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CHAPTER 1

Introduction.

The problem of linear estimation of signal in additive
noise using as a criterion the mean square error (MSE) was
solved by the classical works of Wiener and Kolmogorov. The
optimum linear filter is completely specified if we know
exactly the second order statistics of the signal and the
noise. In most applications this assumption of precise
knowledge is wunrealistic. It is wuseful to have processes
for design of filters that perform in a satisfactory way,
when the second order statistics cannot be precisely
specified. Several works have considered this problem. In
all cases there exist a known class of second order
statistics which contain the actual second order statistics
of the signal and the noise. The broader this class is the
more vague our knowledpe is about the actual second order
statistics

Nahi and Weiss [ 1,2 ] derived the bounding. filter
Hy. This filter is a Wiener fielter (min MSE) for some
bounding second order statistics. Its min MSE behaves as
an upper bound to any other MSE resulting by applying Hy to
any characteristié from the class of the allowable second
order statistics. Usually the second order statistics that
is used for the design of H does not belong to the class and

the upper bound cannot be reached by any second order stati-



stics from the class.

Kassam and Lim [3) inspired by Kuznetsov (4] and Huber
[ 5)defined the robust filter H,. . This filter is again a
Wiener filter for some second order statistics but now this
second order statistics belongs to the given class. 1Its
min MSE error behaves as an upper bound to any other MSE
using H, and this time the bound is a maximum since it can
be reached by some second order statistics from the class.
That is , the solution is a saddle point for the class.
Poor [6,7,8 ] generalized these ideas and showed the
similarity between the  robust filtering and  robust
hypothesis testing. It is important to notice that the
bounding filtering and the robust filtering approaches give
the same results whenever in the bounding filtering case the
nominal second order statistics that is used for the design
of Hy belongs to the class. In the cases where a robust
filter exists it has always equal or superior performance in
terms of upper bounding the MSE

In all the previous approaches [3,6,7,8] signal and
noise were considered independent. In this work we apply
the robust filtering idea to the correlated signal and noise
case. We design filters for certain classes of second
order statistics. The models for the classes that we will
be considering are the band models (upper and/or lower
bounds on the spectral densities). The whole approach is
based on a theorem whose validity does not depend on the

assumed models.



The presence of correlation 1s possible in many
applications. An example is a multipath channel with a
strong signal component , weak unwanted multipath signal and

regular noise. The total '"noise'" , the unwanted part, is
obviously correlated with the signal. We will give
numerical examples to show how bad the performance can be if
we design the filter assuming signal and  noise
uncorrelated,when they really are correlated.

In chapter 2 we set up the problem explicitly and we
prove a general result. This is applied to specific cases
in chapter 3. In chapter 4 we give some numerical

exanples and make some comparisons and in chapter 5 there is

the conclusion and topics for further investigation.



CHAPTER 2

General Theory of Robust Filtering.

Before defining the robust filter we are going to
summarize the Wiener filtering theory since we will be using

all its results.

2.1 Wiener Filters.

Let us assume that our processes are real,jointly wide
sense stationary and zero mean. If s(t) and n(t) are the
signal and the noilse processes then we can define the

covariliance matrix as

R (1) R__(1)

ss sn
R =
| Ras(™ R (™)
where
R (1) = E[s(t).s(t-1)]

w
~
—
~
[}

Els(t).n(t-1)1]

w
~
—
~
1l

Eln(t).n(t-1)]
Fourier transforming we get the spectral density matrix

[ p (W) D w)
S sn

D* (w) p (w)
L sn . n B

Since we are going to use mostly the D matrix we now state



the properties that characterize a matrix as a density

matrix. These are

i. Ds(w),Dn(w) are even and nonnegative functions

ii.  |Dg, (@) | £ /D(w) D) | | (1)

Thus D 1is a nonnegative definite matrix with diagonal
elements even functions.

Given random processes s(t) and n(t) with correlation
matrix R or density matrix D and a linear filter h(t) with
Fourier transform H(w) , the MSE for signal estimation using

this filter is

o0

e(D,H) = E[ s(t)- Jh(v).x(t—v)dv ]Z

(o]

o0 (o]

= RSS(O)—Z‘[h(V).RSX(V)dV + [Jh(v).h(u).RXX(v—u)dv.du (2)

(o] o0

where x(t)=s(t)+n(t) is the received process. Using Fourier
transforms and Parseval's theorem we can write (2) as

follows

e(D,H) = E%wJ[ Ds(w)—Z.H(w).DZX(W)+|H(W)|Z.DX(w) ]1dw (3)

The optimum noncausal linear filter for the matrix D is the

one that minimizes expression (3) and is given by
Dy () “)

DXX(W)

HO (w) =



or in terms of signal and noise

D_(w) + D__ (w)
H (w)= ° a0 (5)
° D (w)+D_ (@) +2R [D ()]

The corresponding error is the optimum error for D and is

given by :
| , ("D ).D (- )]
eop(D)= E{ D () (6)
[ X
or in terms of signal and noise
co . - 1D w 2
®op ") E;I 2o 0 i) (1)

Ds(w)+Dn(w)+2-Re[Dsn(w)]

2.2 Definition of Robust Filters.

Assume that a class A of density matrices is given then

a robust filter Hr is defined by the following conditions

a. H,is an optimum (Wiener) filter for some matrix
Dré;A . This means

eop(Dr) = e(@,H) <e(®@,H) (8)
b. For any D € Ao we have that

e(D,H) ce (") (9)

Combining a and b we have the saddle point relation

e(D,H ) ¢e (D )=e(® ,H ) ¢e(d",H) ‘ (10)
r op r



for any D €5 and for any linear filter H. Any pair (Dr,Hr)
that satisfies (10) is called a saddle point solution to our
problem, for the given class A and the class of all linear
filters. Obviously we need only D" since from D" by (4) we

can find H, . We will call D a least favorable

(1.£.) matrix and with the following theorem we give a

necessary and sufficient condition for a matrix to be 1.f.

2.3 Theorem 0.

Let Abe a convex class of density matrices. The pair

r
(D ,H.) is a saddle point solution to our problem for the
given class ;5 and the class of all linear filters if and

only if :

e, (D )=max e (D) (1I1)
P pen

The proof is given in the appendix.

Comments on Theorem O,

In theorem 0 1s stated that the 1.f. matrix maximizes
the e (D) over the class A. We can find conditions for the
class ¥1 to assure the existence of the max %)(D) . Such
condition could be that A is closed under a suftable metric
so that the image of A under the transformation eOpUD is
also a closed subset of the real numbers. Also either of
the powers of signal and noise has to be bounded,so that the
image of A is also bounded.

As we can see from theorem O the existence of max eOPUD

is a necessary condition for the existence of the saddle

point solution. But a necessary condition for existence



translates into a gsufficient condition for
non-existence. This means that if max e,, = * or
sup eop(D)<°'d but there exist no maximum, then there 1is no
saddle point. '

The convexity of A :.guarantees the sufficiency part of
theorem O. It is not a necessary condition for the

existence of the saddle point solution. In figure 1 there

is a simple example that illustrates this statement.

Figure 1

Assume A convex and that D' is a 1.f. matrix. By taking
out a single matrix ﬁk the resulting class becomes nonconvex
but D" is still a 1.f. matrix. Since it 1is difficult to
know if theorem 0 is wvalid without assuming convexity, from
now on we will deal only with convex classes. The
importance of this theorem is that 1t gives a way to find
the 1.f. matrix D' by maximizing the functionaleopUD over

the class 2.

