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THE REPRESENTATION OF BIVARIATE DENSITIES
WITH APPLICATIONS IN DETECTION AND ESTIMATION

ABSTRACT

This dissertation is divided into two parts. The first part is a study of
the representation of bivariate demnsities. The second parl is the applica-
tion of such representations to signal detection and estimation under the

assumption of dependent observations.

In the first part we present three models for bivariate densities. The
first is the classical model of expanding the bivariate density into a series
using the orthonormal polynomials defined by the marginal densities.
The second model is the Fréchet class of bivariate demnsities, which is sim-
ple and has interesting properties. The third model is the expansion of a
bivariate density into a Fourier series. This model turns out to be simple
as well as possessing interesting closed form expressions. The disserta-
tion concentrates principally on the last two models because they are
less classical than the first. Their richness is examined and useful proper-

ties are obtained.

In the second part of the dissertation, the problem of the detection
of signals in additive noise and the problem of the estimation of a location
parameter are considered. The main thrust is to solve these two prob-
lems assuming some form of dependency between the observations. For
the detection problem the efficacy is used as the performance measure
and for the estimation problem the asymptotic variance. The detection

and estimation scheme that is considered here is sums of memoryless
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transformations of the observations. This scheme is tractable because, in
order to calculate its performance measure, knowledge only of the bivari-
ate demnsities between observations is required. This is exactly the point
where the two parts of the dissertation are connected. Using the models
of the first part, optimmum detection and estimation schemes are derived.
The general approach that is used is the min-max approach. This
approach allows the knowledge of the dependency between the observa-
tions to be limited into quantities that can be estimated in practice, such
as marginal densities and correlation coefficients, for example. This is
definitely an advantage over an approach that optimizes the performance
measure and that requires exact knewledge of the statistics between the

observations.
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CHAPTER 1L

INTRODUCTION

In detection theory, one of the most commonly encountered prob-
lemns is the detection of known signals in additive noise. As is well known,
designing optimum tests in the Bayes sense, or the Neyman-Pearson
sense, results in likelihood ratio tests. For the case of independent obser-
vatiocns these tests have a very simple form which is shown in Figure
1.1.1. Tne observed sequence is passed through zero memory nonlineari-
ties and the sum is compared to a threshold for the decision. Even
though the independence assumption makes things easy from an analyti-

cal point of view, it is far from being a realistic assumption.

H,

ZNR

¥n (z)

Hy

Figure 1.1.1. Optimum detection scheme for independent observations.

If the restriction that the observation sequence is independent is
dropped. the optimum tests, in the two senses described before, no
longer have the form of Figure 1.1.1. Under dependency, in order to

define the optimum schemes we need a knowledge of the multivariate
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statistics of the observation sequence. Unfortunately, not many models
for multivariate statistics are known. The major exception, of course, is
the Gaussian case. This is exactly what makes this approach very

difficult.

One way of overcoming the problem of representation of the mul-
tivariate density is to try to find suboptimal schemes. In other words, we
define a class of tests that are of interest to us, the allowable class. We
then try to find the optimum test in this class, by optimizing some per-
formance measure. Here, the allowable class will be all the tests that can
be represented by Figure 1.1.1. Later, in Chapter IlI, we will specify more

accurately the class.

Optimizing inside the allowable class creates other problems. First,
we must select a performance measure that is tractable for our class of
tests. It turns out that the Bayes risk or the Neyman-Pearson criterion
are not tractable. They require, again, a knowledge of the multivariate
statistics. Even with this knowledge, it is not certain that the optimiza-
tion is an easy task. Clearly there is a need of another measure. As we
will see the efficacy possesses all of the properties that we will need. The
efficacy is an asymptotic measure of performance. The ratio of the
efficacies of two tests, under very general conditions, is equal to the
Asymptotic Relative Efficiency (ARE) of the two tests. In detection the
efficacy has clear meaning for a large number of observations and for the
weak signal case. It is a quantity that depends on the test and on the
statistics of the observation sequence. Its most important property is
that, in order to be calculated, there is needed knowledge only of the
second-order statistics of the sequence. In other words we need to know

all of Lthe bivariate densities involved. Of course this is still a lot to know,
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but compared to the multivariate statistics that is required for the other
approaches, it is, without any doubt, preferable. In addition, use of
bivariate demnsities is the first natural step into a study of dependency. As
we will see in Chapters IV and V, for our approaches, we do not really
need to know exactly the bivariate densities. Quantities such as the
correlation coefficients will be enough to define optimum tests from the

allowable class.

Before discussing the contents of each chapter, we must say a few
things about the estimation problem, since this term is included in the
title of this work. Here we are interested in estimating a location parame-
ter. As we will explain in Chapter lII, with the asymptotic approach that
we take here, this problem turns out to be a simple version of the detec-
tion problem. Thus, the two problems will be put under the same

mathematical framework, which is maximization of the efficacy.

As we said before, bivariate densities are important in our study.
Thus Chapter II is devoted to the presentation of three models of bivari-
ate densities. The First Model is the expansion of the density in a series,
using the orthonormal polynomials defined by the marginals. This part is
a brief description of the main existing results that will be also used in
our study. The Second Model is a rather simple but very interesting
model. We concentrate on this model because it is encountered in later
chapters. Its richness is checked by finding the bounds for the correla-
tion coefficient. Finally the Third Model is the expansion in Fourier series.
This model has very nice closed form expressions for the bivariate densi-
ties and is developed carefully. Unfortunately, it is not used in any of the

later chapters.

In Chapter III the problems of detection and estimation are defined
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and formulated under the same mathematical framework. It is shown
that, from a mathematical point of view, the estimation problem is a spe-
cial case of the detection problem. The important parts of this chapter
are the two appendices. They contain proofs of the Central Limit Theorem

for quantities of interest to us.

In Chapter IV we solve the following problem: Given the marginal
density and the correlation coefficients of a stationary sequence, what is
a tractable way to define an optimum detection or estimation scheme. We
use a min-max approach and, for the bivariate densities involved, we
assume only that they can be expanded into a diagonal series using
orthonormal polynomials. Clearly this approach is of practical interest
since there are ways of estimating the marginal density and the correla-

tion coefficient.

In Chapter V we go one step beyond Chapter IV. We assume that we do
not know exactly the marginal density. Instead we assume that it belongs
to an e-contaminated class. For the bivariate densities, we assume that
they belong to a class that is more general than the Second Model.
Optimality is again defined in a min-max way. As it will turn out, the least
favorable densities will belong to the Second Model. The dependency class
we are using here is limited. It does not contain densities that are drasti-
cally different from the independence case. The same holds for the
optimum schemes; they do not differ greatly from the independence
assumption schemes. But, as we will see from the examples that are
presented, the performances of the two schemes are very different. This
means that even small dependency can change the performance drasti-

cally.

Finally in Chapter VI we give our conclusions and we discuss some
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ideas for further study in this area.

Before leaving the introduction it is appropriate to say a few things
about the numbering of the chapters, sections etc. The chapters are
numbered 1 through 8. For the sections we have two numbers. The first
denotes the chapter in which they occur and the second denotes the sec-
tion itself. Thus Section 1.3 means the third section of the Chapter I
Everything else except the sections is characterized by three numbers.
Thus, subsections, equations, figures and tables have three numbers. The
first number denotes the chapter, the second the section in which they
occur and finally the third number characterizes their order. Thus, Fig-
ure 3.1.1 means the first figure of the first section of Chapter III. In the
text, when three numbers occur in parentheses, they denote an equation.
All the other types will be stated explicitly and their numbers will not be
in brackets. Finally, the appendices are treated as sections. Only, instead
of a second number, they have a letter. Thus Appendix 4.A denotes the
first appendix of Chapter IV. The same is true for the equations that
occur in the appendices. Their numbering is composed of three elements
and the second, which denotes the appendix, is a letter. Thus Equation

(3.B.2) means the second equation of the second appendix of Chapter III.
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CHAPTER II.
MODELS FOR BIVARIATE DENSITIES.

2.1 Preliminaries.

In this chapter we present three models for representing bivariate
densities when the marginal densities are given. The first model is the
classical model of expansion of a bivariate density into a double series
using the orthonormal polynomials defined by the marginal densities.
The second model is the Fréchet class of bivariate densities which is very
simple compared to the first one. Finally the third model is the Fourier
series expansion model. This model turns out to have very nice closed

form expressions and to be simple as well.

Before examining each model separately we present a few general
properties for bivariate densities that are important in our study. Let
Sfz(z) and f,(y) be two univariate densities and F,(z) and F,(y) their
univariate cumulative distributions. Let also f(z,y) be a bivariate den-

sity and F(=z,y) its cumulative distribution. We define as Af‘ s, the

class of bivariate cumulative distributions F(z,y) that satisfy
F(z,4x) = F(z) or  [f(zy)dy = f,(z)

F(+=y) = Fy(y) or _f, f(zy)dz = £ (y) (2.1.1)

For simplicity we will also say that f(z,y) belongs to Af, s, 1 its

F(z,y) belongs to Af, fy



Let us now define

F*(z,y) = min [ F,(z),F, () ] (2.1.2)

Fo(z,y) =max | Fo(z) + F,(y) - 1,0 ] (2.1.3)

It can be shown that both functions defined in (2.1.2) and (2.1.3) are legi-
timate bivariate cumulative distributions with marginals Fp(z) and

F,(y) ,i.e. they belong to the class Af, s, &nd moreover

Fo(zy)=< F(z,y)< F'(z,y) (2.1.4)

The proof is easy and we will not present it here. As we can see these two
distributions define boundaries for the class Af: f, - Expression (2.1.4) is
by no means sufficient for a function to be a cumulative distribution from
the class Af: iy Notice that the above property holds for distributions
and not for densities. The densities of these two limiting distributions are
degenerate. It can be also shown that they maximize and minimize the
correlation coefficient, among all distributions from the class Af’ I
Actually they have this property over a whole class of functions, the class
of L-superadditive functions (for definition see [1]). A model for bivariate
densities is considered "good" if it can represent these two limiting cases.
We will see that the first and third model have this property but not the

second.

2.2 First Model: Expansion in Orthonormal Polynomials.

This is the most well known representation. The general form is

FEW) = f2@ @) 1+ 5 Y tpmen@)Wn@)]  (221)

n=lm=1
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Where E @n(T) ;:=0 is a complete orthonormal system of polynomials in
the L,(f,) Hilbert space and {¥,,(y) §;=0 in Ly(fy,). Equality in

(2.2.1) is in the sense that

0 Sty X & z 26 ( -
M‘lkn*lm_f“_fﬁ%f:(x)fy(y) 1 nglmf__ll O 1 @n (Z) 0y (y) §7F 2 () f () dzady

(R.2.2)
The representation in (2.2.1) is very general;, thus it is difficult to find
conditions for the coefficients a, ,, to yield a valid density (i.e. a nonne-
gative function). Special cases have been considered. The most impor-

tant special case is the diagonal expansion, which is of the form

flay) = fa(a)f, @)1+ i:lan% (2 )0, () 3 (2.2.3)

This diagonal expansion has several nice properties; for example, the
Gaussian bivariate density can be expanded in this form [2]. We can see
that if we put a, = 1 for all n, we get the density of F*(z,y) and for
symmetric marginals if we put o, = (—1)* for all n, we get the density

of Fu(z,y).

Commenis. There are several problems with this model. In order to
be able to apply it, the marginal densities must have all their moments
finite, otherwise the two orthonormal families cannot be defined. For
example, densities like the Cauchy are not good candidates. The second
serious problem is the lack of tractable sufficient conditions for the
coefficients a, in (2.2.3) in order for f(z,y) to be nonnegative. There
are several necessary conditions for this representation though. The most

common is the one for the case where the two marginals are the same
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and have unbounded support in both directions, then

1
a, = _j;Z"h(z)dz (2.2.4)

where h(z) is a univariate density supported in (-1,1). This result was
first found in [2] for the case where the marginal density is the Gaussian.
For this case it is shown that (2.2.4) is also sufficient. For the expansion
in (2.2.3) when the marginals are different, the coefficients satisfy a simi-
lar expression as in (2.2.4). More information can be found in [3-8]. The
representation can be generalized to include off-diagonal terms [9]. Also
in [10] it is shown that any bivariate density can be expanded into a diag-

onal series when the canonical eigenfunctions of f(z,y) are used.

Another problem for this model is the slow convergence of the series.
For the case of unbounded support, keeping only a finite number of
terms of the series results always in a function that takes on negative
values, i.e. it is not a density. This is a very serious weakness from a prac-
tical point of view.

This model of bivariate densities will be used in Chapter IV where

optimum structures for detection and estimation will be found.

2.3 Second Model: Fréchet Class.

This model was introduced by Fréchet in [11]. It is very simple and
has interesting properties. Actually it does not have many of the prob-
lems that the First Model has, but, on the other hand, it is not very rich.
For example it does not contain the two limiting densities given by (2.1.2)

and (2.1.3). Let us first introduce the model
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flzy)=f(2)f, )1+ &(z)0(y) 3 (2.3.1)

In order for (2.3.1) to be a density with marginals f,(z) and f,(y) the

following conditions must hold

_{ &(z)f, (z)dz = _fg° O(y)fy (y)dy =0 (2.3.2)

For f(z,y) to be nonnegative it is necessary that both ¢(z) and ©(y)

be bounded. Thus let us assume that

—m, < ¢(z)<k,m,

-m, < 8(y) <k, m, (2.3.3)

where m; , k; © = z,y are nonnegative constants. More precisely —m,
can be defined as the essential inf of ®(z) with respect to the marginal
fz(z) and k;m; the essential sup. Similarly for m, and kymy.To

make the function f(z,y) defined in (2.3.1) nonnegative, we need

12> m,m, max { k; k, } (2.3.4)

Conditions (2.3.2) and (2.3.4) are necessary and sufficient to make
Jf(z,y) a valid bivariate density. Clearly the marginals can be any
univariate density and not necessarily one that has all its moments. In
Figure 2.3.1 we can see three dimensional graphs of the following bivari-

ate density that has Cauchy marginals

1

J(zy)= n® 1+4d[
(1+2?)(1+y?)

