eζin
]

≥ e−M E0

[

mi
T

∏

n=1

eζin
]

(2.119)
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which leads to the desired result.

2.4.4.3 The proof

In this section we present the final steps of the proof in a series of lemmas. Before

we do so, we recall that we have set

C =
K
∑

i=1

(∆i +∆i) , C
′ =

K
∑

i=1

(Λi + Λi) (2.120)

and introduce some additional notation that will be important in the next lemmas.

Thus, recalling that λi
n = Λizin −Λi(1− zin) is the log-likelihood ratio of zin, we set

Ĩi0 = E0[−λi
1] , Ĩ

i
1 = E1[λ

i
1] , Ĩ = min

i,j
Ĩij . (2.121)

and

R = max
i

{Λi −∆i , Λi −∆i} , θ = max
i,j

Ej [|ηi1|] (2.122)

The following lemma shows the log-likelihood ratios Λi,Λi are always larger than

the thresholds ∆i,∆i, but their distance remains bounded no matter how large

the thresholds ∆i,∆i become. Moreover, it provides a lower bound for Ĩ in terms

of ∆i,∆i.

Lemma 5. We recall the definition of the function s(x, y) in (2.15). Then:

1.

0 ≤ Λi −∆i ≤ θ

1 − e−∆i
, 0 ≤ Λi −∆i ≤ θ

1 − e−∆i
, (2.123)

2.

Ĩi1 = s(Λi,Λi) ≥ s(∆i,∆i) , Ĩi0 = s(Λi,Λi) ≥ s(∆i,∆i) (2.124)

3. As ∆i,∆i → ∞

C ′ = Θ(∆) ,
1

Ĩ
≤ 1

Θ(∆)
, R =

θ

1 + o(1)
(2.125)
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Proof. Given the inequalities (2.123), (2.124) follows from the definition of Ĩi0, Ĩ
i
1

and the fact that the function s(x, y) is increasing in each of its arguments. The

inequality (2.125) follows also from (2.123), therefore it suffices to prove (2.123).

In order to lighten the notation we denote zi = zi1, τ i = τ i1. Then from a

change of measure we have:

P0(z
i = 1) = e−∆i E1[e

−(ui
τi
−∆i)

{ui
τi
−∆i}

]

= e−∆i P1(z
i = 1)E1[e

−(ui
τi
−∆i)|uiτ i ≥ ∆i]

(2.126)

thus from the definition of Λi we have:

e−Λi =
P0(zi = 1)

P1(zi = 1)
= e−∆i E1[e

−(ui
τi
−∆i)|uiτ i ≥ ∆i] (2.127)

and

Λi −∆i = − log E1[e
−(ui

τi
−∆i)|uiτ i ≥ ∆i] (2.128)

From this relationship it is obvious that ∆i ≤ Λi. Moreover, from an application

of conditional Jensen’s inequality in the same relationship we have:

Λi −∆i ≤ E1[(u
i
τ i −∆i)| uiτ i ≥ ∆i] =

E1[(uiτ i −∆i)+]

P1(uiτ i ≥ ∆i)
≤ θ

1 − e−∆i
(2.129)

which is what we wanted to prove. The final inequality is due to the definition of

θ and the following change of measure:

P1(u
i
τ i ≥ ∆i) = 1 − P1(z

i = 0) = 1 − E0[e
ui
τi {ui

τ≤−∆i}
] ≥ 1− e−∆i . (2.130)

The other inequality in (2.123) can be proven in a similar way.

The following lemma is the discrete-time analogue of the pathwise inequality

(2.41).

Lemma 6. Let mi
t be the number of messages transmitted from sensor i to the

fusion center up to time t, i.e. mi
t = max{n ∈ N : τ in ≤ t}. Then:

|ut − ũt| ≤ C +
K
∑

i=1

mi
t

∑

n=1

[

|ηin|+max{Λi −∆i , Λi −∆i}
]

, t ∈ N (2.131)
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Proof. Using the triangle inequality we have

|ut − ũt| ≤
K
∑

i=1

|uit − ũit|

≤
K
∑

i=1

|uit − uiτ
mi

t

|+
K
∑

i=1

mi
t

∑

n=1

|uiτ i
n
− uiτ i

n−1
− λi

n|

≤ C +
K
∑

i=1

mi
t

∑

n=1

|uiτ i
n
− uiτ i

n−1
− λi

n|

(2.132)

Thus, it remains to show |uiτ i
n
− ui

τ i
n−1

− λi
n| ≤ |ηin| + max{Λi − ∆i,Λi − ∆i} and

it suffices to prove this inequality for n = 1. Indeed, we have:

uiτ i
1
− λi

1 = (uiτ i
1
−∆i +∆i − Λi) z

i
1 + (uiτ i

1
+∆i −∆i + Λi) (1 − zi1)

= (uiτ i
1
−∆i)

+ + (∆i − Λi) z
i
1 − (uiτ i

1
+∆i)

− − (∆i − Λi) (1 − zi1)
(2.133)

Then, from (2.123) we obtain:

|uiτ i
1
− λi

1| ≤ (uiτ i
1
−∆i)

+ + (uiτ i
1
+∆i)

− +max{Λi −∆i , Λi −∆i}, (2.134)

which is what we wanted to prove.

Lemma 7.

Ej [|uS̃ − ũS̃ |] ≤ (θ +R)
( | logα|+ 3C ′

Ĩ
+K

)

, j = 0, 1. (2.135)

Proof. If we set ζin = |ηin|+max{Λi−∆i , Λi−∆i} in (2.112) and take expectations

in (2.131), then – using the definition of θ and R– we obtain

E1[|uS̃ − ũS̃ |] ≤
K
∑

i=1

(

E1[m
i
S̃
] + 1

)(

E1[|ηi1|] + max{Λi −∆i , Λi −∆i}
)

≤ (θ +R) (E1[mS̃ ] +K).

(2.136)

where we denote by mt =
∑K

i=1m
i
t the number of transmissions to the fusion

center from all sensors up to time t.
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Moreover, since λi
n is bounded by Λi + Λi, setting ζin = λi

n in (2.113) and

recalling the definition of Ĩ we have:

E1

[

mi
S̃

∑

n=1

λi
n

]

≥ E1[m
i
S̃
]Ĩ − 2(Λi + Λi) (2.137)

and adding over i we obtain:

E1[ũS̃ ] = E1

[

K
∑

i=1

mi
S̃

∑

n=1

λi
n

]

≥ ĨE1[mS̃ ] − 2C ′ (2.138)

But since ũS̃ cannot exceed B̃ more that C ′, we have ũS̃ ≤ B̃ + C ′ and since

B̃ ≤ | logα| we obtain:

E1[mS̃ ] ≤
| logα|+ 3C ′

Ĩ
(2.139)

and consequently (2.136) becomes

E1[|uS̃ − ũS̃ |] ≤ (θ +R)
( | logα|+ 3C ′

Ĩ
+K

)

, (2.140)

which is what we wanted to prove.

The desired result now follows by substituting (2.101), (2.125) (2.135) into

(2.100).
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Chapter 3

Decentralized quickest

detection

The structure of this chapter is the following: we start with a review of centralized

sequential change-detection with an emphasis on the Cumulative Sums (CUSUM)

test (Sec.3.1). We then define and analyze the proposed decentralized sequential

detection rule, which we call D-CUSUM; first in continuous time, in the case of

Itô processes (Sec.3.2.1) and then in discrete time, in the case of independent and

identically distributed observations (Sec.3.2.2).

The D-CUSUM is the analogue of the decentralized sequential test (D-SPRT)

that we analyzed in the previous chapter. This allows us to use some results

from the previous chapter and obtain a more compact proof for the asymptotic

optimality of D-CUSUM in discrete time.

3.1 Quickest detection under a centralized setup

Let (ξ1t , . . . , ξ
K
t )t≥0 be a K-dimensional stochastic process, each component of

which is observed sequentially at a different location or sensor. We describe the

flow of information locally at sensor i and globally at the sensor-network by the

filtrations {F i
t}t≥0 and {Ft}t≥0 respectively, where F i

t = σ(ξis, 0 ≤ s ≤ t) and

Ft = σ(ξis, 0 ≤ s ≤ t, i = 1, . . . ,K).
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Figure 3.1: Sensor network

All sensors transmit their observations to a fusion center, as it is schematically

shown in (3.1). In this section we consider a centralized setup, where the sensors

transmit all their observations to the fusion center, therefore the filtration at the

fusion center coincides with the global filtration {Ft} at the sensor network.

We assume that due to a disorder in the network or the emergence of a sig-

nal the dynamics of each component {ξit} change abruptly and simultaneously at

some unknown –but deterministic– time τ . Therefore, the distribution P of the

stochastic process {ξ1t , . . . , ξKt }t≥0 is parametrized by the time of the change τ and

the measure Pτ represents the distribution of {ξ1t , . . . , ξKt } when the change occurs

at time τ . In particular, P∞ corresponds to the pre-change distribution and P0 to

the post-change distribution.

We require that Pτ is equivalent to P∞ when both measures are restricted to the

σ-algebra Ft for all t ∈ [τ,∞) and we denote the corresponding Radon-Nikodym

derivative as follows
dPτ

dP∞

∣

∣

∣

Ft

= eut−uτ , τ ≤ t < ∞. (3.1)

where u0 = 1. Therefore, eut is the likelihood ratio of the post-change distribution

P0 versus the pre-change distribution P∞ given Ft.
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The goal is to find a rule at the fusion center that detects the change as quickly

as possible, while avoiding many false alarms in repeated applications of this rule.

Due to the sequential nature of the observations, a (centralized) detection rule is

a stopping time with respect to the fusion center filtration (which is {Ft} under a

centralized setup).