2.4 Models for the class A .

Since we are dealing with the density matrix D we need
models for classes of matrices. As we said in the beginning

we will vse the band models (upper and/or 1lower bounds for



the elements of the matrix D ). TFor qs(w) and ql(w) it is

meaningful to define
L (w) <D (w) <U (w) i=s,n
1 1 1

because D ((w) and D (w) are real functions. For gnfw) we
have to be more careful since it 1is a complex valued
function.

One possible class is defined by the band model for
qs(w) and Q{w) with no restriction on the cross spectrum
qﬂx(w) . This <class 1is convex and theorem O can be
applied. The solution for this problem 1is in the next
chapter.

We would like also to be able to restrict D, (w) in some

way. We can define a band model f{or anl(w)\ which 1is a

real function,so that
L(w) < ID_ (Wl ¢« UW)
sn

Unfortunately this model produces a nonconvex class &

There are two ways to overcome this problem . One 1s by

defining :

Re ( DSn (w) ) <0 and

Lw) < [Re( D _(w) )| <l D (w)l< Uw)

and the resulting class 1is convex. The second way 1is to

assume that Re( D, (w) ) can be anything but

0 <|D_ (W) |<UW)

So In the second case we keep only the upper bound. It



turns out that we can get the solution to the second class
from the solution of the first class just by letting
L(w)=0,

The assumption that Re( D%n(w) ) <€ 0 seems artificial,
but as we will find out in the next section 1if
Re( Dsn(w) ) > 0 then the 1.£. matrix has Dgn(w) =0, This
means that if the Re( Dsn(w) )is nonnegative it is better to
treat the signal and noise as uncorrelated.

In addition to the bounds we also impose power

constraints

o0}

2 « 2
JDS(w).dw =2m0 JDn(w).dw =270,

where o, and o, are known numbers. These two power

constraints are actually the reason for superiority of

robust filters over the bounding filters.

2.5 Maximization of e, (D),

P

Based on theorem 0 we will try to maximize the €op (D) in
order to find the 1.f. matrix D . From (7) we have that

the optimum error is given by:

©D_(w).D_(w) - | D_ (w)|?
lJ s n sn dw (7)

(D)= —
(W)]

e
op 2T 1 b (w)4D (w)+2.Re [D
o S n Sn

For given Qs(w) Dn(w) andlqﬂi(w)]the worst Re( Dgn(w) ) 1is
Jqﬂgwx because it minimizes the denominator. We have this
condition when D_ (w)=-[ D, (w)] . Rewriting (7)) we have for

this case

10



[e]

D (w).D_(w)-|D__(w)]?
e (D)=1_J s n sn dw
op o T Ds(w)+Dn(w)—2|Dsn(w)l

(e8]

(12)

The expression under the integral in (12) for given D_(w),

D (w) as a function of | D (wﬂ is
n sn
a. increasing for 0<|D_(w) | <min{ D (w) , D (w)} .

b. decreasing for:

min{D_(w),D_(w} < D, (®l< /D (w) D (w)

We can easily verify the above statements by taking the
derivative with respect to len(w)l assuming Ds(w) ,Dn(w)
constants, From a and b we conclude that for given Dn(w)
and Ds(w) the worst len(w)‘ is the one that is as close as
possible to the min{DS(w),Dn(w)}, (but because of the bounds
it might not be possible to reach this value). Having the
worstiDsn(w)!the worst cross spectral density is given by:

D__(w)= - D__ ()]

All the above results depend on the assumed band model
and especially on the model for Dsn(w) . If we assume for
example that Re( Dsn(w) )> 0 then we can easily see that for
given Ds(w) and Dn(w) the worst Dsn(w) is D  (w) =0 and the

optimum error becomes

dw

] Jm DS(W)-DH(W)

e (D)= —
op 2" D (w) + D (w)
s n

[o¢]

which is nothing else but the optimum error assuming signal
and noise wuncorrelated. For this case we can use the

results in {3 to design the robust filter.

11



2.6 Uniguness of Pobust Filters,

As we will see in the next chapter the 1l.f.matrix is

mot unique. Let us assume that D' and Di are two 1.f.
X

matrices,then

e (Dl) = e (D2) = max e (D) (13)
op T op  r DeA

Iflﬁ Iﬁ are the Wiener filters for Di and Di (so they
are also robust filters) , because of the saddle point

relation

1 2 1 .
eop(Dr) > e(DZ,HD) (13a)

Because of (13), (139 can be true only as equality

1, _ 2 1
e <Dr) —e(Dr,Hr

2
op ) =e (Dr)

oPp
which means that Hi is a Wiener filter for D% . If the
Wiener filter is wunique then also the robust filter 1is

unique. Recalling the expression for the Wiener filter

from (5)

D (w) + D (w)
S sn
DS(W)+Dn(w)+2Re[Dsn(w)]

H (W) (5)

the Wiener filter is undefined in the regions where both
numerator and denomenator arc zero. In these regions it can
have any value and is not unique. To overcome this problem
we can define the filter to have an arbitrary but always the
same value (say O or some other constant). Under this
restriction the Wiener filter (and so the robust filter ) is

unique,

12



CHAPTER 3

Robust Filters for specific Classes.

The various classes will be presented starting from the
simple cases and going gradually to more complicated . This
way of presentation 1is prefered because the proofs are
easicer in the siﬁplc cases and they will give us enough

baclkround to understant the more general ones.

3.1 Signal and Noise Given.

A. No bounds on! Dgn(w) |.

Fipgure 2.

From the thecry in section 2.4 we have that the worst
. r o , \ v v
Dsn(w)[ is len(w)\ = m1n(D§W),Dn(w)).Also DSn =-|Dsn(w)|

and since now we have the 1.f. matrix we can desipn the

13



robust filter. It is given by

I when D (w)z D (w)
s n
H (w)=
r 0 otherwise

This filter has the same MSE behavior for any cross

correlation.We can verify this from equation (3).
(e 2
e(D,H )= EF{DS(w)—ZHr(w)DSX(w)+IH(wﬂ-DX(w)}dw

[oo]

[oo]

1 2 2
= ;?J{[I—znr(w)+|Hr(w)y}Ds(w)+lur(wﬂ D (w)

[oo]

+2 lHr(w)l?Re[Dsn(w)]—Hr(w)Dsn(w) }dw

Because Hr(w) is 1 or 0 it is a real function and it is also
even as the Fourier transform of a real system . The
Im(Dsn(w)) is an odd function so {;r(w)~1m(Dsn(w))dw = 0,
Thus )

[oo]

1 2 2
e(D,Hr)=;?J{[I—ZHr(w)+lHr(w)‘]Ds(w)+{Hr(w)an(w)«

<o

= 2H_(w) [I-H_(w)Re[D_ (w)]}dw (14)

But Hr(w){ Hr(w)-l]= 0 and we have

1(® 2 2
e(D’Hr):;FJi[I_ZHr(w)+‘Hr(w)I]Ds(w)+|Hr(w“ Dn(w) }dw
which is independent of Dsn(w)

B. Bounds on [Dsn(w)L

For this case according to section 2.5 the worst

+ -
IDS”KW)I is given by

14



|2 (w)'r:second—largest{ min{D (w),D (w)],U(w),L(w)} (I5)
sn s n

H

Figure 3.

In figure 3 we can see an illustration of the \Dzn(w)‘ and
the robust filter. This filter is no lonper a simple two
level filter ,it can also have nepative values .and values
greater than 1, something that never happens in the
uncorrelated signal and noise case.

The model for Dsn(w) has to be according to section
2.4 in order the matrix we defined in equation (15) to be a

1.f. matrix.