1 _ 1 qrl__1
2 1+z2][2 1+y2] (2.3.5)

for different values of the parameter d .
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0.5

d=

Figure 2.3.1 Bivariate densities with Cauchy marginals using the Second Model.
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The Second Model is used in [1R] for the study and comparisons of
certain estimators. Also in [13] the richness of this model is considered
by finding the bounds for the correlation coefficient, for the case where
the two marginals are symmetric. In the next section we present a
method for finding these bounds for the general case. We do not know if it
is the same method as in [13]. We present it though, because it is
interesting to see the derivation of these bounds and also to get a better
feeling for this model, since we are going to use it in the following

chapters.

2.3.1 Bounds for the Correlation Coefficient of the Second Model.

For simplicity we assume that the two marginal densities have mean

zero and variance equal to unity. The correlation coefficient then

becomes

p=] _{ z8(z)fo(z)dz ][ _f,, yOy)fy (y)dy | (2.3.6)

As a first step we assume that m; ,k; 1 ==z,y defined in (R.3.3) are
given and we will try to find the forms of ¢(z) that maximize and minim-

ize the expression

oz (kz) = [ z8(z)f,(z)dz (2.3.7)

-—D0

Proposition 2.3.1 The functions ¢y(z) and ¢;(z) that maximize

and minimize (2.3.7) are given by

—-m, for z < zy
Sy(z) =1 kym, for z =z (2.3.8)
cym, for x =z
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kom, for z <z
$,(z)={ —m, for z > z; (2.3.9)
cim, for z =z,

where zy; and z; are two points that satisfy

Fz(xU_)s SF:(IU)

X
1+ k,

Fo(zp—) =< < Fp(zg) (R.3.10)

1+ k,

where we assumed that F,(z) is right continues. Also cy and ¢; are

defined to make ®,(z) and &;(z) zero mean as follows:

Fplzy=) —k: (1 = Fr(zy))
cy = F(zy) — F(zy-)
anything otherwise

when Fg(zy) — Fp(zy—) >0

1 - F:c (II.) - kze (IL_)
cr = F(zp) — F(z-)
anything otherwise

when F,(z;)— F,(z;—)>0

(2.3.11)

Proof. The proof is given in Appendix 2.A. Using Proposition 2.3.1

we have

ok(k,) = L 2, (z)f,(z)dz < L zd(z)f,(z)dz

< }z‘I’U(:r)f, (z)dz = o l(k,) (R.3.12)

By putting ®(z) = 0 we see that



ol(k,) < 0= o l(k;) (2.3.13)

From now on, for simplicity, we will assume that the marginals f_(z)
and f,(y) have no point masses. Using the property that f (z) is zero

mean we have

UzU(kz) =mg Az(kz) and UzL(kz) = —myg Bz (kz) (2-3~14)

where we defined

A (k) = (1 + k,)}xf,(x)dx (2.3.15)
B (kz)=(1+ kz)} zf,(z)dz (2.3.186)

Notice that
By(kg) = Az(,cl—)lcz (2.3.17)

Z

Proposition 232 The two functions A;(k;) and B;(k;) are
increasing in k; .

Proof. The proof is straightforward. It is based on the fact that if
k;=ky then the ¢y(z) and $;(z) that correspond to m, and ky are
just some other &(z) functions that satisfy the bounds defined by m,
and k, .

Now we can finally find the bounds for the correlation coefficient.
Define A,(k,) and B,(k,) for the density f,(y) in the same way that
A (k;) and B,(k,) were defined for the density f.(z).
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Proposifion 2.3.3 The correlation coefficient p {for the Second

Model can take any value in the interval { p;,py | where

— p1 = max 4, (k)4 () (2.3.18)
4, ()4, ()
py = mE.X ———k—— (2.3.19)

Proof. The proof is in the Appendix 2.A. To obtain a better idea for
the bounds let us substitute (2.3.15) and (2.3.16) in (2.3.18) and (2.3.19);

we get

=~ pL = max -(l+k—k)—f zfz(z)dz [ yfy(y)dy (2.3.20)
zy YL

pu=max UHEL fof yar [ur,)ay (232D
xy Yy

where we have defined

- k - k
w=FN gy wEANEP
vy = F () (2.3.22)

¥ Y +k

For the case where one of the marginals is symmetric, say f,(y), we

have that y; = —yy and thus we get

) . i
o) = max UHEV [ [ op @haz ) [wrywiay ] (28.29)
zy Yy

If in addition f;(z) = fy(z)=f(z) then, using (2.3.22) and the sym-

metry of the marginal, we get
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[f zf (z)dz]2

Pl = X T =& (2.:324)

In Table 2.3.1 we can see values of py and —p; for the case where the

marginals are the same and for various types of the common marginal.

Table 2.3.1 Values for — p; and py;

marginal —PL oy
05 [6(z+1)+0(x —1)] 1.0 1.0
Uniform 0.75 0.75
Gaussian 0.64 0.64
Double Exponential 0.5 0.5
Cauchy 0.0 0.0
Single Exponential 0.48 0.65

2.3.2 Random Processes with Bivariate Densities from the Second

Model.

In this subsection we will find sequences of strictly stationary random
variables that have bivariate densities from the Second Model. The impor-
tance of this problem will be apparent in Chapter V where the existence
of such sequences will be important for the validity of our results. We will
show a way of defining two types of sequences, a) Markov and b) M-
dependent sequences. Thus let X = an §:=1 be a strictly stationary
random sequence. To define any of the two types, we need to define the

multivariate density of the sequence.

Markov Sequences. To define a multivariate density of a strictly
stationary Markov sequence we need only the bivariate density of two
consecutive members of the sequence. Clearly this bivariate density will

be from the Second Model since we put this as a requirement. Thus let
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The multivariate density then takes the form

f(zxa...,2,) = [kl_—n__[l ) ] T;[ §1 4+ &(2)0(zpsr) ! (2.3.26)

By direct integration on (2.3.26) we can see that all the bivariate densi-

ties satisfy the Second Model, because

Fe(ziThes) = f(z)f (zk+j)§ 1+ o 719(z;)0(xp4;) § (R.3.27)

where

o =[¢(z)@(x)f (z)dz (2.3.28)

As we can see from (2.3.27), if |a| >1 then, for high enough k, we can

make the bivariate density negative. Thus we conclude that |a| < 1.

M—Dependent Sequences. This is the second most important class
of sequences. We will present a method here for defining M-dependent

sequences when the bivariate densities are of the form

f(z;.2e45) = f(z;)f ($k+j)§ 1+ 7, 9(z;)®(zp 4 5) J (2.3.29)
where v, =0 for k> M and |®(z)|=<1.

0o

Let 5 ; be any strictly stationary M-dependent sequernce and

such that all the a; are supported on [-1,1]. Define

f@gzza) = [ T1f @) ] E sfj[lm (z)]}  (2.3.30)

where by £, we mean expectation with respect to the sequence 5 ol
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Proposition 2.3.4 If

EEajak+j g = 7k (2331)

then (2.3.30) is a multivariate density that has bivariate densities given
by (2.3.29).

Proof. The proof is easy. First we can see that the expression in
(2.3.30) is nonnegative. Also by interchanging integration and expectation

in (2.3.30) we can show that

F (@ Ty %) = (20,2 (Zage,0T,)  (2.3.32)

which is the condition for M-dependexnce. The problem is how to generate
a sequernce Erxjg that satisfies (2.3.31). This can be done by using a sim-

ple moving average model, as follows:

M
aj - kzockyj_k - (2333)

where the Eng is an ii.d sequence supported on [-1,1] and ¢, are

M
M + 1 real constants with ) |c,] = 1. Also the ¢, are selected in
k=0

order that (2.3.31) is satisfled. Unfortunately not every 7; can be real-

ized with this method. For example when M =1 we can realize only

.

~b|-—*

[7:] =

2.4 Third Model: Fourier Series Expansion.

From the previous two models we have seen that the most difficult
problem is to ensure nonnegativity of the representation. With the

approach we take here, we require from the beginning our expression to
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be nonnegative. TIirst we will assume that the two marginals
fz(z) and f,(y) are uniform on [0,1]. As we will see, this assumption
does not limit us because, with a simple transformation, we can get any

marginal we like. The model we propose here is the following:

fEy) =] él 0 B (2)0; () |2 (2.4.1)

Notice that nonnegativity is obtained automatically. We will not say any-
thing yet about the functions &, (z) and 0, (y) but we will restrict them
considerably as we go on. The only thing we assume at this point is that
they are square integrable functions on [0,1] and that they can be com-

plex. Without loss of generality we assume that

1 1
[1ee@) P = [10.()1%y =1 (242

We can write (2.4.1) as follows:

flzy)= kjl}ak 128 (2)0 () 1* + kZI Y el B (7)0 (¥ )%, ()8
= =im=1

(2.4.3)

where the over-bar means complex conjugale. In order for this expres-

sion to be a bivariate density with uniform marginals it must satisfy

1 1
{f(-’ﬂ:y)dx = {f(x,y)dy =1 (2.4.4)

Notice now that if §&,(z)}e=, and {O,(y)lr=, are two sets of orthonor-

mal function salisfying
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[®.(z)] = |0e(y)] =1 foreveryk (2.4.5)

and also

,,21 log 1% =1 (2.4.8)

Then (2.4.4) is satisfied. Clearly with (2.4.5) we restrict considerably our

class of functions. The functions that can satisfy (2.4.5) are of the form

b, (z) = ej%(z)

8, (y) = &7 (2.4.7)

for some real functions ¢, (z) and ¥;(y) . We must now select these func-

ieim(z);:_l and éei‘l’k(y)gi:;l

tions in order that the two sets be two

orthonormal families. Following the idea of Fourier series, we consider

the case

¢ (z) = Rk o(z)
(2.4.8)
Ve (y) = Rk 3(y)

for some real measurable functions ¢(z) and ¥(y) . What we need now is
1 1
0 0

Let us define a class L of functions. A function ¢(z) belongs to this

class if it satisfies

1
fejzm‘}’(z)d:z =6,0 for n =0,+1,2.. (R.4.10)
0

Let us try to define a little more specifically the class L . Define
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r(t)=m { (z:9(z) <1 )N[0,1]} (.4.11)

where by m{A4] we denote the Lebesque measure of the set A. Let also
s(r) denote the support of d(r(7)). Now we can write the integral in

(R.4.10) as
f e7¥™MTdr (1) = 8, 0 (R.4.12)
s{r)

If r(7) has a derivative then we can also write

(f eI®MT 2 (7)dT = 8 0 (2.4.13)
r'(7)>0

I, in addition, ¢(z) is strictly monotone we can easily find r(7). For

example, if it is strictly increasing, then

(1) = 7 Y7) (2.4.14)

Equations (2.4.12) and (2.4.13) are Fourier integrals. They require that
the Fourier transforms of the functions have zeros at the points
+2m,+4m,... and to be equal to unity at zero. This is as far as we go in

specifying the class I .

Let as assume now that ¢(z) and ¥(y) belong to the class L . If we
substitute (2.4.6),(2.4.7) and (2.4.8) in (2.4.3) we have

FEy)=1+3 3 apa,e2k-me) gizk-mpG) (24 15)
k=1m=1

By defining n =k —m we get

flay)=1+ 3 Bpeizm(s=)+sw) (2.4.16)

n= —oo

n#0
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where

ﬁn = kglak Ok +n (24 17)

2.4.1 Closed Form Expressions for the Third Model.

Using the results from Section 2.4 we will try to find useful closed
form expressions for Equation (2.4.18).
Let us define a set 4, of all points z € [ %, %) for which there

exist an integer k such that

z +k =gp(z)+%(y) (R.4.18)

for some pair (z,y) € [0,1]x[0,1] . Define also the function

hiz)=1+ i B, ei?mz (2.4.19)
iy

Clearly if, in (2.4.18) we have f(z,y)=0, then h(z)=0 for z € 4, and
vice versa. Thus, it is enough to investigate the nonnegativity of h(z) in
order to ensure nonnegativity of f(z,y). If 4, is essentially equal to
[ -%,%), the function h(z) is a univariate density on the same inter-
val. If 4, is a strict subset of [ — %, %), the function h(z) will be non-
negative on A4, and can be extended into anything on the set
[ -¥,%)~ A4, (even negative), under the constraint that the integral of

h(z) over the interval [ =%, %] is equal to unity.
Using the above result, we have a nice way of generating bivariate

densities with uniform marginals. Let ¢(z) and ¥(y) be two functions

from the class L . Let h(z) be any univariate densityon [ - %, %) that
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is square integrable (i.e has a Fourier series expansion and is equal to it

in the mean square sense). Then

f(zy)=h(le() + B(y)lmody) (R.4.20)

is a bivariate density with uniform marginals, where by [z]mody we
mean the operation of subtracting integers from 2z until the result is in
the interval [ — %, % ). Another way of explaining this modulo operation
is that, we periodically extend h(z) in the two directions. If we want a
result for some other than the uniform marginals, we apply a transforma-

tion using the cumulative distributions, and we obtain
F @) = @) fyh( [e(Fe () + 3(Fy (y)) Imedy ) (R4.21)