Following Lorden [28] and Moustakides [33] we define as optimal centralized

detection rule the {Ft}-stopping time that minimizes the following criterion:

J [T ] = sup
t≥0

esssup Et

[

(uT − ut) {T ≥t}|Ft

]

(3.2)

among {Ft}-stopping times T that satisfy the following false alarm constraint

E∞[−uT ] ≥ γ (3.3)

where γ is a fixed, positive constant. This constrained optimization problem was

suggested by Moustakides in [33] and is a generalization of the approach proposed

by Lorden in [28], according to which the optimal detection rule is the {Ft}-

stopping time that minimizes the following criterion:

JL(T ) = sup
t≥0

esssup Et

[

(T − t)+|Ft

]

(3.4)

among {Ft}-stopping times that satisfy the following false alarm constraint

E∞[T ] ≥ γ (3.5)

In both problems, the optimal detection rule has the smallest worst-case condi-

tional “detection delay” given the worst possible history up to the time of change

among detection rules whose expected “period of false alarms” is at least equal to

some constant γ. This constant is fixed in advance and expresses the tolerance to

false alarms. Thus, both criteria take into account the worst case scenario not only

with respect to the time of the change, but also with respect to the whole history

up to the time of the change. However, they measure detection delay and penalize

false alarms differently; in terms of the actual time in (3.4)-(3.5), in terms of the

Kullback-Leibler divergence in (3.2)-(3.3).
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Moreover, both criteria are closely associated with the Cumulative Sums (CUSUM)

test, which is defined as follows:

Sν = inf{t ≥ 0 : ut − inf
0≤s≤t

us ≥ ν}, (3.6)

The CUSUM test was proposed by Page in [39] in ’54, much earlier than the above

criteria, which actually provided a strong theoretical support to the CUSUM rule.

We now review the optimality properties of the CUSUM test with respect to (3.2)-

(3.3) in the case of Itô processes and in the case of independent and identically

distributed observations.

3.1.1 The case of Itô processes

Suppose that we have the following dynamics

ξt = {t>τ}

∫ t

0
bs ds+

∫ t

0
σs · dWs, t ≥ 0 (3.7)

in which case the log-likelihood ratio process {ut} takes the following form

ut =

∫ t

0
θs · dξs − 1

2

∫ t

0
θs · bs ds, 0 ≤ t < ∞

θt = b′t · (σ−1
t )′σ−1

t

(3.8)

where {Wt} is a K-dimensional Brownian Motion, {bt} a K-dimensional {Ft}-

adapted vector and {σt} a K × K {Ft}-adapted matrix.

Moreover, we assume that

P∞

(

∫ ∞

0
θs · bs ds = ∞

)

= P0

(

∫ ∞

0
θs · bs ds = ∞

)

= 1 (3.9)

Under condition (3.9), Moustakides showed in [34] that the CUSUM test minimizes

criterion (3.2) as long as its threshold ν is chosen so that the the false alarm

constraint (3.3) is satisfied with equality, i.e γ = E∞[−uSν ], which implies

γ = eν − ν − 1. (3.10)

It should be mentioned that the CUSUM optimality with respect to (3.2)-(3.3) is

among {Ft}-stopping times T that satisfy the integrability conditions

E0

[

∫ T

0
θs · βs ds

]

< ∞ , E∞

[

∫ T

0
θs · βs ds

]

< ∞ (3.11)
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Figure 3.2: The CUSUM test for Itô processes

Note that these conditions are satisfied by the CUSUM stopping time S due to

(3.9). (Actually, if the optimization problem (3.2)-(3.3) is slightly modified, the

CUSUM becomes optimal among arbitrary stopping times that satisfy (3.3). We

do not present this modification here and refer to [34] for details).

In the special case that the sensors observe drifted Brownian motions before

and after the change, the CUSUM is also optimal with respect to Lorden’s criterion,

i.e. it minimizes (3.4) among stopping times that satisfy (3.5). This result had

been earlier established by Shiryaev [52] and Beibel [?].

In [34] it was shown that the optimal performance J [Sν ] is equal to the expected

detection delay when the change occurs at time τ = 0, i.e. J [Sν ] = E0[uSν ], which

leads to

J [Sν ] = e−ν + ν − 1. (3.12)

From (3.10) and (3.12) follows that the CUSUM threshold and the CUSUM per-

formance are independent of the model dynamics (3.7) and completely determined

by the design parameter γ. This is due to the fact that the problem (3.2)-(3.3) has

incorporated the underlying dynamics (3.7). Moreover, we have log γ = ν + o(1)

and J [Sν ] = ν + o(1) as ν → ∞, which implies that for sufficiently large values
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Figure 3.3: False alarm period γ and optimal performance J(Sν) as functions of

the CUSUM threshold ν

of threshold ν the CUSUM “detection delay” is a linear function of ν, whereas

“period of false alarms” is an exponential function of ν. This is shown in Fig. 3.3.

Finally, from (3.8) follows that the implementation of the CUSUM rule at the

fusion center requires each sensor i to transmit to the fusion center the values of

the process

uit =

∫ t

0
θis dξ

i
s − 0.5

∫ t

0
θisb

i
s ds, t ≥ 0. (3.13)

where θit, b
i
t are the ith components of the vectors θt, bt. It is natural to think

of {uit} as the sufficient statistic that summarizes the observations from the ith

sensor. However, {uit} is not in general {F i
t}-adapted, thus locally observable at

sensor i. This is always true when the sensor processes are independent, in which

case {uit} corresponds to the local log-likelihood ratio process. It is also true when

the sensor processes are correlated Brownian motions.

3.1.2 CUSUM in discrete-time

Suppose that each sensor i acquires sequentially the discrete-time observations

{ξit}t∈N, where {ξit}t≤τ and {ξit}t>τ are sequences of independent observations with

common distribution P∞ and P0, respectively, where P0 and P∞ are known Borel
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probability measures on RK .

We assume that there is a probability measure that dominates both P0 and

P∞ and we denote by f0 and f∞ the corresponding Radon-Nikodym derivatives.

Thus, the log-likelihood ratio process {ut} takes the form

ut =
t

∑

l=1

log
f0(ξ1l , . . . , ξ

K
l )

f∞(ξ1l , . . . , ξ
K
l )

. (3.14)

In this context, Moustakides [33] proved that the CUSUM test minimizes Lorden’s

criterion (3.4) among all stopping rules that satisfy the false alarm constraint (3.5).

Since the acquired observations are independent and identically distributed, it is

straightforward that the CUSUM test also minimizes (3.2) among stopping rules

that satisfy (3.3). As in the continuous time case, the CUSUM threshold should be

chosen so that the corresponding false alarm constraint be satisfied with equality,

but now we no longer have closed-form expressions for the optimal threshold ν

and the optimal performance in terms of γ. However, the asymptotic lower bound

J [Sν ] ≥ log γ + o(1) as γ → ∞ will be sufficient for our purposes.

3.2 Decentralized quickest detection

In this section we propose a novel decentralized detection rule, which combines

level-triggered communication with a CUSUM test at the fusion center. The

CUSUM test is applied on the sequentially transmitted one-bit messages which

are sent asynchronously from the sensors, thus we call this scheme D-CUSUM

(Decentralized CUSUM). We define and analyze it first in continuous and then in

discrete time.

3.2.1 The case of Itô processes

We consider the change-detection problem (3.7), thus we assume that each sensor

observes a standard Brownian motion up to the unknown time-change τ and adopts

a random drift after τ . Moreover, we assume that each process {uit} –defined in

(3.13)– is {F i
t}-adapted, so that sensor i is able to transmit its values to the
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fusion center. Consequently, the following analysis will hold only when the sensor

processes are independent or when they are correlated Brownian motions.

3.2.1.1 Communication scheme and fusion center policy

We suggest that sensor i communicates with the fusion center at the {F i
t}-stopping

times which are defined as follows:

τ in = inf{t ≥ τ in−1 : u
i
t − ui

τ i
n−1

/∈ (−∆i,∆i)}, n ∈ N (3.15)

where ∆i,∆i are positive constants, fixed in advance and known to the fusion

center. Therefore, a sensor communicates as soon as its locally observed sufficient

statistic has either increased by ∆i or decreased by ∆i in comparison to its value

at the previous communication time. At τ in sensor i transmits the message

zin =











1, if uiτ i
n
− ui

τ i
n−1

= ∆i

0, if uiτ i
n
− ui

τ i
n−1

= −∆i

(3.16)

where we have implicitly used the fact that uiτ i
n
−ui

τ i
n−1

∈ {−∆i,∆i}, ∀n ∈ N, since

each process {uit} has continuous paths. Because of this fact, the fusion center is

able to recover the exact value of {uit} at the corresponding communication times

{τ in} using only the transmitted messages {zin}. In particular, we have:

ũiτ i
n
=

n
∑

j=1

[

∆i z
i
j −∆i(1− zij)

]

, n ∈ N. (3.17)

Since we have assumed independence across sensors, the fusion center does not

receive any information for the process ui between the communication times {τ in},

therefore it is reasonable to approximate the process ui at some arbitrary time t

as follows:

ũit = uiτ i
n
, t ∈ [τ in, τ

i
n + 1). (3.18)

or equivalently

ũit =
n
∑

j=1

[

∆i z
i
j −∆i(1− zij)

]

, t ∈ [τ in, τ
i
n + 1). (3.19)
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In other words, we suggest that the fusion center approximate uit with the most

recently reproduced value of the process ui; the resulting approximation {ũit} is

a piecewise constant process with upward jumps of size ∆i and downward jumps

of size −∆i. Then, mimicking the CUSUM test (3.6), we propose the following

detection rule at the fusion center

S̃ = inf{t ≥ 0 : ũt − inf
0≤s≤t

ũs ≥ ν̃} (3.20)

where ũ =
∑K

i=1 ũ
i and the positive threshold ν̃ is chosen so that the false alarm

constraint in (3.3) be satisfied with equality. We call the stopping time S̃ decen-

tralized CUSUM (D-CUSUM), since it mimics the CUSUM test by replacing u

with ũ and can be implemented with the transmission of only one-bit messages

from the sensors to the fusion center.