15



3.2 2and models for Dg(w),Dp(w).

le assume that functions Lji(w),Ui(w) are given such that
Li(w) ¢ Di(w) ¢ Uji(w) i=s,n

We also assume knowledpge of the total power of signal and

noise

oo

lDi(w) dw= 2 TTO.Z

1
J e

vhere o, known numbers.
1

(I6)

A. No bounds on [Dgp(w)l .

In section 2.3 we said that for given Dg(w) and Dp(w) if
therc are no bounds on | Dgn(w)] then the worst | Dgn(w)| is

given by
]Dsn(w)|P= min [Dg(w),Dn(w) ]

“nucr tnis condition the optimum MSE is piven by

1 ‘DS.DH— Dsn 1 & 1 ®
¢ (DY=—"1} dw = —ID .dw + —iD .dw
i 5T 3 i
op 2 D +D -2 D 2 Oos 2 OOn
. S n sn
= I__Jmin[D ,D 1.dw (17)
S n
27},
. . T T
The 1.f. pair Dg(w) , Dp(w) will be the one that will

maxinmize expression (17) under the power constraints (r1g¢).

Jbviously 1if there are no power constraints then (17) is
naximized for D:(w) = Ug(w) and Dz(w) = Up(w). This 1is
nothing but the pair for which the bounding filter is it's
optimum filter. Because of the power constraints there are

several subcases,but first we will give some definitions

16



A (w) = min{U_(w),max[L_(w),L (w)]}
A (w) = min{U (w),max[L_(w),L (w)]}
BS(W) = min{Us(W),maX[LS(W),Un(W)]}
Bn(W) = min{Un(W),maX[US(W),Ln(W)]}

In figure 4 we illustrate the definition of As(w) and

BS (vr)

Figure 4.
Now we are going to prove a lemma that will be used in
the proofs of the following subcases.

Lemma

Let a,b,c be nonnegative numbers with a 3 c, then

a - ¢ z min(a,b) - min(b,c)
Proof
a-c¢ 3z 0 2 min(a,b) - b
a - ¢ » nminf{a,b) - ¢
SO a - ¢ 2 min(a,b) - min(b,c)

17



(e 0] (e 0]

|
Al JA (w).dw 32702 , JA (w).dw z27m0?
) 5 S o n n

Figure 5

The robust sipgnal and noise densities are given by

Ls(w) if As(w)=LS(w)
DZ(w) =4

ls(w) otherwise

( L ( if A =

a W) i n(w)—Ln(w)
D' (w) =
n

ln(w) otherwise

\

The robust filter is given by

18



1 when L (w)>L (w)
s n

Hr(w) =
0 otherwise

ne MSE optimum error using expression (I7) is

[s0]

1
eOP(Dr)=O§+ oi—;?JiLs(w)+Ln(w)—min[Ls(w),Ln(w)]}dw

where ls(w),ln(w) are arbitrary functions with
ls(w) <As(w) and 1 (w)g An(w) , but enourh for D;(w) and

D;(w) to fulfill the power constraints,

Proof.
mln[DS,Dn] = mln[LS,Dn] + mln[DS,Dn]—mln[Ls,Dn]
~ccause of lemma gmin[L ,D ] + D - L
s’ n s s

<D -L 4+wmin[L ,L ]4+D -L
s s’ n n n

and by integrating

, 1(®
e (D)4 o2 402 - ——{{L +L -min[L ,L ]}dw
op s n 2Troos n s n

19




A2. JA (w).dws 2m0? , JA (w) .dw< 27102
s S n n

oo oo

Figure 6,

The robust signal and noise densities are given by

I (w) when A (w)=L (w)
s s s

DL (W)

ls(w) otherwise

U (w) when A (w)=U (w)
n n n

Dﬁ(w)

ln(w) otherwise

The robust filter is given by

20



e

I when L (w) > U (w)
s n
Hr(W) =

0 otherwise

The MSE optimum error is

o

1
eop(D)= Ui—;?JiLs(w)—min[Ls(w),Un(w)]}dw

where 1 ,(w),1 (w) arbitrary functions with

1 .(w)sAgw) and 1 (W) » An(w) , but enough again to fulfill

the power constraints.

Proof.
i i =mi U J+ min{D ,U J-min[L ,U ]
mln[Ds’Dn] smln[DS,Un] mln[LS, n] in]{ < n] [L

using lemma ¢ min[LS,Un] + DS - L

by integrating

[e0)

2 .
eop(D) s o 2WJiLS mln[LS,Un]}dw

21



Figure 7,

The robust signal and noise densities are given by

r =
Us(w) when Us(w) As(w)
D (w) = X«
S
ls(w) otherwise
[
L (w) when L (w)=A (w)
n n n
D (w) = A
n
]_S(w) otherwise

\

The robust filter is given by

22



I when U (w) > L (w)
Hr(w) - s n

0 otherwise

The MSE error is

o

1
eop(w) = Oi— ;—J{L (w) mln[L (w),U (w)]}dw
where 1 _(w) < A, (w) and ls(w) 5 As(w) and enough for
the power corstraints.

Proof.

ia[D ,D < mi D 1=ui , . ‘ i ,
minl < n] < mln[US n] mln[US Ln] mln[US_Ln] mln[US Ln]

using lemma <min(U ,L ] + D ~-L
s’ ' n n n
by integrating

o

1
e (D) £ ov2- ——{{L -min{U ,L ]l}dw
op n 2T n s n

23



A4,

00

co

fe ]

IB (w).dw 32mg2> (
s s

fe ] fe ]

J oo [}

fe ]

ZWOZ—JA (w).dw 3 2“02—[A (w).dw
n j n s s

fe ]

A (w).dw, JB (w).dws 2m02>
s n n

JAn(w).dwi

co

Figure 8.

The robust signal and noise spactrum pair is given by

A (w)
s
Ecore

[ 1S(W)

A (w)
. n
Dn(w)=

1 ()

when A (w)=B (w)
s s

otherwise
when A (w)=B (w)
n n

otherwise

24



The robust filter is given by

I when L (w)3» U_(w)
S n
Hr (“T)-_"

0 otherwise

The optimum MSE 1is

1 oo
eop(Dr)= Oi—;;[iLs(w)—min[Un(w),Ls(w)]}dw
where AS (w) < 1S (w) ¢ B_(w) and DZ (w)ys 1 (w)s B (w)
Proof.

min[Ds,D ] <« min[DS,Un]=min[Un,LS]+min[Ds,Un]—min[Un,L ]

n S

using the lemma glnin[Un,LS]+DS—LS

by integrating

[ee)]

1
e (D) < o2- —~I{L -min{L ,U ]}dw
op s omj_ s s’ n

25



o0 x

2
JBn(w).dw > 2ﬂ0n :IAn(w).dw

<0

JB (w).dw > 2702 > JA (w) .dw ,
s s s

(s8] feel Q0

2m04- { A (w).dw > Zmo? —J A (w).dw
s ) s n_J n

Figure 9.

The robust signal and noise densities pair is given by

AS(w) when As(w)=BS(w)
r
DS(w)— <
lg(w) otherwise
- An(w) when An(w)=Bn(w)
D" (w)= A
n
1n(w) otherwise

26



The robust filter is given by

1 U (w) 2 L (w)
s n
H (w)=
T

0 otherwise

The optimum }MSE is

1
eop(Dr)= Oﬁ— E;JLLH(W)-minIUS(w),Ln(w)l}dw

where A (w) <1 (W) ¢ B (w) and D (w) <1 (w) <B (w)
n n n n S S

froof
min[D_,D ]| ¢ min[D_,U J=min|L ,U_]+min [p_,v J-min[L U]
using lemma < min [Ln,US] + Dn - Ln

and by integrating

(e e)

[{Ln - min‘Ln,US]}.dw

(e e)

”
S T
eop(D) e
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[ee]

A6. {zs(w).dw > 2v0§ > JAS(W).dw , Zﬂoi > Jan(w).dw

«©

[ee]

Figure 10.