Comments. We can see that this model can represent the two limit-
ing densities. For example we can take h(z)=46(z), ¢(z)=z and
¥(y) = —y . This selection results in F"(z,y). The second important pro-
perty of this class is that all the moments of the marginals need not
exist. As we will see in the next subsection, the Cauchy density yields very
nice examples of bivariate densities. Clearly, there remains the question
of how big is the class we have defined here. Another question is what
physical mechanism could generate these densities. For example we know
that some Fokker-Planck equations have solutions that can be

represented by the First Model [ 14, pp. 178-179]

2.4.2 Examples.

As we have stated, this class can represent bivariate densities with

marginals that do not have all their moments. A good example for such a
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case is the Cauchy density given by

1
m
)= 2.4.22
@)= T (2.4.22)
with cumulative distribution
F(z) = 1, L—’Lan'l(:r) (2.4.23)
2 T

We will consider the case g(z) =z and ¥(y) = —y . In other words the
orthonormal families in (2.4.7) will be the regular Fourier family. For the

univariate density h(z) we select

sin( Ty
h(z) = 2 (2.4.24)

1 — cos( TZTT) cos(Rnz)

This univariate density has a very nice property. For 7 =1 it is uniform,
as T -» 0 it tends to a 6—function at zero and as 7 -+ 2 it tends to a &-
function at ¥. Applying now (2.4.21) we have that

T

L sin(—)
72 2

2
(1+z®)(1+y*) { _ cos(g—)cos(Ztan‘lx — 2tan~ly)

flzy)=

(2.4.25)

Using elementary trigonometry we have that

¢ TT
sin( 5 )

(1 + z?)(1 + yz)—cos(lzﬂ—) [(1 —23)(1 —y?) + 4zy |3

flzy)=
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(2.4.26)

In Figure 2.4.1 we can see three-dimensional graphs of this bivariate den-
sity for different values of the parameter 7. It is interesting to notice
that when 7 - 0 the density clearly concentrates on the line ¥y = and

when 7 - 2, it concentrates on the hyperbola zy = -1.

The above can be applied easily to any marginal density of the form

{1 (22+2)
fz)=K & (2.4.27)

illjl(zzﬂf)

where K is a normalizing constant. Obviously the bivariate density will

be more complicated than in (2.4.26).
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=05

=0.05

=13

T=1.0

T=1.95

T=1.6

Figure 2.4.1 Bivariate densities with Cauchy marginals using the Third Model.
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APPENDIX 2.A

Proof of Proposition 2.3.1. We present only the proof for &;(z).
The proof for &;(z) is similar. The reason we have defined ®y(z) this
way is to be able to take into account point masses that might exist at
zy . First we must prove that $y(z) satisfies the bounds defined by
(2.3.3). This is trivial for the case =z > zy and z <z . When = =z, we

must show that

—l<cy<k, (2.A.1)

This is easy because —1<cy is equivalent, after some operations, to

which, because of

FU(::U)E and cy €k, to Fz(IU—)S

T T
1+k, 1+ kg

(2.3.10) are valid inequalities. Now we define the difference

D= [z[dy() - d(z) ]f.(z)dz =

[zl oy(z) - ¥(z) 1f.(z)dz + [ z[ dy(z) — &(z) ]f.(z)dz +
[ z[ dy(z) - ¥(z) }1,(x)dz (2.A.2)

In the first integral in (2.A.2) the difference $y(z) — ®(z) is nonpositive
and in the second nonnegative. Thus we can write for D
Ty oo

D= [ zy[ &y(z) - 8(z) f.(z)dz + [ zy] dy(z) - ¥(2) 1f.(z)dz +

—po

S 7ol 2@ = 2E@) Ifa(e)de = 2y [[ 2y(2) - 8(=) Ja(a)az =0
(2.A.3)
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And this concludes the proof.

Proof of Proposition 2.3.3. We have to show that the correla-
tion coefficient can take any value between the values p; and pypy

given by (2.3.18) and (2.3.19).

From Equation 2.3.12 we can have bounds for the term o (k;) ,
defined in Equation (2.3.7). Thus, combining Equations (2.3.8),
(2.3.12) and (2.3.14) yields

— mgmy, max{ A (k;)By (ky) , By (ko)A (ky) <p=<
(2.A.4)

mymy, maxf 4, (k;)4y (k,) , By (kz)By (k) }
Because of symmetry in (2.A.4) without loss of generality we can
assume that k; =k, . Then, Condition (2.3.4) for nonnegativity

becomes

-Elz—z m,m, (2.A.5)

We can see that, by increasing k, and keeping it less or equal than
k., we do not change (2.A.5). On the other hand the bounds in (2.A.4)

increase in the right directions because of the monotonicity of A(k)

and B(k). Thus by selecting k, =k, and also m;m, = kl— we can

z

have the largest bounds for a given k&, as follows:

- ki_maxé A (k)B, (k) , By (k)4 (k) {<p =

(2.A.6)

-kl—maxg Ay (ke )4y (kz) | By (kz)By (ks ) §
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Now, using the definitions of p; and py from (2.3.18) and (2.3.19),

we can see that

Az(kz)Ay(kz) <p
’cz =¥FU

Using (2.3.17) we have that

1 1
B, (k) By (k) _ 5% ()

ke

<
ky

(2.A.7)

(2.A.8)

Thus we proved p<pp. In a similar way we can prove p; <p. To

show now that we can actually achieve any value in the interval

lpr,py ], let ®.(z) and ©.(y) be a pair that achieves one of the

two bounds, let us say pp . Then the following expression is a bivari-

ate density in the class Af: iy

S (zy) = f(@)0 )1 +s9.(2)0.(y) }

(2.A.9)

with s a parameter in [0,1]. By changing s we can achieve any

value of p € [0,0y] . And this concludes the proof.
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CHAPTER III.

OPTIMUM DETECTION AND ESTIMATION

3.1 Preliminaries.

This chapter deals with two problems: a) The problem of detection of
weak signals and b) The problem of estimating a location parameter. In
this section we define explicitly these two problems and state our
assumptions. We also put these two problems into the same mathematical
formulation. Thus, by solving one problem, we have immediately the solu-
tion to the other. In Section 3.2 we present the solution to the common
mathematical problem using as our dependency model the Second Model
of Section 2.3. Finally, because we consider asymptotic measures and
quantities, in Appendices 3.A and 3.B we prove the Central Limit Theorem
for cases of interest to us.

At this point let us present our assumptions. Since we will be dealing
with series of random variables, for convenience we denote them with

capital bold-face letters.

Assumplions. lLet N = EN,-;:;I be a strictly stationary sequence of
random variables. Define as M2 the o-algebra generated by the random
variables { Ng,..., Ny {. Let f(z) be the common marginal density.
We assume that it has a derivative a.e. and finite Fisher’'s information.

We call the sequence N a gp—mizing sequence, if there exists a
sequence of real numbers {g,] such that, if 4 an event from M¥ and

B anevent from Mg, , then



1=2g;=¢p= - =0 (3.1.1)

| P(ANB) — P(A)P(B) | < ¢, P(4) (3.1.2)

where P is the probability measure that characterizes N . We also call a
sequence N a symmetrically ¢—mizing sequence if (3.1.1) is satisfied

and instead of (3.1.2) we have the following

| P(ANB) — P(A)P(B) | < p,min § P(4), P(B) } (3.1.3)

Either of the two sequences will be called aocceptable, if

Y pé<e (3.1.4)
k=1

For simplicity we will call the acceptable (symmetrically) ¢-mixing
sequences, (symmetrically) Ag-mixing . Clearly a symmetrically
Ag—mixing sequence is always Ag—mixing . Conditions (3.1.3) and
(3.1.4) say that the dependency between future and past tends to zero as
their "distance" becames larger, in a uniform way. The classes of
sequences we have defined here are similar to the ones defined in [1].
They will help us to prove asymptotic normality under dependency. We
can see that all the M-dependent sequences belong to these classes. We
now state two lemmas that will give us some properties of our g-mixing

classes.

ILemmo 3.1.1. lLet N be a ¢-mixing sequence and = and ® two

random variables defined on M%Y and Mg, respectively. If

E§ 2|7} <o and E{ |0]? } <= with i—+ =1, Lthen

1
g

| E§20} - E{Z}E{8} | <2p}/"EVT{|Z|"} EV?{[0]?} (3.1.5)
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where by Es ; we mean expectation.

Proof. For a proof see[1, p. 170]

Lemma 3.1.2. Let N be a symmetrically g-mixing sequence and

let ¥(z) be a bounded function with E{¥(N,)} = 0. Then

E{y(Ny) / Njyy ) <2¢;C (3.1.8)

E{y(Nju) / Ny =<2¢;C (3.1.7)
where C is a bound for y(z) .

Proof. We will prove the first inequality. In a similar way we can
prove the second since everything is symmetric. Let 4 € Mjfll and I4
be the random variable that takes the value one when N;,; € 4 and zero

otherwise. Define

MN;s1) = ELY(NL) 7 Ny (3.1.8)

then, as we know,

EW(N)IS = BNy e1) LS (3.1.9)

From Lemma 3.1.1, by setting = =4%(N;) and ® =], also 7 =« and

g =1, we have

| E{(N) L3 | < 2¢;C B, (3.1.10)

Thus for E{I4} > 0, we have

| E{A(N;41) 14} |
E{L]}

< 2¢;C (3.1.11)

Since the above is true for any measurable set 4, we have that
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[A(Nje1)| < Rg; C (3.1.12)
with probability one.

Now we will state and formulate the two problems. We begin with the

detection problem.

3.1.1. Optimum Detection of Weak Signals.

The problemm we would like to solve here is the following : We are
given a set of observations in-;{Ll and we would like to decide between

the two hypotheses

Ho: X,' :N.,;

Hy: X,=N;+6s; i=1,.n (3.1.13)

where N = §Ni§{”=1 is a symmetrically Ag-mixing sequence, isif isa
signal sequence and ¢ a parameter that tends to zero.

We would like the decision scheme for solving this problem to have
the form

Tn(X) = sV (%) (3.1.14)

1
Vi 2

WM:

1 if T,(X)>7T
u(l,(X)=¢p if T,(X)=r7 (3.1.15)

0 if T, (X)<T
where ¥(z) is some zero memory nonlinearity and w (7, (X)) is the pro-
bability of deciding H,. The constants 7 and p are selected to keep
the false alarm probability at a certain level. We chose this form of deci-
sion scheme because of its simplicity and also because it is Neyman-

Pearson optimal for ii.d. sequences. This detector is known as the
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Nonlinear Correlator (NC).

The performance of the above scheme will be defined in terms of the
Efficacy. The efficacy is an asymptotic measure of performance. Under
reasonable conditions, the ratio of efficacies is equal to the ARE (Asymp-
totic Relative Efficiency). We will give sufficient conditions for this state-

ment to be valid. Let us now define the efficacy as

[%EasTn(X)“&:O]z
nEof [ Tn(X)]?3

eff (¥.N) = lim (3.1.18)

where Fy and E; denote expectation under H; and Hy respectively.
In order now to be able to simplify this expression we will restrict the
class of sequences Esig and the nonlinearity ¥(z) . We assume that the
signal sequence is bounded and that the following limits exist:

n=j

. 1 .
v; = ’];1_1’13“; k2-_-:1 SkSk+;  J =012, (3.1.17)

For simplicity we assume that vy =1 ; then it is easy to see that

lv; 1 <1 (3.1.18)

For the nonlinearity ¥(z) the restrictions we impose will define the class

¥ of allowable nonlinearities. Let us define &, = where k is any

_k_
vn
nonnegative constant. For v¥{z) we assume that it is measurable with

ESy(N)} =0 and E{[¢(N,)]? < = and also that

aa—d_fj(z)f (z—6)dz |s=0 =_fm 566— (z)f (x=08) |s=0dz (3.1.19)

zW(z)f (z)dz <0 (3.1.20)
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lim [y(@)f (z=¢n)dz = [Y(z)f (z)dz (3.1.21)
lim E {{y(V,-t) -9V =0 (3.1.22)

0§(¥) = E {9(N1)¥ +2§1 vEWNW(N;)) >0 (3.1.23)
J:

The above conditions, even though they look complicated, are usually
valid for well behaved functions. They are sufficient for the validity of the
Pitman-Noether theorem, i.e. for proving that the ratio of efficacies is
equal to the ARE. Under the above assumptions the efficacy takes the

form

[_f,, W(z)f (z)dz 2
o&(¥)

eff (y.N) = (3.1.24)

The efficacy and o§(¥) play an important role in our approach. Since
the efficacy is our measure of performance, maximizing it will define the
nonlinearity y¥(z) in an optimum way. From (3.1.23) notice that in order
to calculate (3.1.24) we need knowledge of all the bivariate densities. Thus
we can see now where the models presented in Chapter II can be of some
use. The quantity of(y) is the variance of the random variable

T = lim T,,(X) . As we show in Appendix 3.A this limit exists under Hy
1 oo

and is Gaussian. Using o(¥) we can set the threshold 7.If n is large

then we can assume that 7,(X) is''close'” to 7 and thus

P(T.(X)>v/ Ho) o P(T>7/ Hy) =1 -9 00&) ) (3.1.25)

This approach does not specify p since the event T = 7 has zero proba-
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bility.

The problem of maximizing the efficacy is considered in [2] for M-
dependent sequences and in [3] for symmetrically Ag—mixing
sequences and the constant signal case. Now we present a theorem which

gives an inteéral equation that the optimum nonlinearity has to satisfy.
Theorem 3.1.1. The optimum nonlinearity %,(z) that maximizes
(3.1.24) satisfies
FEW @)= —f'=) =Y v; [Ifizy)+ fiwz)]y,(y)dy  (3.1.26)
J':] —eo

where f;(z,y) is the bivariate density of Ny and Ny, .