3.2.1.2 Asymptotic Optimality

The following theorem characterizes the performance of the D-CUSUM.

Proposition 5. The D-CUSUM is order-2 asymptotically optimal for any fixed

thresholds {∆i,∆i}. In particular, if we set C =
∑K

i=1(∆i +∆i), we have:

J [S̃] − J [Sν ] ≤ 4C, (3.21)

Moreover, if we let γ → ∞ and ∆i,∆i → ∞ so that ∆i,∆i = o(log γ), then the

D-CUSUM is asymptotically optimal of order-1, i.e. J [S̃]/J [Sν ] → 1.

The proposition is based on the fact that the stopping time S̃ is pathwise

bounded from above and from below by two CUSUM stopping times. In order to

emphasize this fact, we present it as a lemma and prove it before we prove the

Proposition.

Lemma 8.

Sν̃−2C ≤ S̃ ≤ Sν̃+2C . (3.22)
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Proof of Lemma 8. We start by introducing the following notation: mt = inf0≤s≤t us,

m̃t = inf0≤s≤t ũs and yt = ut −mt, ỹt = ũt − m̃t. Then, the detection rules Sν and

S̃ take the form:

Sν = inf{t ≥ 0 : yt ≥ ν} , S̃ = inf{t ≥ 0 : ỹt ≥ ν̃} (3.23)

From the definition of the approximations {ũit} and {ũt} and the fact that each

process {uit} has continuous paths we have:

|ut − ũt| ≤
K
∑

i=1

|uit − ũit| ≤
K
∑

i=1

(∆i +∆i) = C, t ≥ 0. (3.24)

Using this relationship we also obtain:

mt − C = inf
0≤s≤t

(ut − C) ≤ inf
0≤s≤t

ũt ≤ inf
0≤s≤t

(ut + C) = mt + C, (3.25)

thus |mt − m̃t| ≤ C, t ≥ 0. Consequently, we have:

|yt − ỹt| ≤ |ut − ũt|+ |mt − m̃t| ≤ 2C, t ≥ 0. (3.26)

which leads to the desired result.

Proof of Proposition 5. We start with the observation that for any stopping time

T that satisfies the integrability conditions (3.11) we can write

E∞[−uT ] = E∞

[1

2

∫ T

0
θs · bs ds

]

= E∞

[1

2

∫ T

0
[b′s · (σ−1

s )′σ−1
s bs] ds

]

(3.27)

and

J [T ] = sup
τ≥0

esssupEτ

[1

2

(

∫ T

τ
[b′s · (σ−1

s )′σ−1
s bs] ds

)+
|Fτ

]

(3.28)

The conditions (3.11) are satisfied by the CUSUM-stopping times Sν̃−2C ,Sν̃+2C

and consequently by the D-CUSUM stopping time S̃, due to (3.22).

Therefore, from (3.22) and (3.27) it becomes clear that

E∞[−uSν̃−2C
] ≤ E∞[−uS̃ ] ≤ E∞[−uSν̃+2C

] (3.29)

Moreover, since the thresholds ν and ν̃ are chosen so that Sν and S̃ satisfy (3.3)

with equality, i.e. E∞[−uS̃ ] = E∞[−uSν ] = γ, we obtain:

E∞[−uSν̃−2C
] ≤ E∞[−uSν ] ≤ E∞[−uSν̃+2C

] (3.30)
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If we now introduce the functions

ψ(x) = E∞[−uSx ] and φ(x) = J (Sx), x ≥ 0 , (3.31)

the inequalities (3.30) translate to

ψ(ν̃ − 2C) ≤ ψ(ν) ≤ ψ(ν̃ + 2C). (3.32)

From (3.12) we have that

ψ(x) = ex − x − 1 , φ(x) = e−x + x − 1, x ≥ 0 , (3.33)

which implies that both ψ and φ are strictly increasing real functions and conse-

quently from (3.32) we obtain |ν − ν̃| ≤ 2C.

From (3.22) and (3.28) we have J [S̃] − J [Sν ] ≤ J [Sν̃+2C ] − J [Sν ]. We can

now obtain (3.21) if we use (3.33) as follows:

J [Sν̃+2C ] − J [Sν ] = φ(ν̃ + 2C) − φ(ν)

= [e−ν̃−2C + (ν̃ + 2C) − 1] − [e−ν + ν − 1]

= (e−ν̃−2C − e−ν) + (ν̃ − ν) + 2C ≤ 4C

(3.34)

where the inequality follows from the fact that |ν − ν̃| ≤ 2C and consequently

−ν̃ − 2C ≤ −ν.

Finally, from (3.21) we have

J [S̃]
J [Sν ]

= 1 +
J [S̃] − J [Sν ]

J [Sν ]
≤ 1 +

4C

φ(ν)
= 1 +

4C

log γ

log γ

φ(ν)
(3.35)

Thus, if we let ∆i,∆i, γ → ∞ so that ∆i,∆i = o(log γ), from (3.12) we obtain

lim sup J [S̃]
J [Sν ]

≤ 1. But this implies the order-1 asymptotic optimality of S̃, since

we also have J [S̃] ≥ J [Sν ] due to the optimality of the CUSUM test.

3.2.1.3 Extensions

We can modify the D-CUSUM in a straightforward way and incorporate more

general communication schemes. Thus, we can have time-varying thresholds as in

(2.51)- (2.52) or linear (or non- linear) intersecting boundaries as in (2.55)-(2.56).

The previous analysis will remain valid as long as inequality (3.24) remains valid.
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3.2.1.4 Comparison with the discrete-time centralized CUSUM in the

Brownian case

As we did for the testing problem, it is meaningful to compare the D-CUSUM with

the discrete-time centralized CUSUM, which is based on the transmission to the

fusion center of the exact sensor observations at the times t = 0, h, 2h, . . ., where

h > 0. We perform this comparison for the following change-detection problem:

ξit = W i
t + {t≥τ} bit, t ≥ 0, i = 1, . . . ,K (3.36)

where (W 1, . . . ,WK) is a K-dimensional Brownian motion and b1, . . . , bK known

constants. Thus, we assume that each sensor i observes a standard Brownian up

to time τ , which adopts a constant drift bi after τ .

Under this model, the increments {ξinh − ξi(n−1)h} are independent and identi-

cally distributed, and consequently the discrete-time centralized CUSUM is also

order-2 asymptotically optimal (with respect to the continuous-time centralized

CUSUM). Therefore, since the asymptotic performance of the two schemes is sim-

ilar, we need to resort to simulations. Moreover, for the comparison to be fair,

we need to equate the expected intersampling periods before and after the change

E∞[τ i1] and E0[τ i1] with the constant period h, so that the two schemes require the

same communication rate between sensors and fusion center on average.

Using Wald’s identity together with (2.14)-(2.15), we have:

E0[τ
i
1] = E∞[τ i1] = h ⇔ E0[−uiτ i

1
] = E∞[uiτ i

1
] = 0.5 |bi|2 , h

⇔ s(∆i,∆i) = s(∆i,∆i) = 0.5 |bi|2 h
(3.37)

Then, if we set ∆i = ∆i = ∆i, (3.37) becomes s(∆i,∆i) = 0.5 |bi|2 h and for

any given drift bi we can compute the sampling period h that corresponds to the

threshold ∆i and vice-versa.

For the simulations in Fig.3.4 we chose K = 2, b1 = b2 = 1 and ∆i = ∆i =

∆i = 2 for each sensor i, thus h had to be equal to 3.0462.

In Fig.3.4 we can see that the distance between the D-CUSUM and the optimal

continuous-time CUSUM remains bounded. Moreover, the D-CUSUM exhibits
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Figure 3.4: D-CUSUM versus CUSUM

a distinct performance improvement over the discrete time centralized CUSUM

which is applied after canonical deterministic sampling.

3.2.2 D-CUSUM in discrete time

We now consider the discrete-time case and in particular the change-detection

problem (3.40). We assume that the observations are independent across sensors,

so that the log-likelihood ratio process {ut} can be written as the sum of the local

log-likelihood ratios, i.e. ut =
∑K

i=1 u
i
t, where

uit =
t

∑

j=1

log
f i
0(ξ

i
j , . . . , ξ

i
j)

f i
∞(ξij , . . . , ξ

i
j)
. (3.38)

3.2.2.1 Communication scheme and fusion center policy

As in the continuous-time setup, we suggest that sensor i communicate with the

fusion center at the times

τ in = inf{t ≥ τ in−1 : u
i
t − uiτ i

n−1
/∈ (−∆i,∆i)}, n ∈ N (3.39)

and transmit the messages

zin =











1, if uiτ i
n
− ui

τ i
n−1

≥ ∆i

0, if uiτ i
n
− ui

τ i
n−1

≤ −∆i

(3.40)
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Unlike the case of continuous-time observations, the fusion center can no longer

recover the values of the process ui at the corresponding communication times

(τ in)n∈N, because it does not have access to the overshoots:

ηin = (uiτ i
n
− uiτ i

n−1
−∆i)

+ − (uiτ i
n
− uiτ i

n−1
+∆i)

−, n ∈ N. (3.41)

Thus, the approximations (3.18) and (3.19) are no longer equivalent and approx-

imation (3.18) is no longer implementable. Of course, it is still possible to use

approximation (3.18), however, by doing so we ignore the overshoots and this is

likely to deteriorate the performance of the resulting decentralized scheme. There-

fore, working as in the testing problem, we choose to approximate the process {uit}

with the log-likelihood ratio of the messages {zin} that have been transmitted from

sensor i up to time t, i.e.