The robust signal and noise densities pair is given by

A (w) when A (W)=B (w)
s s s
r —
Ds(w)— <
ls(w) otherwise
) Un(w) when Un(w)=An(w)
Dn(W)=
ln(w) otherwise

The robust filter is
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1 when Ls(w) > Un(W)

Hr(W)=
0 otherwise

The optimum MSE is given
r 1 -
e (D)= o2- — [{L_-min{U_,L ]}dw
op s am J_'S n’’s

Where As(w) < 1. (w) « Bs(w) and D:(w)g.lﬂ(w)

Proof

min[D_,D ] ¢ min[D_,U J=min[L_,U ] + min[p_,U ] -min{L_,U ]

-

< minLLS,Un1 +D_ - L,

and by integrating

fee)

1 ~
2., _ .
eop(D) € o .- IiLS mln[Un,LS]}dw



rm co [os]
A7. B (w).dw > 2ug2 > JA (w).dw, 2mc2 > [B (w).dw
n n n s s

7 00 foe)

H

Figure 11.

The robust signal and noise densities pair is
s

Us(w) when Us(u)—BS(w)

T

=

Ds(w)
lé(w) otherwise
r =

An(w) when An(w) Bn(w)

DE(W)=$

ln(w) otherwise

The robust filter is
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1 when U (w) > L (w)
s n
Hr(W)=

0 otherwise

The optimum MSE is given by

1

eop(Dr)= gg —;;-{{Ln(w)— min[Un(W),LS(W)]}dW

Where Ar5w) < ln(w)g Bn(w) and Dg(w)s ls(w)

Proof
min [‘DS,DH] < min[D_,U_|= min[L_,U ]+ min[D_,U ]~ min{L_,U ]

using lemma < min[LS,Un]+ Ds - LS

and integrating

[ee]

1
2. - R
eop(D) < o e [{ LS an[LS,Un]}dw

[ee]
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Figure 12.

The robust signal and noise densities pair is

[ (o)
DL (W)=
ls(w)
Un(W)
D;(w)= 3
1 (w)
n

The robust filter is

when U (w) = B (w)
s s
otherwise
when U (w) = B (w)
n n

otherwise
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1 when U (w) 2 U (w)
s n
H_ (w)=

0 otherwise
The optimum MSE is given by

1 [ee)
eop(Dr)= E—T?-Jzin[Us(w),Un(w)_]dw
Where Bs(w) < lS(w) and Bn(w) g ln(w).

Proof
mln[DS(w),Dn(w)] < mln[US(w),Un(w)J
and by integrating

1 o t)

eop(D) < ;;Izin[US(w),Un(w)]dw
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B. Upper bound on \Dsn(w)!.

Let us assume that a nonnegative function R(w) is given

such that
0 <|p (W] ¢ R(w) ¢ min[L_(w),L_ (w)]

Here we have the special case where the wupper bound of
| D m{&)l is less than the two lower Dbounds of signal and
noise,

Because of the maximization problem lenﬁw)L has to be
as close as possible to min[Ds(w),Dn(w)] . The closest it
can be is when IDsn(w)l = R(w) Since we have specified
the worst cross densities we have to specify now the robust

signal and noise pair. The optimum MSLE is given by

1 [ (w).D_(n)-[Rw) |2
e (D) = — dw
p 2™ D (W)+D_ (w)-2R(w)

[eo]

or after some manipulations

1
e (D) = —;JR(w).dw + e | e
P 2 e 2TJS(w) + N(w)
Where S(w)=D éw)—R(w) > 0 and N(w)=Dn(w)—R(w) > 0
To maximize expressicn (17) it is enough to maximize the
second integral because the first 1is a constant. Put this

term 1s the expression for the min MSE for uncorrelated

signal S(w) and noisec N(w) with bounds

SL(w)=LS(w)—R(w)

IA

S(w) < Us(w)-R(w)=SU(w)

A

N, (W=L_(w)-R(w) < N(w) < Un(w)-R(w)=ﬁU(w)
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and power constraints

(o] (o]

[S(w)dw = 2ﬂ0§ - JR(w)dw

(o8]

[ee]

JN(w)dw = 2ﬂ0§ - JR(w)dw

[oe] (o]

This is exactly the problem solved in [5-] and the solution

is given by the following subcases

k N, (@) when S (w) < kN (W) < S;(w)
Sr(w>= Sp (W) kSNL(W) < SL(W)

Sy () k N (w) > Sy(w)

%;%}W) when M (w) sii?Lﬁﬂ € Ny ()
m_(w) N, () =5 () > N (W)

Ny, () Ny (W) < %;SL(W)

if kq < kp exists satisfing the power constraints;

if there is no such ks < kn then

kNL(w)+Se(w) when SL(w) < kNL(w) < SU(w)
SU(W) SU(w) < kNL(w)
S, (w)=y 5. (w)+Se (w) N, (W) < —i—sL(w) £ N, ()
5, () N (W) < %;SL(W)
%SL(W)+NQ(W) when NL(w) < %SL(W) < NU(w)
1
NU(W) NU(W) < ESL(W)
N, () =4 N, (w)+Ne (w) s, (W) € kNp (1) € S (W)
NL(w) SU(w) < kNL(w)



where k enough for the power constraints and Se(w)= k Ne (w)
but otherwise arbitrary nonnegative functions.

If neither of the above true then

1 N, ) 5, (w) < LN, (w) < Sy (W)
Sr(W)= SL(W) 1SNU(W) < SL(W)
l 5, () 1N () > S, (w)

Sy () N () < Sp(w) < Ny(w)
Nr(W)= NL(W) —%;SU(W) < NL(W)
N, () {: Sy () > N ()

with 1 >1  and such that the power constraints are
satisfied. If there is no solution for 1lg then Sr(w)=%j(w)
Qhen Ny(w) >0 and arbitrary otherwise and if 1, has no
solution then Nr(w)=NU(w) when Sy(w)” 0 and arbitrary
otherwise.

The proof can be found in [31.

3.3 Given D_(v),lounds on D_(w) and 1D}H$w)\.

For this case we assume that functions Ds(w)

L, (w),U, (W), L(w),U(w) are given such that

L (w) <D (w) € U (w)
L(w) < D (w) [« UGw)

with Lw) VD w) o L (w)

The model for Dsn(w) has to be according to section 2.4

When L(w) # 0 then

Re( D, (w) ) € 0 and | Re( Dsn(w) )| > L(w)
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When L(w)
constraint

2 e

J Dn (w) .dw

co

o]

where n

constraint

Let us

= 0 then Dg,(w) can be anything. Also power
for the noise process
=2 g2
n
is a given number. Because of the power

several subcases 3arise.

define first

F(w) = k D, (w) + (1-k) UMW)
G(w) = (k+3) L(w) - (k+2) D (w)
E(w) = kD (w) + (1-k) L(w)
~hen DZ(W) is given by one of the following subcases A,B,C
or D.
A,
Al., Dg(w) 2 L (w).
a. E(w) when L (w) < E(w) €U_(w)
a,. L (w) E(v) < L (w)
a,. U, (w) B(w) > U (w)
A2. L(w) > Dg(w).
ay . G(w) when L(w) < G{w) < U(w)
as. Ln {w) Ln (w)< G(w)
ag. U (w) U, W) > G(w)

Where 0 2 k

» -1 and such that the power constraint is satisfied.
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. BlL. s> L(WD

Un D wWhesw LS Un
ow) when WUDS ) Ly £ w 30, Un
I_“ whew Lné WM %D:,Ug

Bl.\ D (w) > U(w).
b 1 1(w)

B2. U(w\ > Dg(w) 2 L(w).

when L,(w) < Dg(w) ¢ Up(w)
Dg(w) < L, (w)
D S,(w) > Uy (w)

n (W)

Un(w)

B3. L(w) > Dg(w).

bs. 3-L(w)=2+D g(w) when Lp (w) € 3-L(w)-2-D, (w) ¢ U, (w)
bg. L p(w) . Lp(w) > 3:L(w)-2-D S(w)
b, U (w) U (w) < 3L (w)-2-D S(w)

where 1(w) is an arbitrary function such that
ﬁlax{L(w) L, (W) } s 1(w) < min{U(w), Uy, (w),Dg (w) }

and enough to satisfy the power constraint.