Proof. The proof follows exactly the same steps as in

[3, Theorem 1].

3.1.2 Estimation of a Location Parameter.

Here we would like to solve the following problem: We are given a set

of observations in f{Ll . We assume that

X,=N, +¢ (3.1.27)

Where N is a zero-mean symmetrically Ag—mixing sequence and ¢ is
an unknown shift that we wish to estimate. If 7,, is the estimate of & we

would like it to be the solution of an equation that has the form

iW(Xi - T,)=0 (3;1.28)
i=1

where (z) is some zero memory nonlinearity. These estimators are
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called M-estimators. For reasons of consistency we must assume that
Y(z) satisfies E{y(N;)} =0, otherwise T, does not tend to 6 as n
goes to infinity. Thus, the class ¥ of allowable nonlinearities is defined
for functions ¥(z) that are continuous and satisfy E{¢(N,)} =0 and
E{[W(N)13 < = and also

lim S [w(z—\/’% ) —w(z)2dz = 0 (3.1.29)

S Zv@)f -0)lpepde (3.1.30)

DD

a5 J Y@ (26) |50 =

_j;wz)f "(z)dz <0 (3.1.31)
o§(¥) = E (y*(N1)} _il fW IV )Y(Njeq)3 > 0 (3.1.32)
=

where k is any real number. If, in addition we assume that ¥(z) is
monotone, then we can show that the normalized error n%( T, — &) is
asymptotically Gaussian with mean zero and variance A(y,N), given by

A(Y,N) = (3.1.33)

oo(¥)
| i Y(z)f (z)dz |

where og(¥) is defined in (3.1.32). In Appendix 3.B we prove this state-
ment. Notice that the assumption that ¥(z) is monotone is restrictive.
However, it simplifies the proof of the Central Limit Theorem. Probably,
as in the i.i.d. case [4], there might be other conditions that will lead to a
larger class. As we can see, (3.1.33) is the inverse of the square root of

the efficacy defined in (3.1.24) for the case v; =1 for every j. A way of
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measuring the performance of the estimator is the asymptotic variance
of the error. The smaller the variance, the better the estimation. Clearly
a variance equal to zero is the perfect situation. Our goal then is to
minimize (3.1.33) or equivalently, to maximize (3.1.24). Thus the two
problems of detection and estimation are now under the same mathemat-

ical formulation, which is maximization of the efficacy.

Comment. The two ¥ classes defined for the two problems are not
the same. The reason we have so many conditions in the detection prob-
lem is because we want to ensure that ratios of efficacies yield AREs. Not
all of the conditions are needed for proving normality. In the estimation

problem the conditions are needed only to prove normality.

Before going to the next section, where we present solutions of Equa-

tion (3.1.26), we prove the following theorem

Theorem 3.1.2. et N be a symmetrically Ag-mixing

sequence. Then, the solution to (3.1.26) cannot be a bounded function

unless the locally optimum nonlinearity {(z) = — '-%(::—)L is bounded.

Proof. The proof is straightforward. Let us assume that ¥,(z),
the solution to (3.1.26), is bounded, but {(z) is not. Then, using (3.1.26)

OIS I AN AT A N RSN AR ALY
P J, J,

(3.1.34)

where C is a bound for ¥, (z) . Using (3.1.6) and (3.1.7) we get

| i(z) | <c(1+ 4f}11uj|¢j) <c(1+ 4_§1¢}4) <w  (3.1.35)
1= 1=
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which is a contradiction since we assumed that {(z) is unbounded.

The purpose of Theorem 3.1.2 was to show that it is unreasonable to
expect that symmetrically Ag—mixing processes with marginals like

the Gaussian will have bounded optimum nonlinearities.

3.2 Optimum Nonlinearities for the Second Model.

Let us assume thal the bivariate densities of N; and N;,; are given
by
fi(zy) = f(@)f ()1 +7;9(2)0(y)} (3.2.1)
where we assume that ), |7;| < . In Subsection 2.3.2 we have seen that
j=1

there exist stationary sequences that satisfy (3.2.1). If we substitute

(3.2.1) into (3.1.26) we get

S (zWo(z) = =F'(2) — 7{48(2) + BO(z){f (z) (3.2.2)

where we have defined

A= i O(z)Y, (z)f (z)dz (3.2.3)
B= _{ &(z ), (z)f (z)dz (3.2.4)
v = i Vi (3.2.5)

Jj=1

Thus we can see that the solution to (3.1.26) has the form

Vo(z) = L(z) — 74%(z) — 7B8(z) (3.2.6)
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To find 4 and B we substitute (3.2.6) in (3.2.3) and (3.2.4) and we get two

equations with unknowns 4 and B .If we solve them we have

A= oa |1 + 708s] ~ 7941980 (3.2.7)
[1+ 7048)? — YP0604s

14+ -
5 - oal 7%:] 7001046 (3.2.8)
[1 + 704,@] - 720880'”

where, for any two functions C(z) and D(z) , we have defined

ocp = [ C(z)D(2)f (2)dz (32.9)

For the case where ®(z) = ®(z) we have that the optimum nonlinearity

becomes

Vo (z) = L(z) — 274%(z) (3.2.10)
and A isgiven by
- Og
= T% 2700 (3.2.11)

3.2.1 Application to Markov Processes.

Let us assume that N is strictly stationary Markov and that v; =1
for every j. If the bivariate density of two consecutive members of the

sequence is given by

Flzy)=F@)f )i+ &(x)0(y)] (3.2.12)

then from (2.3.26) we have that the multivariate density is given by
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flen oz = [T @) 1T 1+ 0@l ) (3219

To show that this defines a symmetrically Ag—mixing sequence, let
A €M% and B €Mg,, withg an integer such that ¢ >k +n. Let 4
be the range of values of the random variable »; given the event A. This
is a Borel subset of the real line. Define A4’ = 4;x4yX - - - X4,. Similarly
define B; to be the range of N; wunder £ and define

B' = BgynX - - - XBy . Then because the sequence is Markov, we have

fn (zlcvzlc+n)

S (@) f (Than

F(ANB) = I (T4, Te—1)

e d
A'XB ) 7 (= Tg)dx

(3.2.14)

Using (2.3.27) we have
|P(ANB) = PPB)| < [a[" 1 C [ f(2102) [ (TeansTg)dx =
A'xB’

la|*~1CP(A)P(B) (3.2.15)

where C is a bound for |®(z)6(y)| and a is equal to E{&(z)8(z)}
(see (2.3.28) ). Since (3.2.15) is true for any g we have that our
sequence is Ag-mixing when J|a] <1. It is also symmetrically

Ap~-mixing because
P(4)P(B) < min { P(4), P(B) } (3.2.16)
As an example let us assume that

fy)=rE@ it +d 1 -2Fr@)][1 -2F@)]} (3.2.17)

where F(z) is the cumulative distribution of f(z) and d is a parame-

ter from the interval [-1,1]. If we calculate the necessary quantities we



get that

Vol(z) = — {;(("‘) L [ffz(:c) {1-2r(z)}] (3.2.18)

Notice that for d > 0, which corresponds to a positive correlation, then
for symmetric marginals, 9¥,(z) is always more conservative than I(z).
In other words for z >0 we have ¥,(z)=<1I(z). If we apply (3.2.18) for

the Gaussian and the Cauchy densities we have

Vo) =z + JE- =t~ 20(z)]

(3.2.19)
_ 12d
+z 2 m(3+d)

tan™(z)

Yeolz) = 1

In Figure 3.2.1 (a,b) we can see the forms of ¥,(z) and yo(z) for
different values of the parameter d. As we can see the Gaussian case is
affected only around the origin and not at the tails. With the Cauchy
things are quite different. The optimum nonlinearity is not a blanker

any-more. Actually, it weighs the large values negatively (for d > 0 ).
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Figure 3.2.1 (a) Optimum nonlinearities for the Gaussian marginal case.
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Figure 3.2.1 (b) Optimum nonlinearities for the Cauchy marginal case.
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APPENDIX 3.A

Asymptotic Normality for the Detection Problem.

In this appendix we prove that, under the assumptions we made in
Subsection 3.1.1 about the sequence N , the signal fsi; and the non-
linearity y(z), the quantity 7, (X) defined in (3.1.14) is asymptotically
a Gaussian random variable. Notice that this is not an immediate conse-
quence of [1, Theorem 20.1, p. 174}, because the sequence Esi';l/(N,-); is
not stationary. For the proof we are going to use a more general theorem
[1, Theorem 19.2, p. 157] and we will prove that our case satisfies all the
assumptions of this theorem. Before doing so let us show that under the

Ap—mixing assumption the quantity ogp(y) of (3.1.23) is well defined.

Lemma 3 A.1. Let N bea Ag—mixing sequence. Let §si§ be a
bounded signal sequence that satisfies (3.1.17), let also ¥(z) be a
measurable zero memory nonlinearity that satisfies E‘hl/(Nl)g =0 and

E$R(N )3 < . Then o4(%) is absolutely summable.

Proof. The proof is easy. Using (8.1.18), Lemma 3.1.1 for

g =r =2 and stationarity, we have

08| = B2V} + 4 Ly IekE LA <
2
(3.A1)
EWAND} (1+42 08 <o

Jj=1
and this concludes the proof. We now state the theorem that gives

sufficient conditions for normality [1, p. 157].
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Theorern 3.A.1. Let U be a sequence of random variables; define

R, = f‘l U, (3.A2)
=
1 Ind)
Xn(t) = -\/Tzl Ui t € [0,1] (SAS)
=

where by [ ] we mean the integer part. Then if

i. X,(t) has asymptotically independent increments.
i. E{X,(t)} » 0and E{X2(t)} » o

fii. X2(t) is uniformly integrable.

iv. For every ¢ thereexista § > 1 and aninteger ng such that

Pémax |Ryri — R | = ﬁo\/ﬁg < -Ez— for every k and n = ng
isn 8

then X,(¢) tends in distribution to a Brownian motion.

Proof. For the proof see [13,Theorem 8.4 and Theorem 19.2]. The

next theorem gives the limiting forms for the quantities of our interest.

Theorern 3.A2. Let N bea Ag—mixing sequence, let Esif be a
bounded signal sequence that satisfies (3.1.17). Let ¥(z) be a measur-
able zero memory nonlinearity that satisfies EW(NI); =0 and
Ef[w(Nl)}zg < = and also Conditions (3.1.22) and (3.1.23). If we define
At) = E$y(N,+t)}, then

n D
TAX) = = Lot (W) > NOao(y) (3.4.4)
Ta(X) = —%ﬁ—i‘élsiw(Nﬁf;% ) - —}E—i‘;sik( ]:,; ) " N{(0,05(%)) (3.A.5)
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D
where - means convergence in distribution.

Proof. We will now show that our case satisfies the conditions given
in Theorem 3.A.1. We will first prove (3.A.4). The proof is based on the fact
that an Ap—mixing sequence satisfies all the above conditions (see [13,

Theorem 20.1] ). Let us define

R = 3 sw(Ny) (3.A6)
=1
£y = L8 wow A7
Xa) = S v @A
S, = _ilw(Ni) (3.4.8)
Y, (t) = 21;} (3.A.9)
i=1

Notice that X, (f) is the process which we want to show satisfies the con-
ditions of Theorem 3.A.1 and that Y,(¢) is the stationary case which we
know satisfies the conditions.

To show Condition i, let O<u;<v;<up<vo<: - <u <v.<1

and b = rnl_in(u.‘- ~v;_;). Also let 4; € M[[,’:;i']]. Then from (3.1.2) using
induction we can show
r r
IP(AA) = TTP@A)] = Ty + 0 (3.A.10)
For Condition ii., we have E{X,(t)} =0 .Alsofor ¢t >0

EixE) = Bl p{] \,[— "i“w Nl - todw) @A)
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To show Condition iii., we have to show that

lim sup XXt)dP =0 foreveryt (3.A.12)

4= N Xy )>a

Let M be a bound for the sequence {|s;|!. Then since ISML] <1 we

have for the two events

{_n._|lzjs (N,) ] >a} C{—\/_l7—1_|i= Y(N;) | >« (3.A.13)

Thus if we define A (w) = PiX,f(t) >l and Ay(w) = Pfo(t) >l we
have that
A {M20) < (W) (3.A.14)

Because both X, (t) and Y, (¢) have finite variance we can write

X2(2)dP = @M (cBH?) + [ A(w)dw = MR(a? (aBM?) + [A(0MP)dw)
X,?(t))uzﬂz atl® i

< 12(0®g(0®) + [Ag(w)dw) = M Y3(t)dP  (3.A.15)
and because Y, (¢) is the stationary case we have

limsup [ XZ(¢)dP = im sup M* / Y2(¢)dP = 0
as= 7y (§)i>al [Yalt)>a

(3.A.16)

To prove Condition iv., notice that

PIP;XIRICH‘Rkléﬁ’ff"/ﬁ}zlj{_@“z sj¥(N;) | = povn g}

(3.A.17)
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and thus using (3.A.13)

=1

P{H.lsaXleH — Ry | >MI30\/7T}S {Gilsﬂ >ﬁ0\/77§]
isn i

{C)E]Szw Sk|>ﬁa\/7_7‘;J:P{rPsaxlsi+k_Sk1>ﬁ0"/;1‘]<;T

i=1

(3.A.18)

for sufficiently large B andn . The last inequality is true because it

comes from the stationary case. And if we define €' = eM? and 8 = BM
we prove iv.

