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ROBUST DETECTION OF SIGNALS
A LARGE DEVIATIONS APPROACIT

(eorge V Moustakides
SUMMARY

Robust detection of a signal is considered for the case of i.1.d. observalions
Pollowing an asymptotic but non-ocal approach, the exponential rates of
decrease of the error probabilities are considered as measurce of performance
Under this measure a robust detection structure for the symmetric density case
is derived. this deteclion struclure is a generalization of an existing result for

Lhe local case and is reduced Lo il when the signal magnitude Lends to zero.

RESUME

On considére le probléme de la deteclion robuste dans le cas d' observa-
tions independantes, A | aide d’ une méthode asymptotique nonlocale, on établit
la vitesse de décrotssance exponentielle de la probabilité d' erreur. A partip de
celte mesure, on donne un detecteur robuste pour e cas de densités symef—
triques. Celte nouvelle méthode de detection est la généralisation d' wune
méthode existante dans le cas local, et tend vers cette derniére lorsque le signal

devienl de plus en plus faible.
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_,lllir,l n_IOan](Wo) > "llllx’]“ Tll—logl)"l(.w) (5)
The parameter

is known as the exponential lovel of the test and the rate of

decrease of the probabitity PR} as the exponential power. L is casy Lo sce

that the exponential power can play here the same role as the efficacy in the

local case. Indeed if Ty Mg are the number of observalions required by two

different tests Lo reach the same power, thep we have

—lim Lfiog Pen

Ny Ty ! ) n
Ty = lim - L (6)
. PR
=lim ——Jog ] (y,) T 2
nga Ty 14 ,.2(%/

We now give a theorem that defines the opltimum nonlinearily in the sense of (4)

and (5).

Theorem }. Lel Jolz) and f(z) be lwo densities with Lthe same sup-
port. then the optirnum nonlinearily Yo (z) € ¥, in the sense of (4) and (5) is

given by the log-likelihood

b (2) = 1op L10F)
Vo (z) = log T @)

and 7 is defined in such a way that (1) is satisfied with equality

Proof.  The proof is given in [9. page 158] Aclually we can prove a much

slronger result, we can prove thal Lhe lest defined with Theorem | has the larg-

est exponential power among all Lests of exponential level a and nol only of

those of the form of (2).

We now prescnt a theorem that defines more explicitly the two rates, for a

test of the form of (2), in terms of Lhe two densilies and the nonlinearity y(z).

Theorem 2. Let fy(z) and J1(z) be two densities with the same sup-

port, let ¥(zx) be a nonlinearity which is integrable with respect to
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Jo(z)and f,(z) Let also ¥ be a real number thal satisfles

E\fy(z)} > 7> Eoly(x) (8)

then we have for the two rates that

i = in & [¥z)]
Ao(¥.f ¢} = ~lim L-log PI(¥) = ~log min Eof eV 7]y

n e

A4S ) = —lim

nee T

log Pi(¥) = —log 1:12151 £,f ezl (9)

Froof. The proolis in the Appendix The threshold 7y must satisfy (8) in
order to have exponential decrease for the two error probabilities and validity of
(9). This requirement bounds the possible values of the exponential level. We can
see from (8) that the exponential level is increasing with 7 thus, the maximum
value 1t can take is when 7y = E fy(z)]. For thus value Lhe error probability
under H; has rate equal Lo zero, i.e. we do not have exponential decrease. We

now apply these resulis to the robust detectlion theory.

M. ROBUST DETFECTION.

Let Ny Na,.. be a noise sequence with common density f (z). We would

like to decide between the following two hypotheses

=

(=)

2
{

=N, +5g Sgp€ (—,0] =12,
Hy: X;=N+s, s €[s=) 1=12..
where {X;| is the observation sequence, S¢,§; are assumed unknown, but

s > 0 is assumed known.

Let F be the class of ail symmetric densities thal satisfy the following

€ —contamination model
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S(z)=(1~¢e)g(z) + eh(x) (11)

where O0< ¢ <1 is known, g(z) is a known symmetric strongly unimodal,
nowhere vanishing density and h(z) is an unknown symmetric density. let ¥,
denote the class of all nonlinearities ¥(x) for which there exist a test of the

form of (2) salislying for every f(z) € / the following

Ao¥.S )=« (12)

We would like to find a density f,(z) € F anda ¥,{(z) € ¥, such that

A )= A0 S0 = [0 (13)

and also

Aoy S ) 2 Al S1) = (14)

The right inequality of {13) and the right equality of (14), using Theorem 1, sug-

gest that ¥, (x) is the following log-likelihood ratio

Ji(z+s;)

¥,(z) =log m (15)

for some s;and sg. We now define the density f;(z).
(1—e)g(z) for O<z<x

Ji(z) = (16)
1_
-(’c—nt)—g(:c —ns) for zot(n—1)s sz Sszptns n=1,2,..