Cl. Ds(w) = U{w).

cq. F(w) whcn L (w) ¢ F(w) < U,ni(w)
co. Ln (w) L p(w) » F(w)
C3. - Up (w) Up(w) € F(w)

C2. U(w) > Dg(w) > L(w).

Cy. D S(w) when Ln (w) <D S(\w) < Up (W)

Cs. L n{w) Ln(w) < Dg(w)
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Cg . Un(w) Utﬂw) < D_(w)

C3. L(w) > D(w).

cr. G (w) vhen L (w) € G@W)< U (w)
Cg. Ln(w) ngw) < G(w)
Ccy . Un(w)v Q1(w) > G(w)

with k a positive constant and selected in order for Dg(w)

to fulfill the power constraint.

DI1. min{ﬂXﬁw),U(w)}_Z Dg (w) > L{w).

d;. 1(w)

D2. Otherwise.

dz. Un(w)

where for 1(w) we have Ur‘w) >1(w) > max| D éw),Lr‘w)j and
arbitrary othcrwise but enough to satisfy the power

constraint,

As we go from subcase A to subcase D the
integralnghwdw ircreases continuously from anhﬂdw
to JUnhwdw .Because ngw) < Dn(w) < ql(w) by integrating

(=] (=]

JL (w)dw < 2mg? < JU (w)dw
n n n

[eo] [ee)

Thus for given power one of the subcases is the solution to

the problem.
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Proof

To prove that the expressions given above are the 1.f

Dn(w) we can show that
r
eop(D ) > e(D,Hr)

r
for any matrix D. The D ,(w) 1s a real and nonpositive

function and because of (5) H.(w) is also real. From (14)

we have
[ ) 2
e(D,Hr)=ZFJi[1—2Hr+]Hr] JDS+|Hr]Dn—ZHr(l—Hr)Re[Dsn]}dw
and since Hr(w) is real
e(D,H )=i~ ?(I—H ;D +(H_)2D ~2H_(1-H _)Re[D__|}dw (18)
v oamy r’'’s r’”"“n r r - sn

(D" ,H )-e(D,H )—l— ;"(Dr D )dw +
€ s Hp /=€ D Y L nom

+%_JHr(l_Hr)[Re(Dsn)_Re(DZn)] dw

(o]

It is enough to show that each integral above 1is

« r
nonnegative. The !Dsn(w)\ because of section 2.5 is defined

v [ od
\Dsn(w)[=second—1argest{ min[DS(w),Dn(w)],U(w),L(w) } (19)

and it can be Ds(w),Dg(w),U(w) or L(w). Also the robust

filter is
p_ - |pl |
H (w)= s sn
g p_ - |pX |+ pf ~[pl |
S sn n sn

When lDZn(w)\=DS(w) as we can see H,.(w)=0. The integral

er(l—Hr)[ Re(Dsn)—Re(D;n)de
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will be also zero. When lqﬂl(w)|=@i(w) then Hr(w)=l and the

: r
above integral 1is =zero again. When |Dsn(w)|2U(w) then
D -U
Hy(w)= 5 and the integral above becames
DS—U+D§—U

. T
X(DS—J) L (DI-U)

(D -U+D" -T)
S n

-[Re(Dsn)—Re(Dzn)] dw

But \Dsn(w)\ < U(w) sa U(w)+Re( Dsn(w) ) 2 0. Also in order
+

to have |Dsn(w)|=U(w) we need min[DS(w)!D;(wX] 2 U(w). So

all the terms in the integral are nonnegative. When

IDsn(w)|=L(w) we must have
mhﬂDS@ﬂ,Dgwﬂ < L(w) ¢ mm{Dshﬂ,D$wﬂ

This means that {Ds(w)-L(w)}'{Drxw)-L(w)} < 0. The integral

for this case is

(p -1L).(dp"-1)
S S n i.Re(Dsn)—Re(D]S:n)} dw

(D -L+ D' -L)
S n

As we sald in section 2.4 when we use L{(w)#0 we must also

have that|Re( Dfn$w) )12 L(w). Again all the terms in the
integral are nonaegative. For every possible case we proved
that the integral is a nonnegative number. We must also

prove that the integral
dr.r
I = J}Hr)[Dh—Dn}dw

is nonnegative. We will show this for every individual

subcase.
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Subcase A.

Al. Dg(w) > L(w).

Because k ¢ 0 we have

E(w)=sz(w)+(l—k)L(w) < L(w)

case a, . Here Dﬁ(w)=E(w) < L(w) and because also

D (w) > L(w) from (19) we have that len(w)r=L(w) The filter
is

Dg—L 1
Hr(w):: = =

D -L+D'-L 1+k
S n

and the integral for the set of w where case a, is true is

I = (H ; (Dr—D )d = ——iﬂ~ J(Dr—D )d
aj r’VaT Y (1+kf’ n “n’ Y
a) aj
case a,.
r g
Here D (w)=L,(w) the WD ,(w)! is always given from (19). Ve
n
~ r
will show that Hr(w):llik) . VWhen min[Dg,D,] 2 U chen

!Dsn(w)f¥U(w) and because -1 < k € 0 the filter is

DS—U 1
H= —————— ¢ ] £ ot
Y 5 _y+pFoy (1+k)
s n

v r
When len(w)l=min[DS(w),Dn(w)J then again

_ S sn < 1< 1
Hr L (1+k)

When L,(w) < L(w) because Dg(w) > L(w) from (19) we have
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.
that |D, (w)| =L(w) and the filter is

D -L
S

Hr= r
D_-L+D) -L
S n

Now by replacing Dixw) by E(w) < Di«w) the filter becames

DS—L 1
H = \< ETEEY
v ianoL (1+k)
Thus for every possible case we proved that Hr(W)B‘(T%EY

r
Because Di(w)=Ln(w) we have D, (w)-D,(w) £ 0 and the integral

where case a, is true is

2 n

2 T 1 T
I, = j(Hr)(Dn—Dn>dw > s {(D -D Jdw
a

apn 2
case a z.
Here Di(w)=Ur£w) < E(w) £ L(w) and because D g(w) 2 L(w) from

. N%
(19 we have D (w)! =L(w). The filter is

D -L
s

H_ = T
D -L+D_ -L
S n

By replacing D;kw) with C(w) < D;kw) the filter is

-L
H = < -
r r
D -L+D -L (1+k)
S n

T Y
Because Dlﬁw)=UI{w) we will have Dn(w)an(w) 2 0 and the

integral is

1 J(Dr—D ) dw
n n

2
T
I = J(H YD =D )dw = 2
r n n 2 (1+k)
as

ajz
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A2, Ds(w) < L(w).