To prove (3.A.5) fortunately things are much easier. We will prove

that the difference of 7,9(X) and T,)(X) tends in the mean-square sense

to zero. We have that

B{[1300 - 190018 = Lu{[ $ 5, 0,13 (3.A.19)
i=1
where we define
kSi ]CSi
)~ ) A 50) (3.4.20)
Notice that
E{UA = E{[¥(N; —¥N) P - (3.A.21)

Because fs,v; is a bounded sequence, given & > 0 from (3.1.22) we have
that, for large enough =, EE U,-zf becomes smaller than ¢ for every 1.

And using Lemma 3.1.1

S

B[00 - 100] = 2§ vp + B[ (BB <
i= <
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M1+ 43 e (3.A.22)
=1

which proves the mean square convergence. Clearly now we have that the
two quantities will also converge in distribution to the same limit and

thus we have that (3.A.5) is also true.
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APPENDIX 3.B

Asymptotic Normality for the Estimation Problem.

As we said in Subsection 3.1.2 we will prove normality only for the
case where (z) is a monotone function. We follow the same idea as in

[4]. Let us define

AE=0) = [Y(z—¢+8)f (z)dz (3.B.1)

Since Y(z) satisfies EW(Nl); = 0, we have that

A(0) =0 (3.B.2)

Theoremm 3.B.1 Let N bea Ag-mixing sequence. Let also y¥(z)
be a continuous nondecreasing nonlinearity with EW(NI); =0 and
E{{y(N)]? < =, satisfying (3.1.29), (3.1.30), (3.1.31) and (3.1.32). If
iXi =N, + 6; for +=12,...,n, then the solution 7, to the Equation

(3.1.28) satisfies

n¥(T, — 6) " N(0,4(v,N)) (3.B.3)

There is only one small problemn. Because we include nonlinearities that
are not strictly monotone, it is possible for an equation like (3.1.28) to
have as a solution a whole interval. In such case we assume that 7, is
the lower end of the interval. Because of (3.1.22) as n - = the measure

of this interval tends to zero and we will have a unique solution.

Proof. To show (3.B.3), it is enough to show that for every real g

we have
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lim P{n*®7, <gi =3( MQ)—) (3.B.4)

7, -0 Uo

where ®(z) is the normalized Gaussian cumulative distribution and
where, for simplicity, we have substituted oy for oy(¥). Because of the

monotonicity of ¥(z) and the way 7, is defined, we have

[7a < 2 c [Sw(n; ~ 2 )=<0]c [T < 41 @BS

where by [ ] we denote the set where the relation is valid. Thus it is

enough to prove that

T U
PES YN - S <o) - o( 2210 (3.B.6)
] 0
We will now prove a lemma that will help us to prove (3.B.8).

Lemma 3.B.1. Let us define

n ¥%
hm o S, - 5) - (4

n%o‘o j=1 % 4] %
(3.B.7)
Zn = —— S UN))
= oo LY
Then we have
Jim E{ (Y, —Z,)3 =0 (3.B.8)
Proof. We have that
n
E{ (Y, - 23 = LB ¥ u; 13 (3.B.9)
nog j=1

where we have defined
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Ui = y(N; = ) -y - a(p) (3.B.10)

Using stationarity and Lemma 3.1.1, we have that

Ef (% -2, = (1+ 4% ¥ E{UE] (3.B.11)
i) j=1

Now we can see that
Etv} =Bt [v(z - I) —w(=) 3 - 2 ) (3.B.12)
n n

and because of (3.1.22) we have that

lim E§U?} =0 (3.B.13)

7], o
and this concludes the proof.

From Lemma 3.B.1 we can deduce that, if Z, tends in distribution
to some random variable, then Y, will tend to the same random vari-

able. But since the sequence W(Nj-)f is Ag—-mixing , we know that

LDy - N1 (3.B.14)
n70g j=1

Also because of (3.1.30) we have

lim n*% A( ﬁ—) = g \'(0) (3.B.15)
71, 00
Thus we can conclude
L
— (N -4 - S N(22@ ) (3.B.16)
n Uo J':l

and thus (3.B.5) is true. And this concludes the proof of Theorem 3.B.1.
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CHAPTER 1IV.

OPTIMUM DETECTION WITH MINIMAL
KNOWLEDGE OF DEPENDENCY

4.1 Preliminaries.

In this chapter our goal is to define optimum nonlinearities with only
a vague knowledge of the dependency structure. Specifically, we assume
that the noise sequence is one-dependent and strictly stationary and that
the bivariate density of consecutive members of the sequence belongs to
the First Model introduced in Section 2.1. In addition to this general
information, we also assurne that we know the correlation coefficient
between consecutive members of the sequence and also the common
marginal density. These assumptions are very nice from a practical point
of view because there are ways of estimating marginal densities and

correlation coeflicients [2,3]. Let us now define things more formally.

Let f(z) be a symmetric density with unbounded support, such
that all its moments exist and its Fisher’s information is finite. Assume
that the orthonormal polynomials ¢, (z) defined by f(z) form a com-
plete orthonormal system in the L,(f) Hilbert space. We are interested

in bivariate densities that can be represented as

1) =@ @) L anen(@len®)] (4.1.1)

which is the diagonal expansion for the First Model. As we discussed in

Section 2.1, a necessary condition for (4.1.1) to be a valid density is
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1
a, = [ 2™h(z)dz  n =012, (4.1.2)
=1

where h(z) is a univariate density supported in (—1,1). We can easily
see that o4 is equal to the correlation coefficient of z andy . As we
said, the noise sequence N is assumed to be one-dependent. Before con-
tinuing, we will prove a lemma that gives us more information about the

coefficients a, of (4.1.1) for one-dependent sequences.

Lemma 4.1.1 Let f(z,y) be a bivariate density of consecutive
members of a one-dependent stationary sequence. Assume that it can be

represented by Equation (4.1.1). Ther,
Lo, [ =k (4.1.3)

Proof. Let §Cj§ be any sequence of real numbers. Then

Eé[_"flcj%(jvj)]?; >0 (4.1.4)
-

Manipulating (4.1.4) we get

m
Yef+ 2[ & cjcj_l]an >0 (4.1.5)
=1 j=1

By putting ¢; =1 for every j or c; = (—1)Y for every j and also let-
ting m -» o, we get o, > -% and a, <Y respectively. And this con-

cludes the proof. Notice also that because of (4.1.2), if ay is no greater

than % in absolute value, then so is any other «, for n > 2.
We now define a class F, of functions f(z,y). A function f(z Y)
belongs to F, if it satisfies Equations (4.1.1) and (4.1.2) for some density

h(z) supported on [-1,1] and if



1
o = fzh(z)dz =p (4.1.8)
o

where p is the known correlation coefficient. By allowing h(z) to be
supported on [—-1,1] we allow degenerate functions in the class F,.
Clearly F, contains the bivariate densities of all one-dependent
sequences that can be represented by (4.1.1). As we can see, we do not

take into account that |oy| <% . But we will see that this requirement is

automatically satisfled for a region of values of p.

The detection problem we would like to solve is the one we defined in
Subsection 3.1.1. As we said, our performance measure is the efficacy,

which for one-dependent sequences takes the form

[ [v(2)f (z)dz |°
eff (¥(=).f (z.y)) = 2o

SV @) @)z + 2v [ [9@)p@)f (= y)dedy

—D0 — D0

(4.1.7)

where f(z,y) is the bivariate density of N; and Ny .

For the nonlinearity 4¥(z), we assume that it belongs to the class
‘I’m of all odd symmetric polynomials that have order up to 2m-—1.
Since by assumption the polynomials are dense in ILy(f), by letting
m - , we have that V¥, is the class of all odd symmetric nonlinearities
that satisfy EWz(Nl); < . The restriction to odd symmetric polynomi-
als is reasonable because we can prove that, for every function in the

class F,, the nonlinearity that maximizes (4.1.7) is odd symmetric.
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4.2 Optimum Nonlinearity.

The nonlinearity that maximizes (4.1.7) is related to the actual
bivariate density f (z,y). Since we do not assume knowledge of this den-
sity, we define the optimum nonlinearity in a min-max way. In other
words, we would like to find a pair ¥,(z)e ¥,, and f,(z.y)€ F, such

that the following saddle-point relation is satisfied :

ef f (@) fizy) <eff (v (z).f1(zy)) <eff (Y. (2).f (z.9))
(4.2.1)

for every ¥(z) € ¥,, and every f(z,y) e Fp.

First we will find the function from F, that minimizes (4.1.7) for a
given ¥(z). Let us, for simplicity, assume that v; > 0 and we will com-
ment in Section 4.3 for the case wv; < 0. Thus, minimizing (4.1.7) is

equivalent to the following maximization

f(zy €F, ffw Y(y)f (z y)dzdy (4.2.2)

—0 D

Since y(z) is odd symmetric, it can be expanded using only the odd

symmetric orthonormal polynomials. Let

Wz) = Y Ynton1(2) (4.2.3)

n=1

Using (4.2.3) we can write

ffww (¥)f (z.y)dzdy = mnazn L= Yy fzzn 1h(z)dz

—po—oa n=1 -1
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1 m
= [[ L ¥22h(z)dz = [ 4(z)h(z)dz (4.2.4)

-1 n=1 -1

where we defined as 4(z)
2 Ylzen-1 (4.2.5)

The manipulations in (4.2.4) hold for the case m = « as well, because the
series is absolutely convergent for |z | <1. We can also interchange
summation and integration in (4.2.4) using bounded convergence. The

maximization problem now reduces to the following:

sup | A(z)h(z)dz (4.2.8)

given that
fzh,(z)dz =p (4.2.7)

Notice the following properties of 4(z) : It is increasing and bounded
in [-1,1], it is analytic in (—1,1), it is odd symmetric and, for z >0, it is
convex. A typical form of A(z) is given in Figure 4.2.1. Now let
B(z) = Az + u be the line that passes through the point (1,A(1)) and is
tangent to A(z) at —zg, (see Figure 4.2.1). Then, for every z, we have

that
B(z)= A(z) (4.2.8)

Notice that the point —z; can be found by solving the equation
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AW - 4(-2) _
1+2g

(-2zo) (4.2.9)

The point 2 is unique for the case where there exists at least one

Yo # 0 for m > 1. This is true because then A'(z) is strictly increasing.

C(s) B(s)

A(s)
-z,

-1.0

e o o = - - om e —

- - oy
—
o

Figure 4.2.1 Typical form of A(z) and of the tangent lines B(z) and C(z).

We now prove a proposition that gives the solution to the maximiza-

tion problem defined by (4.2.6) and (4.2.7).

Proposition 4.2.1. The density h(z) that solves the maximization
problem defined by (4.2.6) and (4.2.7) is given by one of the following two

cases:

Case 1. If zq9= —p, the maximum is achieved by

Zo+p

hH(Z) - 1+ 2p

6(z —1) + L2L_5(2 + z¢) (4.2.10)
1 + Zo
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Case 2. I zg < —p, the maximum is achieved by

hy(z) = 6(z - p) (4.2.11)

Proof. We can see that, in both cases, hy(z) is a valid univariate
density satisfying (4.2.7). For Case 1 maximizing (4.2.8) is equivalent to

the following:

1

p{ f4(z)h(z)dz — 2o — )} (4.2.12)

hiz) "

&

But, using (4.2.8), we have

1 1
fA(z)h(z)dz Ao — = _—/;(A(z) —Az ~u)h(z)dz <0 (4.2.13)

=1
Equality to zero is achieved when h(z) is supported only on points where
A(z) = Az + . For Case 2 the proof proceeds in a similar way. Instead of
the line B(z) that is tangent at —z,, we use the line C(z) that is
tangent at p . The same arguments are valid because this line, as a result

of the convexity, is always above A(z), (see Figure 4.2.1).

The function f(z,y) € F, that corresponds to (4.2.10) is given by

fu@y)= (1 —p)f(@)6(z —y) +pf @)F @) 3 (20" ¢n(@)en W)}

WD
o

(4.2.14)

where

- 1-p (4.2.15)
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.Let us now find the optimum nonlinearity y(z) € ‘I’m , when the
function f(z,y) has a form similar to the one given by (4.2.14). Since

J (z) has finite Fisher’s information and is symmetric, we can write

_f=) - ¥ z
f(:r) nglﬁnqaZn—l( ) (4-2~16)

The efficacy for a ¥(z) € ¥,, takes the form

[nz,': I’Wn ﬁn ] 2

&2 Ly on-1
21%"‘2“121%[(1 “P)_.on ]
n=1 n=1

ef f (¥(z).fulz,y)) =

[ S v, [P
= n=1 (4.2.17)

v2[ 1420, - 2vp(1 + 28 1) |
1

13

n

Equation (4.2.17) is maximized when %, = ¥, , where

.. kﬁn

= n = 1,2 ..... m (4218)
" '\/F1+2u1 —R2uyp(l + zc?“‘l)

and k is an arbitrary constant. Thus, for a given ¥(z), the function
f(z,y) that minimizes the efficacy is given by (4.2.14). On the other
hand if f (z,y) has the form of (4.2.14) then the optimum v(z) satisfies
(4.2.18).

In order to find the pair we are looking for, we have to satisfy (4.2.14)
and (4.2.18) simultaneously. We will assume that Case 1 of Proposition
4.2.1 will occur and that our v,(z) satisfies (4.2.18) for some zy= z, .