ũit =
n
∑

j=1

[

Λiz
i
j − Λi(1 − zij)

]

, τ in ≤ t < τ in+1 (3.42)

where

Λi = log
P0(zin = 1)

P∞(zin = 1)
, −Λi = log

P0(zin = 0)

P∞(zin = 0)
(3.43)

The computation of ũt depends on the knowledge of the quantities {Λi,Λi}; these

are not known explicitly, however they can be pre-computed using simulations.

We emphasize that this is a partial-likelihood approach, since we ignore the

contribution to the total log-likelihood ratio of the inter-communication times τ in−

τ in−1. The reason is that the form of this log-likelihood is intractable. Otherwise,

it would make perfect sense to use their contribution as well.

After choosing this approximation, we mimic the CUSUM test and suggest the

following detection rule at the fusion center

S̃ = inf{t ∈ N : ũt − inf
0≤s≤t

ũs ≥ ν̃} (3.44)

where ũt =
∑K

i=1 ũ
i
t. We call S̃ decentralized CUSUM (D-CUSUM), as we did

in the continuous-path case, although there is a considerable difference in the

construction of the fusion center policy.
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3.2.2.2 Asymptotic optimality

The following proposition characterizes the (asymptotic) performance of the discrete-

time D-CUSUM and implies its asymptotic optimality. For simplicity, we as-

sume that there is a quantity ∆ so that ∆i,∆i = Θ(∆) for all i = 1, . . . ,K as

∆i,∆i → ∞. This assumption implies that the frequency of communication is

similar in all sensors. Moreover, in order to simplify the notation, we drop the

threshold from the CUSUM stopping time Sν , which we now denote as S.

Proposition 6. If we let γ → ∞ and ∆ → ∞ , then

J [S̃] − J [S] ≤ log γ

Θ(∆)
+Θ(∆) (3.45)

Therefore, the D-CUSUM is asymptotically optimal of order-1, i.e. J [S̃]/J [S] →

1, as ∆ = o(log γ).

Proof. We start by showing that inequality (3.45) implies the (order-1) asymptotic

optimality of the D-CUSUM stopping time S̃. Indeed, recalling the asymptotic

lower bound J [S] ≥ log γ+o(1) on the performance of the discrete-time centralized

CUSUM, we obtain:

J [S̃]
J [S] = 1 +

J [S̃] − J [S]
J [S] ≤ 1 +

1

Θ(∆)

Θ(∆)

log γ
= 1 + o(1) (3.46)

where the last equality follows if we let ∆ → ∞ and γ → ∞ so that ∆ = o(log γ).

We now turn to the proof of (3.45). The Lorden-performance for the CUSUM

and the D-CUSUM corresponds to the expected delay when the change occurs at

τ = 0, therefore:

J [S̃] − J [S] = E0[uS̃ ] − E0[uS ] ≤ E0[|uS̃ − ũS̃ |] + E0[ũS̃ ] − E0[uS ] (3.47)

Since ũ0 = 0, it is clear that ũt ≤ ỹt for every t ≥ 0. Moreover, since the overshoot

ỹS̃ − ν̃ cannot be larger than C ′ =
∑K

i=1(Λi + Λi), we obtain ũS̃ ≤ ν̃ + C ′. Thus,

from (3.47) and the asymptotic lower bound J [Sν ] ≥ log γ + o(1) we obtain:

J [S̃] − J [Sν ] ≤ E0[|uS̃ − ũS̃ |] + (ν̃ + C ′) − (log γ + o(1)) (3.48)
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Moreover, working in exactly the same way as in the testing problem, we can show

that C ′, C = Θ(∆) , Ĩ ≥ Θ(∆), R = θ
1+o(1) and we can obtain the following upper

bound

E0[|uS̃ − ũS̃ |] ≤ (θ +R)
[ ν̃ + 3C ′

Ĩ
+K

]

(3.49)

where θ, R and Ĩ are defined as in (2.122) and (2.121), respectively.

Thus, the crucial task, which cannot be shown as in the testing problem, is to

connect the threshold ν̃ with the parameter γ. In order to do so, we denote by

zn the nth binary message that arrives at the fusion center irrespectively of the

sensor which sent it and by kn the identity of the sensor which transmitted the

nth sample. The flow of information at the fusion center is then described by the

filtration {Cn}, where Cn = σ((z1, k1) . . . , (zn, kn)).

For the simplicity of the notation we assume that at any given time the fusion

center receives at most one message from the sensors. In the more general case

where two or more sensors transmit a message at the same time, the following

proof will remain valid as long as we denote by zn and kn the vector of transmit-

ted messages and labels, respectively, at the nth time the fusion center receives

messages from the sensors.

For example, if the first messages that the fusion center receives come concur-

rently from sensor 1 and sensor 3, then we have k1 = (1, 3). Moreover, if sensor

1 has transmitted an “upward” message and sensor 3 a “downward” one, then we

have z1 = (1, 0).

Then, working in the same way as in the testing problem, we obtain the fol-

lowing likelihood ratio before and after the change

Ln =
P0((z1, k1), . . . , (zn, kn))

P∞((z1, k1) . . . , (zn, kn))
= eφn+ṽn (3.50)

where –recalling the definition of the log-likelihood ratios Λi,Λi– we define

eφn =
P0(k1, . . . , kn)

P∞(k1, . . . , kn)
, ṽn =

n
∑

j=1

[Λkj zj + Λkj (1 − zj)]. (3.51)

The process ṽn is closely related to the process ũt; their difference is that ũt is

expressed in terms of global time , whereas ṽn in terms of times the fusion center
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has received messages from the sensors. To explicitly specify their dependence,

let {τn} be the increasing sequence of communication times between any sensor

and the fusion center, where τn is the time instant that the fusion center receives a

message for the nth time. Then, the two processes are related through the equality

ṽn = ũτn .

The fusion center policy can now be expressed as follows

Ñ = inf{n ∈ N : ṽn − min
j=1,...,n

ṽj ≥ ν̃} (3.52)

and we clearly have T̃ = τ
Ñ
. Thus, Ñ is a {Cn}-stopping time which represents

the number of times the fusion center received messages from the sensors until an

alarm is raised by the D-CUSUM.

We can also obtain an alternative representation of the fusion center policy,

which will be very useful for the proof of the desired result. In particular, we can

write the D-CUSUM stopping time Ñ as a sum of repeated D-SPRTs. Thus, if

we define the following stopping times

Tj = inf{n ≥ Tj−1 : vn − vTj−1
/∈ (0, ν̃)} (3.53)

then Ñ = TR, where

R = inf{j ∈ N : vTj
− vTj−1

≥ ν̃} (3.54)

The notation we introduced will help us obtain the desired connection between the

threshold ν̃ and γ. We recall that ν̃ is chosen so that E∞[−uS̃ ] = γ. From Wald’s

identity we have γ = E∞[−uS̃ ] = I∞ E∞[S̃], where I∞ = E∞[−u1]. Moreover, we

have R ≤ N ≤ KS̃. Notice that both inequalities are very crude; the first one

becomes equality when the process {ṽn} exceeds ν̃ before 0, whereas the second

becomes equality when all sensors communicate with the fusion center at every

time t till S̃.

However, the inequality R ≤ KS̃ is going to be sufficient for our purposes.

Indeed, combining this inequality with γ = I∞ E∞[S̃] we obtain

K γ ≥ I∞ E∞[R], (3.55)
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Thus, it suffices to find a lower bound for E∞[R] in terms of eν̃ . In order to do

that, we start with the layered representation of the expectation

E∞[R] =
∞
∑

n=0

P∞(R > n) =
∞
∑

n=0

E∞[An] (3.56)

where An = {ṽT1
<0,...,ṽTn−ṽTn−1

<0}, n ∈ N.

Then:

E∞[An] = E∞[An−1 {ṽTn−ṽTn−1
<0}]

= E∞[An−1 (1 − {ṽTn−ṽTn−1
≥ν̃})]

= E∞[An−1] − E∞[An−1 {ṽTn−ṽTn−1
≥ν̃}]

(3.57)

From a change of measure and the law of iterated expectation we obtain:

E∞[An−1 {ṽTn−ṽTn−1
≥ν̃}]

= E0[L
−1
Tn−1

An−1 e
−(φTn−φTn−1

)−(ṽTn−ṽTn−1
)

{ṽTn−ṽTn−1
≥ν̃}]

= E0[L
−1
Tn−1

An−1 E0[e
−(φTn−φTn−1

)−(ṽTn−ṽTn−1
)

{ṽTn−ṽTn−1
≥ν̃}|FTn−1

]]

≤ e−ν̃E0[L
−1
Tn−1

An−1 E0[e
−(φTn−φTn−1

)|FTn−1
]]

= e−ν̃E0[L
−1
Tn−1

An−1] = e−ν̃E∞[An−1]

(3.58)

Therefore, for every n ∈ N we have E∞[An] ≥ (1 − e−ν̃)E∞[An−1], thus E∞[An] ≥

(1 − e−ν̃)n and consequently

E∞[R] =
∞
∑

n=0

E∞[An] ≥
∞
∑

n=0

(1 − e−ν̃)n = eν̃ (3.59)

Then, recalling (3.55) we obtain

ν̃ ≤ log
K

I∞
+ log γ (3.60)

which –combined with (3.48) and (3.49)– gives the desired result.



CHAPTER 4. DECENTRALIZED PARAMETER ESTIMATION 85

Chapter 4

Decentralized parameter

estimation

The structure of this chapter is the following; we introcude centralized parameter

estimation for a class of Itô processes and argue in favor of a sequential formulation

of the problem in Section 4.1. We define and analyze the suggested decentralized

estimator in Section 4.2, whereas we consider the case of correlated sensors in

Section 4.3.