Because Dé(w) < L(w) from (19) we have that always
r
|Dgp (W) |=L(w).

case a,. Here Di(w)=G(w) so the filter becames

s 1

r D_-L+G-L (1+k)

The integral for this case is

z r 1 r

I = {(H )Y(D -D )dw = 1 (D_-D ) dw

a r n n n n

(1+k)
al+ aL‘,
case as. For this case Di(w)=Ln(w) > G(w) and the filter 1is
D -L

H=  —35

' p -1+p'-L

S n

By replacing Di(w) with G(w) < Di(w) the filter becames

D ~-L
2 2 1
w2 ——] < -
D -L+D ~-L (l+k)
S n

Because Di(w)=Ln(w) we have Di(w)—Dn(w) < 0 so the integral

for this case is

2 r 1 r
I = {(H )(D -D )dw > (D -D )dw
a r n n 2 n n
(1+k)
ag a5
case a .. Here ql(w)=UI$w)< G(w) and the filter is

D -L

Hr= s

D -L+U -L
s n
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By replacing D:kw) with G(w) < Di(w) the filter is

DS—L DS—L ) 1
[ 1 = (1% > | ) =
r D -I4D'-L D -1+G-L (1+k)?2
S n S
T T
Because D (w)=U_(w) we have D (w)-D,(w) 2 0,and the integral
n
is
I = (n f-(Dr—D Ydw 3 —= (D'-D ) dw
ag r’ Y'n n ” (l+k)2 n n
ag ag

For every case a; we proved that

I > 1 5 (Dr—D Ydw
8 (1+k) non

a,
1

By adding all the different cases

I =71 2 1 3 J(Dr—Dn) .dw =0
8y (1+k)_

1

Subcase B.

Bl., D (w) > U(w)

r
case by;. llere D (w)=1(w) an arbitrary function with

max{ L(w) ,L (w)} < 1(w) < min{U(w) ,U x(w),D g(x7) }

Because Dg(w) 35 U(w) and L(w) < Di(w)=l(w) < U(w) from (19)

we have that D o (w)! =1(w) and the filter becames
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The integral is

= | 2'(Dr—D Ydw = | (@ -D ).dw
Ibl_(r) nnw— n n

b by

case b, Again Hr(w)=l and the proof is exactly the same as

above.
case bs. Here Dﬁ(w)=Lrﬁw) > Ds(w) SO from (9 )
|Dsn(w)r¥Ds(w) and the filter is H.(w)=0. Because

Diﬁw)=Ler) we have D;kw)-Der) € 0 and the integral is

I = l@y ®-p)dv =03 |(DO-D )dw
bj - T n n - n n
b3 b3

-
case by. Here Dn(w)=UI{w) < Dg(w) and since

U(w)‘> Ds(w) > D;(w)=Un(w) from (j9) we have that

D _ (Wl=max[U (W), L] . The filter is

S- ’ sn‘r

D -|D_|'+ D -|D
S sn n sn

IA
=

H =

r ‘r

Because Dn(w)=Un(w) then D_(w)-D,(w) > 0 and the integral is

I, = | )Z(DED Ydw = 3 ((Dr-D Ydw
by, r’“’n n i J n n
by by

B3. Li(w) 3 Ds(w).

L(w) it is easy to see that

W

Here since Ds(w)
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| D, () =L(w).

case bs, Here we have Dn(w)=3aL(w)~2Ds(w) and by

substituting in the expression for the filter

T p-14D"-L
S n

The integral is

Ty = {(Hr) (D2 -D_)ds

bsg b

(DF-D )dw
n n

k]
If
G S———

case b,

For this case we have D (w)=L (w) > 3 L(w)-2 D 4(w)
and the filter is

By replacing L (w) with 3L-2D < L the filter is

2 D -L 2
T S R
D -L+ -L
S n

Y
Because Di{w)=Lrgw) then D (w)-D,(w) < 0 and the integral is

_ 2. r N ( r
Ib(, = {(Hr) (Dn*Dn)dw 2 J(Dn—Dn)dw

bg bg

case b_. Here D_ (w)=U,(w) < 3 L(w)~-2 D(w) and the filter is
D -L
H o= —2 -
T
D -14U -L
S n
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By replacing ﬁ;gw) with 3 -L(w)-2 D (w) :>D£(w) the filter is

W
—

[Hr]=f**ii“;f“q
D_-L+D_-L

And since Dn(w)zqﬁw) we will have D (w)-D _(w) > 0 so the

integral is
' * r T
Ib7 = J(Hr)(Dn'Dn)dw > {(Dn—Dn)dw
by b7

We proved for every case b; that

I 2 [(Dr~D Ydw
n n

b,
i

By adding all the cases we have

il
o

= > S i(pt-
I Zlbi > {(Dn D_)dw
b,
1

Subecase €,

Cl. Dg(w) = U@,

case ¢ 1.
Here D (w)=F(w) > U(w) and because D (w) » U(w) from (19 we

have that | D_ (w) =U(w).So the filter is

sn

D ~-L
]

H = — = 1
T D_-U+F-L 1+ k
The intepral becames
1. = (H ;(Dr—l) Ydw = —1 (Dr-D )dwk
Cq r n n 51 n n
¢ (1+k
{ Cy
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T
case ¢, . For this case Qﬁ(w)=Lr£w) > F(w) > U(w) and again

v
as above |D SI1(w)l=U(w). The filter is

D_-U

H = -

r D -U+b U
S n

If we replace D;(w) with F(w) >~D;(w) then the filter is

DS_U 1

e NEGE)

I p-u+d'-u
S n

Because Dn(w)=L éw) we have D;(w)—Dn(w)s 0 and the integral

becames

2
1 = J(H (D -D J)dw > 1 5 {(Dr—D )dw
c, r n n (14K n n
co €2

case ¢3, Here D éw)=UI$w) and because Ds(w)z U(w) we have
that |D£H$w)ris given by

| D Séw)r;seclargest{Un(w),U(w),L(w)}
We will prove that

k Ds(w) + (L-Xk) | Dﬁl(w)fiz U, G7)
If Un(w) > U(w) >L(w) then |D SIl(w)[‘;U(w) and the above
relation becames

k Ds(w) + (1-k) <U(w) ;;Un(w)
which is true by assumption for casé c.. If U(w) > U (w)
then ]Dsn(w)f=max[Un(w).L(wﬁ and because

Dg(w) > U(w) = max[Un(w),L(w)} and k > 0 then

v r
k-DS(w)+(l-k)-|Dsn(w)\ > IDsn(w)l r-vm:zu{[Un(w),L(w)] 2 U, (w)

If in the expression for the filter we replace D;(w)=Un(w)
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with the above larger expression then we get
r
Ds—len' 1
>

T r
DS—{DSHI+UH—[DSHI (1+k)

r

Because the D;(w)=Un(W) we will have Di(w)—Dn(w) > 0 and the

integral becames

2
I = ([H 1 (0" =D Jdw > —E— J[Dr—D ldw
c3 T n n (1+k)2 n n
C3 C3
C2. U(w) > D (w) » T(w)
case ¢ . Here Dn(w)=DS(w) and because of the assumption
for C2 and (19) the ]Dsn(w)r—is also egual to Ds(w). For

this case the filter is undefined so it can take any value

we like and we will give the wvalue

1

H = —=—
(1+k)

r

The integral also is

2 r 1 r
I =l [H ] [ -D ]ldw = [D"-D ]dw
cy r n oo (14k)? n n
Cuy Cy
case Cs. Becansa here Di(w):Ln(w) > DS(w) again it is

easy to see that {Dsn(w)lrzDS(w) and so the filter becames

., . 1 T _ r
7ero. Because alun Dﬁ(w)—Ln(w) we have that Dn(w)—Qn(w)§ 0
and the integral is
I = f[H 12[p =D _ldw =0 > ~1 {[Dr—D ldw
Cpy r n n (]+k)2 n n
Cg ) cs
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case cg.
Here Dy (W)=t (W) < D (w) from (19) we have

|D gn(w) |=max{L(w),Up(w)} and  Dy(w)-|Dgy ()| s 0. Because
k > 0 we have for the filter

p -ip_|"

H = s sn 5 1 3 1

p-p_|"+U - | (1+k)
S sSn 1'1A sn

And since D, (w)=U (w) then D;(w)~Dn(w) > 0 and the integral

is

2
I = J [H] [D-D ldw = 1 I[D -D Jdw
T n n (14%)2 n
Cg Ceg

c3. L(w) > D s(w).