Thus for ¥%,(z) we only have to specify 2, in some way. For every =z,
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and the corresponding v,(z), we define a function A4,(z), similar to

A(z) defined in (4.2.5) as follows:

m 25 2n -1
z) = 42.19
4 (2) ne1 142v; — 2up (1 + 2277 1) ( )
where p is given by
p=L=P_ (4.2.20)

Notice that for simplicity we assumed k = 1. Since, from (4.2.1), we
would like f;(z,y¥) to minimize the eff (w,(:r),f (:z,y)) , the function
fi(zy) must have a form similar to (4.2.14) with 2z = 2,. In order for
this form to minimize the efficacy, 2, must be a solution of an equation

similar to (4.2.9). In other words

4(1) = 4(-2) _

1+2,

A (—2,) (4.2.21)

Substituting (4.2.19) into (4.2.21) and multiplying by (1 + z,.), after can-

celing common terms, we find that (4.2.21) reduces to

m BR(1+zF71) crzy B (2n — 1)g2z2nD)
z—: 1 4 z2n-1 - 2r z_: [+ g2
n=2 1 2, n=2 2]
L+2uy = R(1 = pJvy ——— t+2vy = 2(1 = Py ——=
T T
(4.2.22)

Equation (4.2.22) has 2z, as its only unknown. In Appendix 4.A, we show
that a positive solulion always exists and that it is no less than % . This
means that we always have 2z, =p and that we do not contradict our

assumption that Case 1 will occur. We will have a contradiction though, if



we assume that Case 2 will occur.

Theorem 4.2.1. Let 2z, be asolution to (4.2.22). Define

hey) = T 1 @0E—y) + {75 1@ W) L (o e @en )]
=k S Er — 2 1(2)
\/1+2u1 - 2(1 - p)y, -1—%2———

(4.2.23)

where k& is an arbitrary constant. Then +¥,(z)and f,(z,y) satisfy

(4.2.1).

Proof. The proof is an immediate consequence of the way that =z,
is defined. The left inequality of (4.2.1) is satisfied, because +v,(z)
satisfies (4.2.18). The right inequality is satisfied, because f;(z.y)

minimizes the eff (v, (z).f(z.y)) .

Comments. It is worth noticing a few things: When either m =2 or
B, =0 forn =3,..,m , the only nonnegative solution to (4.2.22) is
=¥ regardless of By, as long as B, # 0. Also when v =1, then for
any m <« , when p -» —% we have that v,(z) » z ( after it is properly
normalized ), so long as B, # 0. Notice that 2z, # 0 even when p =0,
which means that the independence assumption is not necessarily

correct, when the correlation coeflficient is zero.
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4.2.1 Examples.

Let us now presentl three examples and let us, for simplicity, assume
that v; = 1. In the first two examples, as we will see, we get the ¥, solu-
tion. But in the third example things are more complicated and more
interesting.

Pirst Example. We consider the case where f(z) is the standard
N(0,1) Gaussian density. The orthonormal polynomials are the Hermite
polynomials. Since the locally optimum nonlinearity is linear, in other
words equal to ¢;(z), we have that B, = Oforn =2. From (4.2.23) we

conclude that ¥, (z) will be linear tov.

Second Example. We consider f(z) to be the following

z4

f(z)=00802e B754 (4.2.24)

The numbers are selected in order to have a variance equal to unity. The

locally optimum nonlinearity is

_ (=) _ 23
=057 (4.2.25)

To represent this function using the orthonormal polynomials, we need
only ¢,(z) and ¢5(z) . From (4.2.23) we see that this is also the case for

¥, (z) . We have that

piz) ==z p3(z) =1.333z3-2916 <z (4.2.26)

and also
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F1=10 Bz = 0.343 (4.2.27)

Since B, =0forn =3 we get that 2z, =¥ . The optimum nonlinearity,

after it is normalized, becomes

Yo(z) =z + %.25_5 0.373z3 - 0.8165z } (4.2.28)

In Figure 4.2.2 we can see ¥,(x) for different values of the correlation

coeflicient p .

xn

4 -

p=0.5

p=0.0
3 p=—0.4
2 p==05
| 4
04 u

0 4 e 12 16 20
) X o0.1)

Figure 4.2.2 Optimum nonlinearities for the Second Example.

Third FEzample. We will pay a little more attention to this example
because it gives us an idea about the usefulness of the method. Consider

f (z) to be a contaminated Gaussian density of the form

z2
%/837 e 2 for |z|=1
fz)y={ Vem
0.857 (4.2.29)
' ezl for |z|=1
vaen
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The locally optimum nonlinearity then is

f'{z) _ z for |z| <1
~ f@) | sgn(z) for f:zi > 1 (4.2.30)

In Table 4.2.1 we give the first five odd symmetric orthonormal polynomi-
als and the corresponding f, . The a, in the table correspond to the
coefficient of z™ and, because the polynomials are odd symmetric, we

have only the odd-term coefficients.

Table 4.2.1 Orthonormal polynomials and corresponding coeffici-
ents of the expansion of the locally optimum nonlinearity.

Order B, | Qq | [ Y ! Qs as | a,

gi(z) | 0.667 |_0.867
ealz) || -0.242 | 0.045 | -0.547
es(z) 1| 0.152 | 9.2x10™% | -0.088 | 0.483 |
goz) | -0.112 | 8.9x107% | —2x107% | 0.081 | -0.441
eolz) | 0089 | 50x1078 | —25%107° | 3.1x1073 | -0.091 0.411

In Table 4.2.2 the values of 2z, are given for different values of the
parameter m of the class ¥,, and the correlation coefficient p. We
can see that 2z, changes very little over the range of values of the twc

parameters.

Table 4.2.2 Values of z, for different values of m and p.

m P -05 -0.3 -0.1 0.0 01 0.3 0.5
2 0.5 05 05 0.5 05 0.5 05
3 0520 | 0531 | 0532 | 0533 | 0533 | 0534 | 0.534
4 0546 | 0550 | 0552 | 0552 | 0553 | 0.554 | 0.555
8 0716 | 0718 1 0719 | 0719 1 0720 | 0.720 | 0.720
8 0.736 | 0.738 | 0.739 | 0.739 | 0.739 | 0.740 | 0.740
10 0751 | 0753 | 0.754 | 0.754 | 0.755 | 0.755 | Q.755

In Figure 4.2.3 we can compare the polynomials p,,(z) given by

Pm(@) = ¥ Buton1() (4.2.31)

n=1
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with the locally optimum nonlinearity defined in (4.2.30). For large z

/)
W{ /

N

Figure 4.2.3 The polynomials p,,(z) and the locally optimum nonlinearity.

things are very bad.

In Figure 4.2.4 we can see the polynomial p,o(z) and the optimum

nonlinearities for different values of the parameter p.

A\

pact /\
p

p=0.1
=0.0
p=0.3
=0.5
4 Pulz)

Figure 4.2.4 Optimum nonlinearities for the case m = 10.
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Comment. To see for what values of p and m we can have
O0<og<)¥, notice that the oap for the density f;(z,y) defined in
(4.2.23) becomes

ax=(1—p) + 2°p (4.2.32)

where p is defined by (4.2.20). In order to have ay<¥, after using

(4.2.20), we need

1
- ————> 4.2.33)
2(1'—[)) 2y ( /

Now because z, =%, it turns out that a necessary condition for (4.2.33)
to be true is that p<0. For p = -0.5, —0.3, and —0.1 we have that the
left side of (4.2.33) becomes 0.667, 0.615 and 0.545 respectively. We can
compare these bounds with the =z, given in Table 4.2.2. The first two

satisfy (4.2.33) for m < 4 and the third for m < 3.

4.3 Other Cases and Generalizations.

The Case vy < 0. In Section 4.2 we solved the problem for the case
vy > 0. Now we will consider the case v;<0. If we define z = —w,
because of the symmetry of f(z), we have that f(—w,y) is a bivariate
density satisfying (4.1.1) and (4.1.2) with w in place of z. Because of the

odd symmetry of ¥(z) we have that the efficacy becomes

[_fm Y(w)f ' (w)dw P

eff (p(w),f(—wy)) = = —
_f YR(w)f (w)dw + (—vy) [ [ (w)p)f (~w,y)dwdy

—D0 =00

(4.3.1)
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This is exactly the same as in Section 4.2 since —v; > 0. The important

point is that

ffwyf (—w,y)dwdy = —p (4.3.2)

-—D0 D0

In other words we solve the problem for —v; and —p using Theorem
4.2.1 and in the result we substitute = with —z. But since the nonlinear-
ities are odd symmetric, we can see that we will have the same nonlinear-

ity. The least favorable function f,;(z,y) will be different however.

4.3.1 Generalization to the M-Dependent Case.

The M-dependent case can be solved using the results of Section 4.2.
The only problem here is that finding the worst case requires some exper-
imentation. Let us for simplicity assume that v; =1 for j =1,.. .M. The

efficacy then takes the form:

[J#(2)f (z)az ]?

el (W@). ;@ w)]) = < s
S¥@yaz + 2 [ [W=)wy)f (@ y)dzdy

J =]—o0—00

(4.3.3)

For this case we assume that we know the correlation coefficients p;
between N,; and N;,; for j=142,...,M . These coefficients have to
satisfy the positive definiteness condition. Here we will need only two

necessary conditions which we present them in the following lemrma.

Lemma 4.3.1. Let N be an M-dependent stationary sequence and

let the correlation coefficient between N; and Njyy for j =1,2,..,M be
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p;. Then, the following is true:
M
2 pj =% (4.3.4)
Jj=1

;1<%  for j > 42"— (4.3.5)

Proof. We will prove (4.3.4) only, because (4.3.5) can be proved in a
sirnilar way as (4.1.3) was proved. Assume, for simplicity, a variance equal

to unity. Then

E{[Ni+ - + N, P{=n+2n~1p+ - +2n ~Mpy=0
(4.3.6)

on letting n - «, we get what we want.

Notice now that we can maximize separately each term in the
denominator sum of (4.3.3), using Proposition 4.2.1. We can see that we
will have the same A(z) and thus the same zg, for all j, but different
p and different fy(z,y) functions. Thus, to each j, there corresponds
a p; anda f{(z,y). The parameters p; and the functions f§(z,y) will
depend on whether Case 1 or Case 2 of Proposition 4.2.1 is true. Unfor-
tunately we cannot know a priory which case will be true, as we did in the
one-dependent case. Using the worst case functions ff(z,y) from the

classes ij , the efficacy takes the form

[ﬁ: Y B

1

ef f (w(@),{rizy)}) =

2 ¥ mo, 2n—1
vE+2) Y yRii-p; +pizfrY
1 j=in=1

N E

n

(4.3.7)
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where

.= L=p; d = —2 rh > —

p] - 1+ZO aitl Zj = g when zg= pJ
(4.3.8)

P =1 and 2; = p; when zg < —p;

The optimum v, that maximize (4.3.7) are given by
R k
Vo = ﬁ’; (4.3.9)
-\/2M+1 - ZZpJ(l—zjzn‘l)
Jj=1

The denominator of (4.3.9), because of (4.3.4), can be shown to be nonne-
gative. Following steps similar to those in Section 4.2, we define a func-

tion A,(z) as follows:

Az)= Y * — e (43.10)
=1 - ¥
" eM+1-2Y (14 — 2[ D (14ek)] T
i k T

where I runs through all indices that satisfy Case 2 and & through the

ones that satisfy Case 1. The equation that defines 2, is

A (1) — A(—2)
1+ 2,

= 4.'(-z,) (4.3.11)

Depending on how we separate the set of M indices into two sets for
l and k , we get a different A4,(z) functicn and a different equation
(4.3.11). A solution of (4.3.11) will be acceptable when it does not con-
tradict the assumplions we made for separating the indices. In order to

make this statement more clear, notice that, because of (4.3.5), we know

that for 7 > %1* we have Case 1. For j < %1— if we order the correlation
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coefficients as follows

PWE PR S P (4.3.12)

where (i) corresponds to the index of the coeflficient that is in the i-th

place, then, there are at most [g‘i]+1 different intervals in which =z,

can be. If, for example, we assume that -—py)<2, < —pys) Wwhere

j< [%Hl; then k& will take the values (1),(2),....(7) and ([%})+1,‘..,M ;
on the other hand, [ will take the values (j+1),...,([g—}). This separation

of indices will define an equation (4.3.11) and a solution 2z, of this equa-
tion. Now if this solution does not contradict the assumption that
—PG) < 2, < —py+1) then it is acceptable and can be used to solve our
problem. It is still an open problem whether there always exists a solu-

tion to (4.3.11).