4.1 Centralized parameter estimation

Let (Ω,G,P, {Gt}) be a filtered probability space which hosts the K-dimensional

Brownian motion {Wt}t≥0 and the K-dimensional stochastic process {ξt}t≥0. In

contrast to the Brownian motion {Wt} which is non-observable, the process {ξt} is

observed and, in particular, each component {ξit} is observed at a different location

(or sensor). Thus, the local history at sensor i up to time t is F i
t = σ(ξis, 0 ≤ s ≤ t),

whereas the global history up to time t is Ft = σ(ξs, 0 ≤ s ≤ t). As it is shown

schematically in Fig. 4.1, there is a global decision maker (fusion center), which

receives observations from all sensors and is responsible for combining them in

order to make the final decision.

We assume that the distribution of {ξt} is known up to a parameter λ and we
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Figure 4.1: Sensor Network

denote it by µλ. Thus, the underlying probability measure P is also parametrized

by λ and we denote it by Pλ. The goal is to estimate λ using the data acquired by

the fusion center, not the sensor observations. When these two coincide, we say

that we are in a centralized setup and an estimator of λ is simply an {Ft}-adapted

process. This is going to be our focus on this section.

4.1.1 The Brownian case

Suppose that the sensors observe independent Brownian motions, so that:

ξit = λ bi t+W i
t , t ≥ 0, i = 1, . . . ,K, (4.1)

where b1, . . . , bK are known constants. Thus, we assume that the absolute drift

in each Brownian motion is unknown, but the relative drifts are known. For

example, Fig. 4.2 shows the paths of two independent drifted Brownian motions,

whose drifts have different signs and sizes.

The local likelihood for λ at location i and at time t is the Radon-Nikodym

derivative of µi
λ with respect to µi

0 when the two measures are restricted to the

σ-algebra F i
t , i.e.

L
i
t (λ) ≡

dµi
λ

dµi
0

∣

∣

∣

F i
t

= exp{λ bi ξ
i
t − 0.5λ2|bi|2t } (4.2)
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Independent Brownian motions

t

0 1 2 3 4 5 6

0

Figure 4.2: Two Brownian paths

Then, the local MLE at sensor i for estimating λ is:

λi
t =

ξit
bit

, t ≥ 0. (4.3)

Due to the independence between sensors, the global likelihood at time t is the

product of the local likelihoods, i.e. Lt(λ) =
∏K

i=1 L i
t (λ), and the global MLE at

the fusion center is a weighted average of the local MLEs, i.e.

λt =
K
∑

i=1

wiλ
i
t, t ≥ 0 (4.4)

where

wi =
|bi|2

∑K
i=1 |bi|2

, i = 1, . . . ,K. (4.5)

Thus, the fusion center trusts more the local MLEs which correspond to sensors

with stronger signals. We illustrate this behavior in fig. 4.3, which is a continuation

of fig. 4.2.

The Fisher information at time t is:

It(λ) = Eλ

[( ∂

∂λ
logLt(λ)

)2]

=
K
∑

i=1

|bi|2 t ≡ At (4.6)
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MLEs

t

0 1 2 3 4 5 6

λ

MLE

t

0 1 2 3 4 5 6
λ

Figure 4.3: The global MLE trusts more the local MLE which corresponds to the

drifted Brownian motion (see fig. 4.2) with the largest slope.

and it is straightforward to see that under Pλ we have:

√

At(λt − λ) ∼ N (0, 1), t ≥ 0 (4.7)

Thus, λt is an unbiased and normally distributed estimator of λ for every t ≥ 0.

Moreover, at any given time t, λt is an optimal estimator of λ, in the sense that

its variance is equal to the Cramer-Rao lower bound A−1
t [20].

Overall, we conclude that for the estimation of λ at some fixed time t under

the Brownian model (4.1), it suffices that each sensor i transmits to the fusion

center the value of its local MLE at time t, λi
t, or equivalently its observed value

at time t, ξit.

4.1.2 Ornstein-Uhlenbeck type processes

We now assume that each ξit is governed by the following SDE

ξit = λ

∫ t

0
bisds+W i

t , t ≥ 0, i = 1, . . . ,K (4.8)

where each {bit} is an {F i
t}-adapted process. Then, the local likelihood at sensor i

is

L
i
t (λ) ≡

dµi
λ

dµi
0

∣

∣

∣

F i
t

= exp{λBi
t − 0.5λ2Ai

t} (4.9)
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where

Ai
t =

∫ t

0
|bis|2ds , Bi

t =

∫ t

0
bis dξ

i
s, t ≥ 0. (4.10)

Again, the global likelihood at time t, Lt(λ), is the product of the local likelihoods

and the global MLE takes the form

λt =
Bt

At
=

∑K
i=1B

i
t

∑K
i=1A

i
t

, t ≥ 0. (4.11)

In order to compute the Fisher information, we start by defining the process

Mt =
K
∑

i=1

M i
t =

K
∑

i=1

∫ t

0
bis dW

i
s , t ≥ 0, (4.12)

which is a square-integrable martingale with quadratic variation process {At}.

Then, we can obtain the following decompositions for Bt and λt in terms of At

and Mt:

Bt = λAt +Mt , λt = λ+
Mt

At
, t ≥ 0 (4.13)

and compute the Fisher information at time t as follows:

It(λ) ≡ Eλ

[( ∂

∂λ
logLt(λ)

)2]

= Eλ[(Bt − λAt)
2] = Eλ[M

2
t ] = Eλ[At], t ≥ 0.

(4.14)

Thus, the process {At} is the (global) observed Fisher information up to time t,

whereas {Ai
t} is the local observed Fisher information at sensor i.

There are many differences in the properties of the MLE in the general case

(4.8) in comparison to the Brownian case (4.1). First of all, Fisher information

It(λ) is no longer a linear function of t and is no longer independent of the true

value of λ. Moreover, the global MLE remains a weighted average of the local

MLEs, but now the weights {wi
t} are no longer constant over time but stochastic

processes themselves. More specifically, we have

λt =
K
∑

i=1

wi
tλ

i
t, λi

t =
Bi

t

Ai
t

, wi
t =

Ai
t

At
(4.15)

Notice that the weights {wi
t} are the normalized observed Fisher informations

that correspond to the different sensors. Thus, at any time t the global MLE gives

different weights to the local MLEs depending on the information that they have
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Independent OU processes
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Figure 4.4: Two Ornstein-Uhlenbeck paths and their corresponding observed

Fisher information processes
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Figure 4.5: The corresponding local MLEs in a continuation of Fig. 4.4

.
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accumulated up to time t; the difference with the Brownian case is that these

weights are random and time-varying (see Fig. 4.4 and Fig. 4.5 for an illustration

of this phenomenon in the case of two independent Ornstein-Uhlenbeck processes

with the same dynamics).

Furthermore, unlike the Brownian case, the MLE at time t, λt, cannot be

computed at the fusion center if each sensor transmits only its final observed value

ξit or the corresponding value of its local MLE λi
t. Finally, the MLE is no longer

unbiased, Gaussian and optimal in a mean square sense, although it is possible to

recover these properties asymptotically (see [25] for an analysis in the Ornstein-

Uhlenbeck case and [20] for more general ergodic diffusion processes).

It turns out that a sequential version of the MLE can recover all these properties

in a non-asymptotic sense. The need for a sequential estimator can arise, if we

follow the approach in [25] and we fix – not the horizon of observations– but the

(Fisher) information that is available for decision.

We can define a centralized sequential estimator as a pair (T , δT ), where T is an

{Ft}-stopping time and δT an FT -measurable random variable; T is the stopping

rule at which the decision maker at the fusion center stops collecting observations

from the sensors and δT the estimator of λ it uses at time T .

Following [25], we define as optimal centralized sequential estimator the solu-

tion to the following constrained optimization problem:

inf
(T ,δT )

Eλ[(δT − λ)2] with IT (λ) = Eλ[AT ] ≤ γ, (4.16)

where γ is a fixed, positive constant. Notice that in the Brownian case (4.1),

problem (4.16) reduces to finding the FT -measurable estimator with the minimum

mean square error, where T = γ∑K
i=1 |bi|

2
, and the solution is the MLE λT , which

we defined in (4.4).

Liptser and Shiryayev [25] proved that a solution to (4.16) is given by the

sequential version of the MLE:

S = inf{t ≥ 0 : At = γ} , λS =
(B

A

)

S
=

BS

γ
(4.17)
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Figure 4.6: Sequential MLE

according to which the fusion center stops collecting observations when the ob-

served Fisher information {At} becomes equal (due to path-continuity) to γ and

uses the MLE to estimate λ at this time.

Notice that the stopping rule S is determined exclusively by the constraint in

(4.16), which it satisfies with equality. In particular, the sequential (4.17) uses all

the available information for the estimation of λ. This is a direct generalization

of the strategy that is followed in the fixed-horizon problem, where the estimation

takes place at the end of the available observation horizon. We illustrate the

stopping time S in Fig. 4.6.

As in the non-sequential case, the proof of the optimality of the sequential MLE

relies on a lower bound on the mean square error of sequential estimators. More

specifically, it is shown in [25] that if (T , δT ) is an unbiased sequential estimator of

λ, then MSEλ(δT ) ≥ (Eλ[AT ])−1. This is the sequential analogue of the Cramer-

Rao lower bound and it implies that for all sequential estimators (T , δT ) that

satisfy the constraint in (4.16) we have MSEλ(δT ) ≥ γ−1.

Thus, for the sequential MLE (S,λS) to solve problem (4.16), it suffices to

show that λS is an unbiased estimator of λ and that its variance attains the lower
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bound 1
γ . Indeed, in [25] it is shown that if

Pλ(A∞ = ∞) = 1 (4.18)

then
√
γ(λS − λ) ∼ N (0, 1). (4.19)

Thus, the estimator λS is unbiased, Gaussian and has the minimum possible mean

square error in the sense of (4.16). The sequential MLE (S,λS) enjoys these

properties in such generality, because it takes into account the natural clock t → At

which is embedded in the dynamics of (4.8). This is also reflected in the proof of

(4.19), which is based on a time-change argument. Overall, this result suggests

that it is the sequential MLE (S,λS) that should be used for the estimation of λ

in the general setup (4.8).