-
As we have seen many times for this case| D solw) [=L(w)

Here D, (w)=G(w) and by substituting into the expression for

the filter
D ~-L
2 s 1
(Hr} = [——7 = D
DS—L4'G-"L (1 + k)
The integral is
2 1
I = fH 1 [D-D Jdw = [D -D ]dw
c7 T n n (]+k)2 n
c7 ) c7
case C g For this case we can see that
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ﬂ;(w)=Ln(w) > G(w) so the filter is

D -L
S

Hr =
D -I+L -L
S n

By replacing D;Kw) with G(w) < ﬁ;(w) the filter becames
D -L D -L
S

——]% <] 12 =
D -14L -L D ~L4G-L (1+k) 2
S n S

1

2
(o 3= [

: r
Because Dz(w)=L(w) we will have Dn(W)‘QI(W) < 0 and the

integral is

I = ﬁH 12[D%-D Jdw 3 —b I[Dr—D ldw
g T n n (1+k)2 n n
C8 C
case Cg. Here DE(w)=Up(w) <« G(w) and the filter is

D_-L

o = —

D -1+U -L

S n

r r
By replacing D (w) with G(w) > Dh(w) we get

D -L D~ L )
[0 P [P 3y [ — P =
D -L + U -L D -L + G-L (1+k)?

S n S

r r .
Because D (w)=U,(w) then D,(w)-D,p(w) > 0 and the integral is

I = [[H J2[D -1 Jdu ;——l~—4ﬁn -D_ldw
[Qe] r n T (l+k)2 n n
Cg €y

For all case c¢; we have that

I > L ﬁnn~nn]dw
€3 (1+k) 2

C.
1
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and by adding

I=1I > lg{[D—D]dw -0
¢i (1+k) n
Subcase D,
. _ ) ;
case d,. For this case Dn(w)—l(w)a max[Ds(m),L(w)f 5>Ds(w)
also U(w) > D (w) 2 L(w) SO from (19) we have
S

thatlen(w)rEDs(w) and this means that Hy(w)=0.

The integral then is also zero

2
Idl = J[Hr] [Dn—Dn]dw =0

Ay
case d2, Here D:{w)=Uwa) S0 D:Kw)-Dn(w)ia 0 and for the

integral we have

2
I, = IIHr] [D -D Jdw > 0
d;

For both casesg Id 5 0 and by adding them
i
I = ZId > 0
i

And this completes the proof for all possible subcases.

3.4 Other Models.

Since we have finished the presentation of the band
model we can talk about some other models and see how we can

apply the theory of chapter 2.
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P-point model.

In this model we assume knowledge only of the signal
and noise power in given sets without assuming any knowledge
of the shape of the spectra. Robust filters for this
problem for the uncorrelated signal and noise case are
presented in [9} . These filters turn out to be piecewise
constant. For the correlated signal and noise case we have
to assume also knowledge of the integral |p, (w):dw itself or
knowledge of bounds of this integral. Following the theory
of chapter 2 it 1is very easy to find the robust filter for
this case. It is again piecewise constant,

Assume that a collection of sets Ai is given such that
AiNAj= ¢ for i#j and that VAi=R the real 1line. Also

assume that in every set Ai we know that

2
A = 0]
JDS (w)dw 2m si
AL I\D (w)idw 4 2“??
) sn i
iDn(w)dw =2W6ni A
i 1

Obviously the resulting class is convex so we can apply
chapter 2. Since we do not know anything about the shape
and we expect piecewise constant filter again , we can

assume that in each set

D (w) | Dsn(W)l i
—-—~—D o =ki and ~—— =V {
n v Dn(W)
where ki and v, are constants. We can easily show that
2 2
osi Pi
k.= —5 and v, < SF uq
1 Onl Oflj
. . ' v .
According to section 2.4 D ()| is the function as close

as possible to min[DS(w),Dn(w)]. Since D, (w)=k;-D (w) and
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|Dsn0ﬂ| < uiDn(w) we have that u:iDn(w) behaves as an
upper bound for |Dsn(w)|. So

.
D @)l =D (w) if D (W) ¢ minD @) ,u -D (w)] or
sn S S n 1 n

ki ¢« minl1,ui] or Ogié min[Oii,§;]
and here Hy(w) = 0. In the same way
v .
IDsn (w)| =Dn (w) lf, Orzli s min[gsiapzi]

and Hy(w)=1

v
ID sn(w)l =u; D a(w) if p2 < minf[o? | 0% ]
i = 54 ng
and 2 ﬂf
S. 1
0 €£H = L ~ <1
r 2 2

Pt 02 -p
Osi Py n{ Py
To prove now that this filter is the robust filter for
this model,we have to show that

eop(Dr-)=e(Dr,Hr) > e(D,Hr)

7

or because of (44)

[[l—Hr]J[D;—DS]dw-+J[Hrfl[D;—Dn]dw +2{[Hr][l—Hr][Re(Dsn)—Re(DS;)]dw >0
The first two integrals are zero because in each set the
filter is constant and Di(w),Di(w),i=s,n have the same
power. For the third intepral whenever (D SIl(w)‘k=])s(w)
H,(w)=0 so the integral is also zero. When )Dml(w)r=Dn(w)
then Hr(w)=l and the intepral 1is again Zero. When
‘Dml(w)réuiDn(w) then H];w) is a constant between zero and

s \- t -
one.Also Dsn(w)=~\Dsn(w)| Re[Dsn(w)] = ~|Dsn(wﬂ

The integral then is



[[Hr] [l—Hr][Re(Dsn)—Re(D;n)]dw = ZJ[Hri][l—Hri][Re(Dsn)—Re(Dzn)]dw

r
e(D ’Hr) > e(D,Hr)
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CHAPTER 4

Numerical Examples.

Example 1,

Assume that signal and noise are given as in
figure 13 . Assume also that there is no restriction on the
D W .
o (V)
{
DS

~
_—

Fipgure 13.
For this case according to section 3.1{A) the robust filter
is given:

1 when Ds(w) 3Dn(w)
Hr(w) =

0 otherwise

Also we proved that Chis {ilter has the same performance for
any Dgn(w) in the "iSE sense and we will call this error

e . HNow if we desipn the Wiener filter assuming wrongly
r
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that signal and noisc are "uncorrelated this filter will be:

DS (w)

Hu(w) =
DS(w)+Dn(w)

If we apply Hy to any matrix D the resulting

maximum value for D (w)=-/H (w) D (w)
sn s n

this error e If sipgnal and noise are
u

then H, 1is the optimum filter and the

will call it e. In the following

values of the parameter b we calculate

for H | ¢ the worst performance for
r u

performance for H, and the percentage

performance of e over o .
r u

and

MSE takes its

we will

call

indeed uncorrelated

resulting

CrYror we

table for different

e

t

r

u

of improvement

the performance

e

3

ﬁh—;——.~ﬁ< e e, _{ % e :

0.1 2;09 0.12 34.5 0.07

0.5 0.33 0.42 27.1] 0.23

1.0 0.5 0.62 25.7 0.33

3.C 0.75 0.97 29.0 0.53

5.0 0.83 1.10 31.7 0.62
10.0 0.91 1.20 34.5 0.73
15.0 0.95 1.28 34.8 0.81

From the table we can sece that Hr can

considerably better for this particular cxample.

signal and noise are uncorrelated e is not far

r

the

indeed

best

of

be

Even if

from

e.