Commenis. We have presented a method for finding an optimum
nonlinearity for detection when dependency is present. For the depen-
dency, we have assumed knowledge only of the correlation coeflicient
between M consecutive observations. Even though this method is tract-
able from an analytical point of view, it produces some problems in prac-
tice. The generation of the orthonormal polynomials is difficult for high
orders. If we consider the polynomials as an approximation to the
optimum nonlinearity for the W. case, their convergence is slow in
cases where this optimum nonlinearity is bounded. That is because we
approximate a bounded function using unbounded polynomials. Also,
from Equation (4.2.23), we can see that the density f;(z,y) contains a
delta-function component. This function is not a good candidate for a

bivariate density of a one-dependent sequence. The reason we get this
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form of worst case density is because we optimize using only necessary
and not sufficient conditions. By requiring the functions f(z,y) to
satisfy more necessary conditions, we could probably get better results.
For example, in the one-dependent case, we could take into account
(4.1.3) and restrict further the class #, of allowable functions f(z.y),
but a more complicated analysis results. Besides, as we have seen, (4.1.3)
is satisfied for a range of values of p with the analysis that we present in
Section 4.2. This means that we do not gain much by using (4.1.3). A
better idea might be to solve this problem for Markov sequences. For

these sequences, any form of the bivariate density is allowable.
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APPENDIX 4.A

Ezistence of a solution z,. We would like to show existence of a
solution for Equation (4.2.22). First notice that, since by assumption

|v,] =1 ,if we use (4.2.20), then

142y —Rpv(1 +28" 1)=21+4+2up=20 (4.A.1)

This is important because in (4.2.18) we take the square root of this
expression. Let us now define as D(z,) and G(z,) the left and right side
of Equation (4.2.22), respectively. Notice that each term in these two
expressions is a continuous function of =z, . Using bounded convergence,
we can show that, for p > — ¥, the functions D(z,) and G(z,) are con-
tinuous and absolutely summable on [0,1] and [0,1), respectively. By

direct calculation, we have

D(0) = G(0) (4.4.2)

We also have that

2, 2(n-1)
T (4.A.3)

Glzp)= (142,) 3

n=2 1 + 27.271_1

1421, — (1 = p)vy T2
-

The right side of (4.A.3) is continuous and absolutely summable on [0,1]

and thus, in the limit as z, » 1, we get

L 2 ™
liminf G(z,) > —%—— = D(1 A4
imin (z0) = — o nézﬁn (1) (4.A.4)

Continuity of the two expressions, combined with (4.A.2) and (4.A.3),
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proves existence of a solution in the interval [0,1) . To show now that this
solution cannot be less than % it is enough to show that every term in
the difference D(z,) — G(2,) is nonnegative for z, <% . In other words,

it is enough to show that for 0<z,<¥

Q+22 D —@n —1)(1 +2,)220") >0 (4.A.5)

or equivalently

1-(2n =222 1 - (2n — 1)z V > (4.A.8)

The left side of (4.A.8) is decreasing with 2z, € [0,1]; thus it is enough to

show (4.A.8) for z, =¥ or, after some manipulation, to show

3n -2
1> _Z’T (4.A.7)

This is true for every n = 1. Thus the solution to (4.2.22) satisfles

0 < z, <% . This concludes the proof.
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CHAPTER V.

MIN-MAX DETECTION AND ESTIMATION

5.1 Preliminaries.

The problem we would like to solve in this chapter is similar in nature
to the one in Chapter IV. Here though we go one step further. In Chapter
IV we assumed that we know the marginal density of the observation
sequence. Here we assume that this marginal is not exactly knowr.
Instead, we assume that it belongs to a known e-contamination class of
densities. Before going into further aetails, let us refer to to some earlier

work in this area.

As we said in Chapter Il our measure of performance for both detec-
tion and estimation problems is the efficacy. It is well known that, for
i.i.d. observations, the efficacy is maximized when the nonlinearity ¥(z)
in (3.1.14) or (3.1.29) is given by the locally optimum nonlinearity defined
by the common marginal density. When the density is not known exactly,
optimality is usually defined in a min-max way. Following the ideas of
Huber on robust estimation and hypothesis testing [1,2] the min-max
nonlinearities for detection are derived in [3,4,5] for the i.i.d. case and
for densities belonging to an &— contamination class. In [3,4] the densi-
ties are also assumed symmetric. In [5] symmetry is assumed inside an

interval around the origin.

All of these approaches assume independent observations. For the
dependent case, as we have seen in Chapter Ill, in order to calculate the
efficacy we must know the bivariate densities of all pairs of observatious.

The nonlinearity that maximizes the efficacy is given by Theorem 3.1.1.
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Min-max detection with dependent observations is considered in [8].
Following similar ideas from [9,10] the min-max nonlinearity is derived
under the assumption that the observations are generated by a moving
average process and are weakly dependent. In [11] the problem of min-
max detection of a constant signal in stationary Markov noise is con-
sidered. It is shown that, for a special class of Markov noise processes,
the min-max nonlinearity is very closely related to the one for the i.i.d.
case. Here we consider an extension of this result. The class of sequences
that we define here are more general than the Markov sequences defined

in [11]. We continue now by defining our class.

Let N ={N;{;=; be a strictly stationary noise sequence. Define as
Mf,’ the o—algebra generated by the random variables
§ Ng.Ngi1,-...Ny § . Let f(z) be the common marginal density for the
random variables N; . We assume that this density is symmetric, that it
has a continuous derivative different from zero a.e. with respect to f (z)
and that it has finite Fisher’'s information. Here we consider a subclass of
the acceptable @-mixing sequences defined in Section 3.1. We say that a
sequenice N belongs to the class O if it is an acceptable g—mixing
sequence and also satisfies the following conditions concerning the bivari-
ate and univariate densities of two components N, and Ny, . If 4 isan

event for N, and B Icr N.,, then, Ior every k and mn, we have

| P(ANEB) = P(4) P(B) | =7, P(4) P(B) (5.1.1)

with

i Yn < (5.1.2)
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and also

f(z) = (1-¢&)g(z) + eh(z) (5.1.3)
Notice that (5.1.1) is different from (3.1.2) since it is defined only for two
random variables. Also the right side of (5.1.1) involves the product of the
two marginal probabilities rather than one marginal as in (3.1.2). Even
though every bivariate density satisfies (3.1.2) for some ¢, (for example
¢, = 1) such is not the case for (5.1.1). Finally (5.1.3) defines an e—con-
tamination model for the marginal density f(z). We assume that g(z)
is a known, symmetric, strongly unimodal density, with continuous
derivative different from zero a.e. with respect to g(z) and with finite
Fisher's information. For A(z) we assume that it is a symmetric density;

and ¢ aknown constant in [0,1).

The class of allowable nonlinearities depend on the problem we con-
sider. For the detection problem, this class is defined by conditions
(3.1.19 - 3.1.23) and for the estimation problem is defined by (3.1.30 -
3.1.33). Here we will assume one more thing about the nonlinearity ¥(z);

we assume that

Yz) = —Y(—z) (5.1.4)

This assumption is reasonable because all of the locally optimum non-

linearities are odd symmetric. As we recall, the efficacy has the form

f’w :::)d:x:

eff (¥(z).N) = 20 (5.1.5)

where o(y) is defined as
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0§(¥) = BRIV + R Y v BN DY (N; 1)) (5.1.6)
i=1
Notice that we consider the more general case encountered in the detec-

tion problem. We now prove a lemma that gives us a property that

characterizes the class 3.

Lemma 5.1.1 Let +(xz) be a measurable function with

Ew(N)PR} <o . Letalso N € S. Then
| BV (Nad = [EpWV 3P < % [EHVD ]2 (5.17)
Proof. 1Itisenough to show (5.1.7) for simple functions. Thus let

K
v(z) = L vy (5.1.8)
i=1

Let B; be the event ENl EA,LE and (; the event ENJ-H EA,Lg . Then,

using (5.1.1), we obtain

|E (N DY (N; )8 = [E (N} P ?uzlmm |P(B;NG) — P(B:)P(G)]

K K
S?’j_zllZleWL[P OP(G) = % [EHY(N) )R (5.1.9)

And this concludes the proof. We now define the optimum nonlinearity.

5.2 Min - Max Nonlinearity.

The problem we would like to solve is the following: Find a nonlinear-

ity ¥,(x) € ¥ and a sequence N, € S such that

inf eff(Y(z).N) =eff (¥, (z).N;) (52.1)

W(I)E‘I’ NeS
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We now proceed as follows: for a given y(z) we find the Ne .S that
minimizes the efficacy. Then the resulting expression is maximized over
the nonlinearity y(z) . The minimization is done in two steps. First we
keep the marginal density fixed and minimize over all sequences that
have the same marginal and then we minimize over the marginal. If the
marginal is fixed, we can see from (5.1.5) that, in order to minimize the
efficacy, we need to maximize o§(¢) . Using (5.1.7) and remembering that

¥(z) is odd symmetric (zero-mean), we have

o§¥) < [V()f @)dz + 2T vy 1) [ 1w f @)az B (5:2.2)

i=i

The series in (5.2.2) is summable because

E 1Uj]7j$ z'}‘J < o (523)
J':l J:]

We have equality in (5.2.2) when the bivariate demnsities f;(z,y) of

N, and N;,, are given by

Fi(x.y) = £ @) @)L+ 7ys9n(vy)sny(z)snyly)] (5.2.4)

The function sny(z) is defined to be odd symmetric and for z >0 is
equal to the sign of y(z) when v¥(z) # 0 and may take any value in [-1,1]
when ¥(z) = 0. Also sgn(v;) is equal to the sign of v; when v; #0.
When v; = 0 the bivariate density can be anything. The odd symmetry of
sny(z) is important because it makes f;(z.y) a legitimate bivariate
density with marginal f (z). Even though these densities are of the right
form it is possible that there is no sequence in S that will have them as
bivariate densities. Here we will assume that such a sequence always

exists and, in the examples we present, we show a way to construct its
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multivariate density. We must point out that, if we cannot show the
existence of a sequence in S, then this approach does not necessarily
lead to the min-max solution. Let us now substitute (5.2.2) into the
expression for the efficacy and call the resulting expression eff . Thus

we obtain

[ [o(z)f (z)dz ]?
eff"(y(z).f(z)) = — (5.2.5)

fwz (z)f ( >a:x+7[fw< ) f (z)dz ?

where 7 =2} |v;|7; . The case y=0 is of no importance since it is no
i=1

different from the i.i.d. case. Thus we assume 7 > 0. Next, we have to find

a pair ¥,(z) and f,(z) such that

e, Bt o1 (WS @) = eff (@) S ) (626)

It turns out that this new min-max problem defined by (5.2.8) has a sad-
dle point; in other words the pair ¥,(z) and f,(z) satisfies the following

double inequality

ef f (W) fr(z)) s eff (¥ (x).fr(z)) <eff (¥ (2).f (2))(52.7)

for any ¢(z) € ¥ and any f(z) satisfying (5.1.3). Any pair that satisfies
(5.2.7) is known to satisfy (5.2.8). Thus we will solve (5.2.7) instead of
(5.2.8). The left inequality in (5.2.7) indicates that ¥,(z) is the optimum
nonlinearity for f,(z) when the criterion function is the eff*. The fol-
lowing theorem gives the form of this optimmum nonlinearity in terms of

the marginal density.
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Theorem 52.1. Let f(z) be a symmetric density with finite
Fisher's information and continuous derivative different from zero a.e.
with respect to f(z). Then the optimum nonlinearity ¥y(z) that max-

imizes the eff * is given by

Vo(e) = = LEL - ymo(a) GEX)

)
mo(z) = 1 fer 1< - 1 r(=) (5.2.9)

=0 (5.2.10)

The proof of this theorem is given in Appendix 5.A. From (5.2.8) and
(5.2.9) we see that yy(z) is odd symmetric and closely related to the

locally oplimum nonlinearity. The function mg(z) is defined in such a way

r

that yo(z) becames zero whenever L=z takes on values between

f(z)
—1 and . Now we are ready to define the pair that satisfies the saddle

point relation (5.2.7). Since v,(z) is optimum for f,(z) we need to

define only f,(z) and this is done in the following theorem.

Theorem 5.2.2 The density f,(z) that gives the solution to the
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saddle point problem defined by (5.2.7) is the following

{

(1-£)g(z)e™ ) tor z < -z,

fr(x) =4 (1—e)g(x) for |z =<z, (5.2.11)

-z (z—zy)

(1—e)g(x4)e for z=uzx,

.\

where z;= 0 and such that f,(z) has total mass equal to unity.

Proof. This density is exactly the one defined by Huber in [1,2] for
the ii.d. case. It belongs to the e—contamination class with a density

h,(z) that places all the mass outside the interval [—-z;,z,]

(1-e)[g ()™ —g(z)]  for z < -z,

eh,(z) = 0 for |z | =z, (5.2.12)

(1-e)g(z)e "™ —g(z)]  for z =z,

The nonnegativity of h,(z) can be proved using the strong unimodality
of g(x) ( see [1,2] ). To find the nonlinearity ¥,(z), we use Theorem

5.2.1 and obtain

0 for 0=z <z,
_gl(x) + g'(IZ) for zo<z <2z (52 13)
¥, (z) = gz)  g(zz) ? 1
g'(zy) , g'lza)
- + for z,<«x
glzi) gz '

For z <0 we recall that ¥,(z) is odd symmetric. We define z, as

—5;'((;:)) = (5.2.14)
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where wu is a solution to the equation defined by (5.2.10). In order for
(5.2.13) to be valid the z, defined by (5.2.14) must satisfy 0<zy< z;. In
Appendix 5.A we show that such an =z, always exists. Up to this point,
because of Theorem 5.2.1, we have that ,(z) and f,(z) satisfy the left
inequality in (5.2.7). To prove that they also satisfy the right inequality,
notice that, since g(z) is strongly unimodal, we have that ,(z) is a

nondecreasing function. If we define

g'@) | g'(z2)

9=y * glea) (52.19)

M=~

then, since ¥,(z) is odd and nondecreasing, we have |y,(z)| =< M. Call

n(f)and d(f) the numerator and the denominator of the

eff (¥, (z).f (z)); then

n(f) =¥ @) @d@)] = [(1-) [¥:(2)g'@)dz + & [ ¥, (2)n'(@)dz ]
(5.2.186)

Because +,(z) is nondecreasing, the two terms in the last expression

are nonpositive; thus

n(f)= [(1—e>_fw,(z>g'(x>dz]2 =n(f,) (5.2.17)

also
a(f) = _fmwf(:r)f (z)dz + 7[_[0(%(1)|f(z)dx]2

< (1-6) [¥2(@)g (2)dz + e® + 7[(1=e) [ 14, (z) g (2)dz + e |?
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=d(f,) (5.2.18)

Thus f,(z) simultaneously minimizes the numerator and maximizes the
denominator of the eff *(v,(z).f (z)) which means that the right ine-
quality in (5.2.7) is also satisfied. This concludes the proof.