Finally, we notice that condition (4.18) guarantees that the stopping rule S is

finite Pλ-a.s. We can also think of (4.18) as a regularity condition, since it implies

that It(λ) is an increasing and unbounded function of time t. This condition is

satisfied trivially in the Brownian case and in [25] it is shown that (4.18) is also

satisfied in the Ornstein-Uhlenbeck case, i.e. when bit = ξit in (4.8).

4.2 Decentralized parameter estimation

In this section we assume that each sensor can use for its communication with the

fusion center only an alphabet of finite length, thus it can only transmit quantized

versions of its observations. Under this decentralized setup, the implementation

of the optimal centralized estimators that we previously discussed becomes im-

possible, thus there is a need for alternative schemes that incorporate the reality

of small-length alphabets at the sensors. In this chapter, we develop an efficient

decentralized sequential estimator based on the idea that the sensors should com-

municate whenever they have to transmit an “important” message. This is the

same idea that we used in the problems of sequential testing and change-detection,

i.e. we suggest that the sensors communicate whenever certain locally observed

statistics cross some thresholds.
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4.2.1 The Brownian case

We first consider decentralized parameter estimation in the Brownian case, thus we

assume that the sensor dynamics are described by (4.1) and the goal is to estimate

λ at some fixed time t.

In this setup, the implementation of the centralized MLE, λt, requires from

sensor i the transmission of its value only at time t, ξit. However, if each sensor

has only a binary alphabet {b0, b1} in its disposal, an accurate transmission of one

Gaussian observation may require multiple transmissions, depending of course on

the desired precision. Therefore, even in this very simple case, we need to take

into account the fact that each sensor can use only two letters –b0 and b1– in order

to communicate its messages.

The main idea in the suggested decentralized scheme is that the times at which

the sensors communicate with the fusion center should not be fixed in advance.

Instead, the communication times should be triggered by the local observations at

the sensors. In particular, we suggest that each sensor i communicates with the

fusion center at the times

τ in = inf{t ≥ τ in−1 : ξ
i
t − ξiτ i

n−1
/∈ (−∆i,∆i)}, n ∈ N (4.20)

transmitting the letter b1 when zin = 1 and the letter b0 when zin = 0, where

zin =











1, if ξiτ i
n
− ξi

τ i
n−1

= ∆i

0, if ξiτ i
n
− ξi

τ i
n−1

= −∆i

(4.21)

and ∆i,∆i are fixed positive constants, known to the fusion center.

Under the communication scheme (4.20), the number of messages transmitted

by sensor i up to time t is random and we will denote it by mi
t, i.e. m

i
t = max{n :

τ in ≤ t}. Moreover, every time it receives letter b1 (b0) from sensor i, the fusion

center knows that the process ξi has increased by ∆i (decreased by ∆i) since the

last communication from sensor i.

Therefore, the fusion center is able to recover the exact value of ξi at the times
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Fusion  approximations to the sensor observations
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Figure 4.7: Communication times and fusion center approximations in the case of

two independent Brownian motions with drifts of different sign and size and equal

local thresholds in both sensors.

{τ in} , since

ξiτ i
n
=

n
∑

j=1

[∆iz
i
j −∆i(1 − zij)], n ∈ N. (4.22)

Between communication times the fusion center does not receive any information,

thus we suggest that it approximates the value of the process ξi at some arbitrary

time t with the most recently reproduced value, i.e.

ξ̃it = ξiτ i
n
, τ in ≤ t < τ in+1 (4.23)

or equivalently

ξ̃it =
n
∑

j=1

[∆iz
i
j −∆i(1 − zij)] = ξiτ i

mi
t

, τ in ≤ t < τ in+1 (4.24)

We illustrate these approximations in Fig. 4.7.

Using these approximations, we can mimic the centralized MLE and estimate

λ as follows:

λ̃t =
K
∑

i=1

wiλ̃
i
t , λ̃i

t =
ξ̃it
bit

, (4.25)

where the weights {wi} are given by (4.5). We call {λ̃t} decentralized MLE (D-

MLE), since it mimics the centralized MLE and can be implemented with the
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D−MLE vs MLE
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Figure 4.8: The left-hand side graph illustrates that the D-MLE is a weighted

average of the local D-MLEs (similarly to the centralized MLE). The right-hand

side graph presents the D-MLE against the centralized global MLE.

transmission of one-bit messages from the sensors to the fusion center. We illus-

trate the D-MLE in comparison to the local D-MLEs and the centralized MLE in

Fig. 4.8.

Contrary to the MLE, the D-MLE λ̃t spreads the communication load through-

out [0, t], instead of forcing all required messages from all sensors to be transmitted

at time t. This property is especially desirable when one is interested in estimating

λ repeatedly, that is, not only at t but also at previous times. In this case, the

implementation of the centralized MLE clearly requires much heavier communica-

tion load, whereas for the D-MLE estimation at these intermediate points comes

for free.

The D-MLE is a very flexible decentralized estimator, since the parameters

at each sensor, ∆i and ∆i, are determined by the designer of the scheme. The

choice of these parameters is characterized by the following trade-off; small values

for {∆i,∆i} lead to frequent communication and good statistical properties for

the D-MLE λ̃t, since λ̃t approaches the centralized MLE λT as ∆i,∆i → 0 for

any i and t. However, if the communication between sensors and fusion center is

expensive, the sensors may not have the luxury to transmit messages to the fusion

center very often. This is the reason for the introduction of the decentralized setup
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in the first place and this implies a practical desire for large values for {∆i,∆i}.

Therefore, the D-MLE is a very appealing decentralized estimator, because it

recovers the statistical properties of the MLE in an asymptotic sense (as t → ∞)

even with rare communication between sensors and fusion center (∆i,∆i → ∞),

as the following proposition suggests.

Proposition 7. 1. If t → ∞ and ∆i,∆i → ∞ so that ∆i,∆i = o(t), then λ̃t is

a consistent estimator of λ in probability and in mean square.

2. If additionally ∆i,∆i = o(
√
t), λ̃t is asymptotically normal and optimal, i.e.

√
t(λ̃t − λ) → N (0, 1) ,

MSE(λ̃t)

MSE(λt)
→ 1.

The proposition remains valid for any fixed values of the thresholds {∆i,∆i}

and is a special case of a more general proposition that we state and prove in the

next subsection.

4.2.2 Ornstein-Uhlenbeck type processes

We now assume that the sensor dynamics are given by (4.8) and our goal is –as in

the Brownian case– to apply level-triggered communication scheme and mimic the

optimal centralized estimator. However, in order to do so, we now need a 3-letter

alphabet {a, b0, b1} at each sensor and each sensor should transmit messages at

two distinct sequences of communication times.

Indeed, from the optimality of the sequential MLE (S,λS) with respect to prob-

lem (4.16), it follows that the processes {Ai
t, B

i
t} –defined in (4.10)– are sufficient

statistics for the estimation of λ. Thus, if the fusion center is able to reconstruct

their values from the received sensor messages, then it can implement the optimal

stopping rule S and compute the corresponding MLE λS . Since sensor i observes

the path of {ξit} continuously and {bit} is {F i
t}-adapted, the pair {Ai

t, B
i
t} is ob-

servable at sensor i.

Based on this observation, we suggest that sensor i communicate with the
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fusion center at the following sequences of stopping times:

τ i,An = inf{t ≥ τ i,An−1 : A
i
t − Ai

τ i,A
n−1

≥ ci}, n ∈ N

τ i,Bn = inf{t ≥ τ i,Bn−1 : B
i
t − Bi

τ i,B
n−1

/∈ (−∆i,∆i)}, n ∈ N

(4.26)

where ∆i,∆i, ci are positive constants, fixed in advance and known to the fusion

center.

At the times {τ i,An } sensor i transmits the letter a, whereas at the times {τ i,Bn }

it transmits the letter b1 when zi,Bn = 1 and the letter b0 when zi,Bn = 0, where

zin =











1, if Bi
τ i,B
n

− Bi
τ i,B
n−1

= ∆i

0, if Bi
τ i,B
n

− Bi
τ i,B
n−1

= −∆i

(4.27)

Thus, when it receives the letter a from sensor i, the fusion center understands that

the process Ai has increased exactly by ci since the last time sensor i transmitted

an a. Similarly, when it receives the letter b1(b0) from sensor i, the fusion center

understands that the process Bi has increased (decreased) exactly by ∆i (∆i) since

the last time sensor i transmitted either b1 or b0.

Due to the path-continuity of the processes Ai, Bi, the fusion center can recover

the exact values of Ai at the times {τ i,An } and Bi at the times {τ i,Bn } using the

information (4.26)-(4.27) it receives from the sensors, since

Ai
τ i,A
n

=
n
∑

j=1

[Ai
τ i,A
j

− Ai
τ i,A
j−1

] = n ci, n ∈ N

B̃i
τ i,B
n

=
n
∑

j=1

[Bi
τ i,B
j

− Bi
τ i,B
j−1

] =
n
∑

j=1

[

∆iz
i
j −∆i(1 − zij)

]

, n ∈ N

(4.28)

Then, since the fusion center does not receive any information between communi-

cation times, we suggest that it approximates Ai
t and Bi

t at some arbitrary time t

with the corresponding most recently recovered values, i.e.