But H_ 1is also a significantly simpler filter since it 1is

only 0O or 1.

Example 2.

Assume that the following bounds for signal and noise

are given:

2.5 for 0Og wg 5. {2 0 0Og wg b
US(W)= Ls(w)f\
0 otherwise 0 otherwise
2
Un(w)z 16 Ln(w): 12
wl+ 4 w2+ 4
1150
JD (w).dw = 24 [D (w).dw = 21

The bounds are iilustrated in the following figure.

NN Uy ()
\\ \ Le (o

Figure 14.
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We assume no restriction on |Dg (w)|

We can easily calculate

{Us(w).dw:ZS JUn(w).dw=25.l33
JBS(W).dw=21.765 mJ L (W) . dw=21.382
JA (w) .dw=21.155 jA (w) .dw=20.772
o S o T

[e's) oo

m[LS(w).dw=20 jLn(w).dw=l8.85

So we have lrere the case A7 of _sgection 3.2 where
27roé > (Bs(w)dw and JBn(w)dw > ZWO:; > JAn(w)dw . The 1.f.pair of signal

[ee)

and noise are shown below in figure 45.

2.5 e e e e —— — o — —

20 e e — — A ——

0834 2.9 5.0

Figure 15.
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Using the formula for the error given in case A the MSE

error is:

e (DY)=2.168
op
Let us now compare this result to the regular Wiener
filtering. We are going to select two nominal densities one
for sipnal and one for noise that satisfy the power

constraints and the boundaries.Such densitics are
2.4 for 0g wg 5 44

D_(w)= 7 and D_(w)= T
0 otherwise w2 +4

and they are illustrated in the followinpg fisure.

A
fit

Ui

Figure 16.

If we assume that sicnal and noise are uncorrelated and
design the Wiener filter H (w) then the MSE when we apply
u

Hlﬂw) takes its maximum wvalue for —Dfﬂlw)t/bs(w)-Dn(w)
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This value is e, =2.,829. Compaired to the robust filter
MSE upper bound the robust filter has at least 30.5 7 better

performance.
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CHAPTER 5

Conclusion.

With this work we applied the idea of robust filters
to the correlated signal and noise case. We stated and

proved a theorem and we applied it to find the solution to
some very interesting classes of matrices. In practice it
is very common to find cases where signal and noise are
correlated, and there we can apply these filters.

As we have seen the filters we present here are non-
causal and they cannot be used for real time processes.
But there are many applications where causality has no
meaning. Image processing is one such application. Also
in array design , arrays are treated as spatial filters

where causality again has no meaning.

Topics for further investigation.

In chapter 3 we present the various classes. All of
them are special cases of the general band model. The so-
lution for this general problem is not given , but using

the results from section 3.3 as a guide we can find the
solution.

For the uncorrelated signal and noise there exist
several distance measures that indicate how different the

signal and the noise are. They are of the form

[C(x). Ds(w)dw
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D (w)

where C(x) a convex function of x and x= If

there exist classes for DS(w) and Dn(w),then under general

r

n(W) that has

conditions there exist a pair Dg(w),D
the smallest distance. This pair is independent of the
actual form of C(x). It is possible to extend this idea to

the correlated signal and noise case. We can define a

mneasure

[C(p).DS(w)dw
2
ID__ (w)]

5X

Where C(p) is a convex function of p and p=

Ds(w).Dx(w)
This measure will indicate the amount of information about
s(t) that exist in x(t)=s(t)+n(t). Given a class of densi-
ty matrices it might be possible to find a matrix that has
the maximum amount of information regardless of the actual

form of the C(p). Since the functional eOD(D) is of the

fray

above form,the leazt favorable matrix is the most possible
candidate for the matrix with the maximum amount of info-

rmation.
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APPENDIX

Before proving theorem 0 we will state and prove the

following lerma.

Lemna.

Let A be convex and for D' and D'' € A ,define

4

D =(l-e)D"+D'" with 0 <e < 1. Then the expression:

DE (1) . DE (w) - DE_ (w) |

G(e,w)=
D€ (w)
x

is a convex function of e
Proof.

First we will show that:

2 2 2
DE.DE—,DC , D'-D'—ID' ! D”.D”—;D” )
s X sX 3(1_6) S X sn + e S X s X (20)
D D' D"
X X X

Subtracting each side from Dg(w) it is equivalent to s!

that:
i e
sx! _g sX sX or
Bg—" ¢(l-¢ D" +e- D"
X X X
D‘ : Dll
(1-e)D'_ 4+eD" |2¢ (1-e)—2% 4 3% (1-2)D! +cD"
l " Tex sxl<1 ' b oo Fed BRI -
X X

But this is the Schwartz inequalitv. %Yo oprove now that

G(e,w) is a convex function of ¢ we have to prove that for

any e1, e€oand 0 <a <1

P

c :
pL.D) - D D;.Dil D D pf2 pfo
—2 —U—‘ - 3 (1-a) — SE + a S k‘ SRS
D p&l pt2
X X X
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where u=(1l-a)es +a - -,

Since (20) is true for any D',D'' and any ¢ it is also true

|#)

M pr=5® and ¢ =a so by applying (20) we get exactly

for D'=D

what we want.

Proof of Theovem 9.

The only if part is easy. From (10) we have that:

. r r
e gp (Poi1) se (@ 1) ce (D)
but
e (D) ge(D,Hr) S0
op
e (D) ce (D)

op op
To prove the if part,define D =(1-¢)D +eD wvhere O0<ec ¢ 1

and D ¢ 2. Because of the previous lemma and the fact that

e (Dt) = [G(g,w).dw
op

[e+]

€op( D") is also a convex function of ¢ . So:

eop(Dt)z (l—F)eop(Dr)+geOp(D)

and

From the convexity of ¢ (D %) we conclude that
op

e (DEY-e (DT
op op

€
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is monotonic with respect to ¢ . Because of (21 is also

bounded so the limit
T
e (D )—COP(D )

. o
1im P
€0 .

From the convexity of G(egw) |, d5(f,w) is also a

exists.
d e .
These conditions

monotonic function with respect to ¢ . A
allow us to write the following:
Frem (21)
[ GCe,w)=-G(g,w) 1 G(e,w)-CG(0,w)
0 21im —- dw = -—{ 1lim dw
Bt oW e gwjtﬁa e
d GE ,uw)
. dw (22)
o7 dg £-0
But
d T r (% T T
D D D D
dG (= ,w) SX sX ( sx) sX sX r sX
o {D - + ~;~D } - {D - } (23)
de txot D D D
X X X
because Dy 1s even function of w and In( 71 DT ) is odd
' - sX
we have
D_ D;k (pt Lo
—E 2R | 2 PR gy
D Dt
2 X
have that

equation (23) we

. T
v = ¢(D,H -
d\’ e (D, r) eop(D )
[ Xe]

dG{ gw)
d e

And because of (22 0Oxc(D,H ) - e (DY)
r

And this concludes the proof.
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