Returning now to our original min-max problem defined in (5.2.1), we
have that %,(z) is the nonlinearity defined in (5.2.13) and N, is any

sequence from S that has bivariate densities given by
fHzy) = f(2)f- @)L + 7isgn(y;)sny (z)sny (¥))  (5.2.19)

where f,(z) is defined in (5.2.11).

Up to this point we have solved the min-max problem concerning the
efficacy. This is good enough for the estimation problem. For the detec-
tion problem though, more has to be done. We must somehow define the
threshold 7 of (3.1.15). What we would like to do is to define 7 in such a

way that we will have

sup Ppy(¢,,N) < a (5.2.20)
Ne S

where Ppr4 denotes the asymptotic false alarm probability. In order now

to satisfy (5.2.20), we must set the threshold for the detection structure

T7(X) = —=3 ¥, (X,) (5.2.21)

Notice that 7%(X) under Hy is Gaussian in the limit as we proved in
Appendix 3.A. Hence if (5.2.20) is satisfied for the sequence that has the
maximum asymptotic variance, it will be satisfied for any sequence. But

the asymptotic variance of (5.2.21) is the square root of the denominator
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of the eff (7,"/, (:r),N) . This denominator is maximized when N = N, and
the maximum value is equal to d(f,) defined in (5.2.18). Thus the thres-

hold 7 is given by

1 —&( [d_(fTr—ﬂ*—) = o (5.2.22)

where @(z) is the N(0,1) Gaussian cumulative distribution. Note that
the sequence N, achieves simultaneously the worst performance for the

efficacy and for the false alarm probability.

Comment. For the case where we cannot prove existence of a
sequence in S that has bivariate densities defined by (5.2.4), we still
satisfy a min-max relation. Only instead of the class S of sequences, we
will consider the class of bivariate densities that satisfy (5.1.1 - 5.1.3). In
other words, the min-max problem will be defined over a larger class of
bivariate densities than the one that S defines. Thus the lower perfor-

mance bound of the min-max problem will not be the best for the class

S .

5.2.1 Examples.

As we can see from Theorem 5.2.2 the min-max nonlinearity and its
worst performance depend on the density g(z)and the constants
¢ and ¥ and not on the actual sequences {v;{ and {s;}. In the following,
we give tables for the point z, and the performance of the min-max non-
linearity, for g(z) the Gaussian N(0,1). In Table 5.2.1 are given the
values of z, for different 7 and ¢ . The parameter z; depends only on

¢ and it turns out that as, 7y -+ «, then zz - =, .Thus the last column
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Table 5.2.1 Values for z, (last column values for z;).

g 7 1 1.0 2.0 3.0 4.0 50 | 100 | 200 o0
0001 10436 | 0635 | 0764 | 0860 | 0935 | 1.173 | 1.412 | 2,630
0.01 0.431 | 0626 | 07563 | 0845 | 0917 | 1.140 | 1.363 ' 1945
0.05 0410 [ 0519 | 0.704 | 0784 | 0845 | 1.019 | 1,161 | 1.399
01 . 0386 | 0549 | 0648 | 0716 0766 | 0802 | 1.000 . 1.140
0.15 0361 | 0510 | 0597 | 0.655 | 0.697 0807 | 0.883 | 0.980
0.2 0337 0472 | 0,549 | 0600 | 0636 | 0.730 | 0.788 | 0.862
0.3 0291 10402 | 0436 0502 | 0530 | 0595 | 0637 | 0,685
0.4 0247 | 0337 | 0.385 | 0416 | 0436 | 0485 | 0515 | 0.550
0.5 0204 | 0276 Q0314 | 0337 | 0353 | 0.390 | 0412 | 0.436
0.8 0080 [ 0107 [ 0121 | 0130 | 0135 | 0147 | 0.154 | 0.162

Table 5.2.2 gives the values of the ARE of v, (z) versus the locally

optimum nonlinearity

Sz
Ir (=)

N, . Notice that this locally optimum nonlinearity would have been the

N
/

when the underlying sequence is the

one to use if we had falsely assumed that the observations were i.i.d.

Table 5.2.2 ARE of y,(z) versus the locally optimum

nonlinearity.

e/ 1 10 | 20 | 30 | 40 | 50 | 100 | 200 | oo
0001 | 108 119129 137 14511741 211 | 448
001 [ 108/ 118 /12611341140 1631 189 | 268
005 | 107 114121126 1301 146 | 156 | 1.77
0.1 106 | 11211171 1201123 13211391 149

15 1105 1101113 11611181124 129 | 1.35
0.2 1041108 11111131115 111911221127
0.3 103 1106 1081091110 1121 114! 1.16
0.4 10211041105 1061107 10811091 1.10

Now we present two cases where the theory in Section 5.2 can be

applied.

M —dependent caose.

Assume 7; =0forj > M . Here 7 =2y|v]
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and the bivariate densities defined in (5.2.4) take the form

Fizy) = F@)f @)1+ msgn(v)sny(z)sny(y)) 7 =10

fitzy)=f(@=)f(y) JF>M (5.2.23)

In Subsection 2.3.2 we have seen a way of generating strictly stationary

M-dependent sequences that have bivariate densities of this form.

Markov case. Assume 7; = m? with 0<m <1 and vi 2 0. This is

the case treated in[11]. Here 7 =23 m7v; and
Jj=1

fi(@y) = £ @) @)+ mIsny(z)sny(y)} (5.2.24)
If the function sny(z) takes values of only +1 or -1 (always possible),

then the bivariate density of consecutive points becomes

filzy) = f(2)f @)L+ msny(z)sny(y)) (5.2.25)

As we have seen in Subsection 2.3.2, a density of this form defines a Mar-
kov sequence that has bivariate densities given by (5.2.24). And this is
done by defining @(z) =m sny(z) and O(y) = sny(y). Since sny(z)
can take values only =1, it is easy to see that the o defined in (2.3.28) is
equal to m. Also in Subsection 3.2.1 we have seen that these sequences

are symmetrically 4¢-mixing sequences.
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APPENDIX 5.A

Proof of Theorem5.2.1. Notice that in (5.2.5) the value of the
eff* does not change if we multiply the nonlinearity by a constant.
Thus we maximize the numerator assuming that the denominator has
some fixed value. Using (3.1.20), this is equivalent to maximizing the fol-

lowing expression

HW) = = [y(@)] (2)dz—p| [¥¥@)f @)dz + 9] [19(z)1f (=) ]
(5.A.1)

where p is a Lagrange multiplier. We will show that (5.A.1) is maximized
by

1 ’

Yolz) = [~ LIEL ()] (5.4.2)
f(z)

where wand mg(z) were defined in (5.2.9) and (5.2.10). Let ¥,(z) be

some other nonlinearity from the class ¥ . Define the following variation

T = = [[(1-60o(z) + e91(2) ] (@)dz — o] [[(1-E0(z) + ev1(2) | 'f (2)az

—00 DO

w9 [1a-61%0@)| + lv(z) 3 f ()dz | (5.A.3)

-0

where £ € [0,1] . Notice that J(0) = H(¥q) and J (1) = H(¥,) . By manipu-

lating (5.A.3) we can write it as

J(& —JO) =1+ I+ I3 : (5.4.4)
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where

sf (= 7'(z) - 20%(=)f (=)

-2y [ 1%ol(e)1 £ (2)dz Jmo(a)f (@) [va(=)—vo(z) Jaz  (5.0.9)

]2:—2579[!;17#0(2) (2)dz ] féwl( ) = %) |} f (z)dz

- [mo@) i) - vo(@) ] 1 (z)dx} (5.4.6)

9 [Hv@)] = [vo@) 1S (@)az | (5.47)

To prove that J(0) is the maximum it is enough to show that
J(&§) —J(0)< 0 or that I; 0 for 1=1,2,3. From the definition of mg(z)

in (5.2.9) notice the following:

[Yo(z) | = Yolz)mo(z) (5.A.8)

imo(z) | =1 (5.A.9)

If we multiply (5.A.2) by my(z)f (z) and integrate and also use (5.2.10),

we obtain

fWo ()i f (= =21_[ ff z)dz — MfTTo )d-’r] é%
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(5.A.10)

Substituting (5.A.10) in the expression for 7; and using (5.A.2), we get

zero. On using (5.A.8), the term 7/, becomes

I = ~2go] [ 1wol2) £ (2)dz ]| [{Iva(@)] =~ mola ()] (2)da

(5.A.11)

Because of (5.A.9) we have |y;(z)| = mg(z)¥y(z) and thus for, p > 0, the

/s becomes nonpositive. Finally for, p > 0, the 73 is clearly nonpositive
too. If we define p =% then (5.A.2) becomes the same as (5.2.8).

In order to complete the proof of Theorem 5.2.2 we must show that

the equation defined in (5.2.10) has always a solution. Using continuity

arguments it is enough to show existence of two points u; and uz such

that S(u1)S(usz) < 0. Notice that, as w - 0, then —:L—-fa(%%—a +oo

except on sets of f —measure ZEro. Thus

mo(z) > sgn(— -f—gf)l) = —sgn(f'(z)). Substituting in (5.2.10), we find

S(O)= - =—— <0 (5.A.12)

Now using (5.A.9) and the Schwarz inequality, we have

oo oo

S @mzye | < 1@ e < [ [( L8 @a = 100 <

(5.A.13)

where I(f) is Fisher’'s Information. Thus the second term in (5.2.10) is

bounded by 'r[[(f)]’6 and as u - +o we have that S(u) » +» or it
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becomes positive. And this concludes the proof of Theorem 5.2.1

E'ristence of 5. In Theorem 5.2.2 we assumed that there exists an

Ty, with 0< z,<x,, that satisfles (5.2.14), where u satisfies (5.2.10).

. g'(zy)
Now, because S{(0) < 0, if we show that S( — 7 (z.) ) > 0, then there
1
. . . . . 9'(331)
exists a solution to (5.2.10) which will satisfy 0<pu<— PIED) and,
i

because of the monotonicity of - g(z) we will have O=z,=<z;. To

g(z)’

prove this, notice that the locally optimum nonlinearity for the f,(z)

defined in (5.2.11) is

(z [
- for 1z =2z
fole) 9 ) | 1 (5.A.14)
fr@) —g'(%) sgn(z) for |z|=z,
g(zy) ‘
- g'(zq) . .
Thus, for w=-— FIERE we are always in the first case of Equation (5.2.9)
1

and we have

mo(z) = — @ (5.A.15)
Substituting into (5.2.10) we obtain
- g'(zy) g'(z4) I(fs)
S — = - —l1- >
ey ) ey ! L[gw]z”(f)] ’
7 - g(zy) "j

And this proves the existence of z5.
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CHAPTER VL

CONCLUSIONS

This work has concentrated on finding optimum detection and esti-
mation schemes under the assumption of dependency of the observation
sequence. Interesting results are obtained that can be used when the
knowledge about dependency is only partial; for example, when it is lim-

ited to a knowledge of the correlation coefficients.

The principal approach that was used was a min-max approach. Even
though min-max approaches are usially conservative, it turned out that
here they helped us to overcome the problem of lack of knowledge of all
second-order statistics. This 1s very important from a practical point of
view since there exist methods for estimating first-order statistics and
correlation coefficients, but very little can be done for second-order pro-
perties.

For topics for further study we can mention the following: In Chapter
IV, as we have seen, the optimization was done over a larger class of
bivariate densities than the one that one-dependent sequences define.
The main reason was the lack of more information about the bivariate
densities of such sequences. It might be possible to prove that, for one-

dependent sequences, the coefficients of the expansion in (2.2.3) satisfy

%
n= |2"h(z)dz 6.1.1
o _f% (2) ( )

with h{z) a density possibly concentrated on [-%,¥%]. If this is true,

then the least favorable bivariate density will have a much more reason-
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able form compared to the degenerate form it has now. It is easy to see
though that Proposition 4.2.1 will still be valid with a little modification.
Something more interesting would be to solve the same problem for Mar-
kov sequences. We can see that for the case of optimizing nonlinearities
in s, for Markov sequences, we get the same solution as the one-
dependent case. Things become considerably more difficult when the
order of the polynomials is higher. Finally, it would be interesting to find
the min-max solution to this problem, when we make absolutely no
assumption about the form of the bivariate density. In other words, we

have the marginal and the correlation coefficient and nothing else.

All the approaches we have taken were characterized by an a priom:
setting of the class of the second-order statistics. It seems that an
approach which takes into account some dynamical model for generating
the sequences will be more interesting. For example, we can assume that
the noise sequence is generated by the following stochastic difference

equation

N‘n = g(—Nn—l) + W‘n (612)

where g(z) is some nonlinearity and {#,} is a white Gaussian noise
sequence. We could use the efficacy as measure again and try to define
the optimum nonlinearity that will maximize it. Probably (6.1.2) will lead
to some form of difference equation for the determination of the bivari-
ate densities, something that corresponds to the Fokker-Planck equa-
tions for the continuous time case. Using the eigenfunctions of a related
Sturm-Liuville problem, we can possibly have a formal representation of
the bivariate densities involved. Combining all this information, it might

turn out that the optimum nonlinearity has some tractable connection
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with the eigenfunctions of the Sturm-Liuville problem. This approach is
definitely more interesting than the one we used here because there is no
need to define a priori a class of bivariate densities. Also, all of the bivari-
ate densities involved will be used only in a formal way, hoping that at the

end there will be no need to find them explicitly.