Ãi
t = Ai

τ i,A
n

, τ i,An ≤ t < τ i,An+1

B̃i
t = Bi

τ i,B
n

, τ i,Bn ≤ t < τ i,Bn+1

(4.29)

and we propose the following sequential estimator at the fusion center

S̃ = inf{t ≥ 0 : Ãt ≥ γ − 2c} , λ̃S̃ =
(B̃

Ã

)

S̃
(4.30)
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Figure 4.9: The fusion center approximations of the processes A,B

D−MLE vs MLE

t

0 S~

Figure 4.10: D-MLE versus MLE

where

Ã =
K
∑

i=1

Ãi , B̃ =
K
∑

i=1

B̃i , c =
K
∑

i=1

ci. (4.31)

Thus, (S̃, λ̃S̃) mimics the sequential MLE (S, dS) by replacing Ai, Bi with Ãi, B̃i

and γ by γ−2c. We illustrate the global approximations Ã and B̃ and the D-MLE

stopping time S̃ in Fig. 4.9, whereas we plot the corresponding D-MLE versus the

centralized MLE in Fig. 4.10. Moreover, as in the Brownian case, we use the term

D-MLE for the suggested decentralized sequential estimator (S̃, λ̃S̃).

The following lemma describes the main properties of the suggested decen-
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tralized scheme. Before we state it, we recall (4.31) and introduce the following

notation C ≡
∑K

i=1(∆i +∆i).

Lemma 9. For any choice of γ, {∆i,∆i} and {ci} we have:

1. |Ãt − At| ≤ c , |B̃t − Bt| ≤ C, t ≥ 0

2. S̃ ≤ S

3. The D-MLE satisfies the constraint of problem (4.16), i.e. E[AS̃ ] ≤ γ. In

particular,

γ − 2c ≤ ÃS̃ ≤ AS̃ ≤ γ (4.32)

Proof. From the definition of Ãi, B̃i and the continuity of the paths of Ai, Bi, we

have: Ãi
t ≤ Ai

t ≤ Ãi
t + ci and |B̃i

t − Bi
t| ≤ ∆i +∆i for every t ≥ 0. The first claim

then follows by adding these inequalities over i. The second claim now follows

easily:

S = inf{t ≥ 0 : At ≥ γ} ≥ inf{t ≥ 0 : Ãt + c ≥ γ} ≥ S̃, (4.33)

For the third claim let us first observe that {At} is a piecewise constant, increasing

process with jumps bounded by c and the stopping time S̃ corresponds to a jump

time of {At}. Then, it becomes clear that the overshoot ÃS̃ − (γ − 2c) is upper

bounded by c, so that ÃS̃ ≤ γ − c. From this observation and the first part of the

lemma we obtain (4.32), since

γ − 2c ≤ ÃS̃ ≤ AS̃ ≤ ÃS̃ + c ≤ γ. (4.34)

Based on this lemma, we are able to establish the following asymptotic prop-

erties of the D-MLE.

Proposition 8. As γ, ci,∆i,∆i → ∞

1. λ̃S̃ converges to λ in probability and in mean square, if ∆i,∆i, ci = o(γ).
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2. λ̃S̃ is asymptotically normal and optimal, i.e.

√
γ(λ̃S̃ − λ) → N (0, 1) , MSE(λ̃S̃)/MSE(λS) → 1,

if ∆i,∆i, ci = o(
√
γ).

Thus, λ̃S̃ recovers the properties of its centralized counterpart λS for large

values of γ as long as the design parameters ci,∆i,∆i are “large” but smaller than

γ, ideally around the square root of γ and smaller.

Proof. 1. Consistency.

We start with the following representation of the D-MLE

λ̃S̃ =
(B̃ − B

Ã

)

S̃
+
(A

Ã

)

S̃
λS̃ =

(B̃ − B

Ã

)

S̃
+
(A

Ã

)

S̃

[

λ+
(M

A

)

S̃

]

, (4.35)

where the first equality can be derived with simple algebra and the second

using (4.13). Then we have:

λ̃S̃ − λ =
(B̃ − B

Ã

)

S̃
+
(A − Ã

Ã

)

S̃
λ+

(A

Ã

)

S̃

(M

A

)

S̃
(4.36)

which –using the lemma and the triangle inequality– gives:

|λ̃S̃ − λ| ≤ C

γ − 2c
+

c

γ − 2c
|λ|+ γ − c

γ − 2c

|MS̃ |
γ − 2c

(4.37)

Using the inequality (x+ y+ z)2 ≤ 3(x2 + y2 + z2) and taking expectations,

we obtain:

1

3
Eλ[(λ̃S̃ − λ)2] ≤

( C

γ − 2c

)2
+
( c

γ − 2c

)2
λ2 +

( γ − c

γ − 2c

)2 Eλ[MS̃ ]
2

(γ − 2c)2
(4.38)

But from the Cauchy-Schwartz inequality and Itô’s isometry for the square

integrable martingale {Mt} we have:

Eλ[|MS̃ |] ≤
√

Eλ[M2
S̃
] =

√

Eλ[AS̃ ] ≤
√
γ, (4.39)

therefore:

1

3
Eλ[(λ̃S̃ −λ)2] ≤

( C

γ − 2c

)2
+
( c

γ − 2c

)2
λ2+

( γ − c

γ − 2c

)2 γ

(γ − 2c)2
. (4.40)

From this expression it is clear that Eλ[(λ̃S̃ −λ)2] → 0 even if ∆i,∆i, ci → ∞

as long as ∆i,∆i, ci = o(γ).
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2. Asympotic Normality

We start with the following representation, which is easily obtained with

some simple algebraic manipulations:

√
γ (λ̃S̃ − λ) =

√
γ
(B̃ − B

Ã

)

S̃
+

√
γ
(A

Ã

)

S̃
(λS̃ − λS)

+
√
γ
(A − Ã

Ã

)

S̃
λS +

√
γ (λS − λ).

(4.41)

Thus, if we show that the first three terms vanish as γ → ∞, the asymptotic

normality of λ̃S̃ will follow from Slutsky’s theorem and the exact normality

of λS , i.e.
√
γ (λS − λ) ∼ N (0, 1).

Using the lemma we can see that

√
γ
( |B̃ − B|

Ã

)

S̃
≤

C
√
γ

γ − 2c
,

√
γ
(A− Ã

Ã

)

S̃
≤

c
√
γ

γ − 2c
, (4.42)

thus the first and the third term in (4.41) will vanish as γ,∆i,∆i, ci → ∞

as long as ∆i,∆i, ci = o(
√
γ) (it can be easily shown with a time-change

argument that the centralized MLE λS is a consistent estimator of λ as

γ → ∞).

It remains to show that the second term in (4.41) converges to 0 in probability

or –a fortiori– in mean square. Since AS̃/ÃS̃ → 1 as ci = o(γ), it suffices

to show that Eλ[γ(λS̃ − λS)2] → 0. Indeed, using the representation (4.13),

Itô’s isometry and the lemma, we obtain:

γ Eλ

[(

λS̃ − λS

)2]

= γ Eλ

[(MS̃

AS̃

− MS

AS

)2]

= γ
{

Eλ

[(MS̃

AS̃

)2]

+ Eλ

[(MS

AS

)2]

− 2Eλ

[MS

AS

MS̃

AS̃

]}

≤ γ
{ Eλ[M2

S̃
]

(γ − 2c)2
+

Eλ[M2
S ]

γ2
− 2Eλ

[MS MS̃

AS̃γ

]}

=
γEλ[AS̃ ]

(γ − 2c)2
+

Eλ[AS ]

γ
− 2Eλ

[MS MS̃

AS̃

]

≤ γ2

(γ − 2c)2
+ 1− 2Eλ

[MS MS̃

AS̃

]

=
γ2

(γ − 2c)2
+ 1− 2Eλ

[MS MS̃

AS̃

]

(4.43)
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Thus, it it suffices to show that Eλ

[

MS M
S̃

A
S̃

]

→ 1. More specifically, since

Eλ

[MSMS̃

AS̃

]

= Eλ

[(MS − MS̃)MS̃

AS̃

]

+ Eλ

[M2
S̃

AS̃

] (4.44)

we need to prove that Eλ

[

M2

S̃

A
S̃

]

→ 1 and Eλ

[

(MS−M
S̃
)M

S̃

A
S̃

]

→ 0.

Indeed, using the lemma and (4.39) we have:

γ − 2c

γ
≤

Eλ[AS̃ ]

γ
≤ Eλ

[M2
S̃

AS̃

]

≤
Eλ[AS̃ ]

γ − 2c
≤ γ

γ − 2c
(4.45)

thus Eλ

[

M2

S̃

A
S̃

]

→ 1 as long as ci = o(γ).

Finally, using Cauchy-Schwartz inequality, Itô’s isometry and the lemma, we

have:
∣

∣

∣
Eλ

[(MS − MS̃)MS̃

AS̃

]∣

∣

∣
≤ 1

γ − 2c
Eλ[|MS − MS̃ | |MS̃ |]

≤ 1

γ − 2c

√

Eλ[(MS − MS̃)
2] Eλ[M2

S̃
]

=
1

γ − 2c

√

Eλ[AS − AS̃ ] Eλ[AS̃ ]

(4.46)

But since AS = γ and AS̃ ≥ γ − 2c we have AS − AS̃ ≤ 2c, which implies

∣

∣

∣
Eλ

[(MS − MS̃)MS̃

AS̃

]∣

∣

∣
≤

√
2cγ

γ − 2c
(4.47)

Thus, Eλ

[

(MS−M
S̃
)M

S̃

A
S̃

]

→ 0 as long as ci = o(γ), which finishes the proof.

3. Asymptotic optimality

We start by setting – for notational convenience– f(c) = γ−c
γ−2c in (4.37),

which gives:

|λ̃S̃ − λ| ≤ C

γ − 2c
+

|λ| c
γ − 2c

+
f(c) |MS̃ |
γ − 2c

(4.48)

Taking squares in both sides we have:

|λ̃S̃−λ|2 ≤
C2 + c2λ2 + f2(c) M2

S̃
+ 2C c |λ|+ 2|λ| f(c) c |MS̃ |+ 2f(c)C |MS̃ |

(γ − 2c)2

(4.49)

Taking expectations and using (4.39) we obtain:

MSEλ(λ̃S̃) ≤
C2 + c2λ2 + f2(c) γ + 2C c |λ|+ 2|λ| f(c) c√γ + 2f(c)C

√
γ

(γ − 2c)2

(4.50)
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Since MSEλ(λS) = γ−1, we have:

MSEλ(λ̃S̃)

MSEλ(λS)
≤ C2γ

(γ − 2c)2
+ λ2 c2γ

(γ − 2c)2
+ f2(c)

γ2

(γ − 2c)2

+ 2 |λ| C c γ

(γ − 2c)2
+ 2|λ| f(c) c γ3/2

(γ − 2c)2
+ 2f(c)

C γ3/2

(γ − 2c)2

(4.51)

At this point it is clear that if we let c → ∞ and γ → ∞ so that c = o(γ),

then f(c) → 1 and the previous inequality becomes:

MSEλ(λ̃S̃)

MSEλ(λS)
≤ O

(C2

γ

)

+O
(c2

γ

)

+1+O
(C c

γ

)

+O
( c
√
γ

)

+O
( C
√
γ

)

(4.52)

Therefore, we obtain MSEλ(λ̃S̃)/MSEλ(λS) ≤ 1 as c = o(
√
γ) and C =

o(
√
γ). But this finishes the proof since the exact optimality of λS implies

MSEλ(λ̃S̃) ≥ MSEλ(λS).

4.3 Correlated sensors

In this section we propose a modification of the D-MLE in the general case where

the sensors are correlated.

4.3.1 The Brownian case

Suppose that the sensors observe drifted correlated Brownian motions, i.e.

ξit = λbit+
K
∑

j=1

σijW
j
t , t ≥ 0, i = 1, . . . ,K. (4.53)

We set θi =
∑K

j=1 αijbj , where αij is the (i, j)-element of the matrix (σ−1)′σ−1

and σ = [σij ]. Then, the likelihood function of λ at time t has the form:

Lt(λ) = exp
{

λ
K
∑

i=1

θi ξ
i
t − 0.5λ2

K
∑

i=1

θi bi t
}

, (4.54)

and the centralized MLE of λ is:

λt =
K
∑

i=1

ri
ξit
t

, ri =
θi

∑K
i=1 θi bi

, (4.55)



CHAPTER 4. DECENTRALIZED PARAMETER ESTIMATION 105

Thus, ξ1t , . . . , ξ
K
t remain sufficient statistics for the computation of the MLE at

time t, λt, even if the underlying Brownian motions at the sensors are correlated;

consequently, the sensors can implement the communication scheme (4.20)-(4.21)

without any modification and the fusion center can approximate {ξit} with the

process {ξ̃it} which was defined in (4.23). The only difference is that the overall

estimator of λ at the fusion center now mimics (4.55) instead of (4.25), thus the

D-MLE becomes:

λ̃t =
K
∑

i=1

ri
ξ̃it
t
, t ≥ 0 (4.56)

Notice that in the case of independent sensors, θi reduces to bi, ri to wi – defined

in (4.4)– and the estimator (4.55) to (4.25).

4.3.2 Correlated Itô processes

We now assume that the evolution of {ξit} is governed by the following stochastic

differential equation

ξit = λ

∫ t

0
bis ds+

K
∑

j=1

∫ t

0
σij
s dW j

s , t ≥ 0, i = 1, . . . ,K (4.57)

where

bit = fi(ξ
1
t , . . . , ξ

K
t ) , σij

t = gij(ξ
1
t , . . . , ξ

K
t ), t ≥ 0 (4.58)

with fi : RK → R , gij : RK → R being known Borel functions for each i, j (so

that (4.57) has a unique strong solution).

Then, the likelihood function and the MLE of λ at time t have the following

form:

Lt(λ) = exp{λBt − 0.5λ2At} , λt =
Bt

At
=

∑K
i=1B

i
t

∑K
i=1A

i
t

(4.59)

where

Bi
t =

∫ t

0
θis dξ

i
s , Ai

t =

∫ t

0
θis b

i
s ds , θit =

K
∑

j=1

αij
t bjt , i = 1, . . . ,K (4.60)

and by αij
t we denote the (i, j)-element of the matrix (σ−1

t )′σ−1
t , where σt = [σij

t ].

The main difficulty in this framework stems from the fact that sensor i cannot

compute the processes {Ai
t},{Bi

t} using only its local observations; it can at best
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approximate them and in order to do so efficiently it needs information about the

observed processes at the other sensors.

For that reason we suggest that each sensor i communicate with all other

sensors at the times:

σi
n = inf{t ≥ σi

n−1 : ξ
i
t − ξiσi

n−1
/∈ (−Γi,Γi)}, n ∈ N (4.61)

transmitting the messages

wi
n =











1, if ξiσi
n
− ξi

σi
n−1

= Γi

0, if ξiσi
n
− ξi

σi
n−1

= −Γi

(4.62)

Using {σi
n, w

i
n}n∈N, all other sensors can approximate the observed process at

sensor i as follows:

ξ̂it =
n
∑

l=1

[Γiw
i
l − Γi(1 − wi

l)], σi
n ≤ t < σi

n+1 (4.63)

This between-sensor communication scheme allows each sensor i to implement the

Figure 4.11: Feedback from the fusion center

communication scheme (4.26)-(4.27) and compute the D-MLE (4.30) replacing Ai
t,

Bi
t with

Âi
t =

∫ t

0
θ̂is b̂

i
s ds , B̂i

t =

∫ t

0
θ̂is dξ

i
s, t ≥ 0. (4.64)

where

b̂it = fi(ξ̂
1
t , . . . , ξ̂

i−1
t , ξit, ξ̂

i+1
t . . . , ξ̂Kt ) , θ̂it = gi(ξ̂

1
t , . . . , ξ̂

i−1
t , ξit, ξ̂

i+1
t . . . , ξ̂Kt )

(4.65)
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However, the resulting D-MLE does not estimate the corresponding continuous-

time centralized MLE λt , but its approximation

λ̂t =

∑K
i=1 B̂

i
t

∑K
i=1 Â

i
t

. (4.66)

Thus, it is clear that the between-sensor communication should be very frequent –

or equivalently the values of Γi,Γi should be as small as possible– for the resulting

decentralized estimator to be reliable. However, this can increase significantly the

communication load in the sensor network. Therefore, choosing the thresholds

{Γi,Γi} optimally is not a trivial task and requires the introduction of criteria

that penalize properly excessive communication between sensors.

Finally, we should note that if the sensors can communicate directly with each

other, they can implement the suggested communication scheme using the 3-letter

alphabet {a, b0, b1}. Indeed, sensor i will transmit to all other sensors at time σi
n

the letter b1(b0) if wi
n = 1 (wi

n = 0). On the other hand, if the sensors communicate

only with the fusion center, then the messages {wi
n} will be in the form of feedback

from the fusion center, in which case each sensor will need two additional letters

(since the letters b0, b1 will be reserved for the transmission of the messages {zin}.)
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Chapter 5

Conclusions

We consider three statistical problems – hypothesis testing, change detection and

parameter estimation– under a sequential, decentralized setup. Thus, the relevant

information is acquired sequentially by remote sensors, these transmit quantized

versions of their observations to a central processor (fusion center) and the latter

is responsible for making the final decision. The problem is to choose optimally a

quantization rule at the sensors and a fusion center policy that will rely only on

the transmitted quantized messages.

We suggest that the sensors transmit messages at stopping times of their ob-

served filtrations and we propose fusion center policies that mimic the correspond-

ing optimal centralized schemes.

In decentralized sequential testing and change-detection, we prove that when

the sensors observe independent Itô processes or correlated Brownian motions,

the resulting decentralized schemes inflict bounded performance loss for any fixed

communication rate, thus they are order-2 asymptotically optimal. When the sen-

sors take discrete-time, independent and identically distributed observations, we

prove that the resulting decentralized schemes are order-1 asymptotically optimal.

In decentralized parameter estimation, we prove that when the sensors observe

independent Itô processes whose drift is observable up to an unknown, common

parameter, then the resulting estimator is consistent, asymptotically normal and

efficient (in a mean-square-error sense) even with rare communication.
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All the above decentralized schemes that we suggest induce asynchronous com-

munication between sensors and fusion center. This complicates considerably the

their analysis and requires the introduction of some new tools, such as the asyn-

chronous Wald’s identities that we prove in Sec. 2.4.4.2. However, all these schemes

can be implemented easily, they demand limited local memory and do not require

any communication between sensors.

The decentralized schemes that we suggest rely on the existence of sufficient

statistics which are observable locally at the sensors. We can always find such

statistics when we assume independence across sensors, but also when the sensors

observe correlated Brownian motions. However, apart from this special case, when

we remove the assumption of independence across sensors, it is no longer possible

to apply the same techniques.

In Sec.4.3.2, we describe a decentralized scheme that uses communication be-

tween sensors – or equivalently feedback from the fusion center– when the sensors

observe correlated diffusions (we can obtain analogous schemes for the testing or

the detection problem). Unlike the case of independent sensors, we no longer have

bounded performance loss and a detailed, rigorous analysis becomes much more

challenging. Therefore, it remains an open problem to find easily implementable,

asymptotically optimal and efficient decentralized schemes when the sensor pro-

cesses are correlated.

The ideas in this thesis could be applied with small modifications to more com-

plicated statistical problems, such as multiple hypothesis testing, change-detection

where the distribution before and after the change is not fully specified, estimation

of many parameters. Another direction of research would be to assume that the

communication between sensors and fusion center is noisy, i.e. the fusion center

may sometimes receive wrong messages. It would be interesting to propose ap-

propriate modifications of the suggested decentralized schemes and examine the

additional inflicted performance loss in this case.

Finally, whereas it is an advantage that the suggested schemes can be typ-

ically implemented with a small alphabet, it would be useful to consider more
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general schemes that can exploit larger alphabets, reducing more in this way the

corresponding performance loss.
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