where k = g(z¢—s)/g(xg) and x> 5/ 2 is selected In order to have

[/,(z)dz =05 (17)

A typical form of fy(z) ig given in Figure 1. In the appendix it 1s shown that an
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zg always exists and that it is unique and also that fi(z) € F. From the
definition in (i8) notice that ehy(z) = fi(z) — (1—&)g(z) puts all its mass
outside the interval (—z,zg). Let us now see what is the form of ¥, (z) defined

by (15) when f;(z) is defined by (16) and sg= 10,5, = 5.

g(zg—s)
log =——— for z =z
€ g(zq) 0
Y, (z) = |0g-q-(—z-:£L for o=z = ~zg+s (18)
g(z)
g (zg-s)
—log=—————— for ~zgt+s =z
CTED) o

With the following theorem we prove that f,(z} and ¥,(z) is the pair that
satisfies (13) and (14).

Theorern 3. Let fi(z) and ¥,(z) be defined by {16) and (18) then they
satisty (13) and (14).

Proof. The proot is given in the Appendix. As we can see in Figure 1 the
least favorable density f,(z) repeats a piece of length s of the density g(x)
after dividing it every time with the constant k. By taking s » 0 the density

f1(z) tends to the density defined by Huber for the local case [1.8).

IV. EXAMPLES.

As an example we present the Gaussian nominal case. Clearly the robust
nonlinearity ¥, (z) will be linear inside the interval [-zg+s, zg). In Table 1
values of T are given for different values of the contamination € and the
signal s. Table 1l contains the exponential level and the worst case exponential
power for the case s =1 and for different values of 7 and ¢. It is assumed
that the two means of ¥,(z) have been normalized to zero under Hp and to

unity under H; and that 7 takes values in the interval {0, 0.5]. For values of

¥
H
i
i
1
'
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7 In the interval [0.5, 1] the table is symmetric in the following way: the
exponential level at y > 0.5 js equal Lo the worst exponential power at 1 — 7y

and the worst eXponential power is equal to the exponential level.

V. CONCLUSION.

We have presented here a detection structure which is robust to partial
knowledge of the signal magnitude and of the noise distribution function. The
result is asymptotic but non-local The advantage of this approach is that the
robust detector is a likelihood ratio for a specific density and is always non-
trivial, something which is nol true for all existing approaches. It will be
Interesting to see if this approach also applies to the case where the densities

are symmietric only inside an interval around the origin, thus generalizing the

result in {3].

V. APPENDIX.

FProof of Theorern 2. The proof is based on the fact that the Chernoff
bound Is asymptotically correct. Thus if ho(z) and hi(z) are two densities

that have the same support. then we have

hi(z)

llm—logPOI Z log’ ) >0} = log mm fho 179 (x)dz (19)

For a proof see [9, pages 158-1681]. In order now to apply this result to our case,

let ¢ >0 be the constant that satisfies

S e g (2)dr =y (20)

The constant ¢ exists when 7 is between the essential supremum of Y(x)
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and its mean. In our case by assumption we have that fo(x) and f(z) have

the same support, thus using also (3) we have

t essupg¥(z) = essup y{z) = Efyp(z3] > v > Eply(a )l @1

and thus there always exist a ¢ satisfying (20). Now let us define

S (w) = es¥=7l g (1) (22)

' it yi e the probability
Il we apply (:9) for f,(z) and fo(z) it yields exactly (9) for the p

of error P,?(V) with 7 = sc. In a similar way we can prove the second equality.

s
Proof that f,(x} € F.  We first prove existence of an zy> 5 that

satisfies {17). Define as HF(xg) the [ollowing function

)dzr  (23)
H(IO = ffl(I)d.T fg l(r)_lng
where L(z) = g(z-s)/g(x) Because of the strong unimodality of g(z) the
i function L(z) is strictly increasing and thus L(z) >1 for z > s/ 2 Notice
i
that
- > t
e P = 2 50
(24)
1 1
. [ U S
)) dim o Bl = 5 < 55
) Using continuity arguments there exists an x5 that satisfles

B(zg) = 1/2(1—¢). The uniqueness can be easily deduced by taking the deriva-
‘ tive of B (xg), this derivative is always negative for Tg > s/ 2.

To prove now that f;(x) belongs to the class F' it is enough to show that
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Jiz) = (1 - €)g(z) (25)
This inequalily is trivial for the case O<z <z, For Lhe case now

Io+ (n—-1)s <z <zy+ ns itisequivalent, using (*8), Lo

—logg(zo—s) + logg (zg) < “logg(z-ns) + logg (z)
s ns

(26)

and since —logg(z) is convex and £ —ns = xy - s Lthe inequalily in (26) is

Lrue

Proof of Theorem 3. Before proving that f(z),%,(z) salisfy (13) and

(24) we first prove a lemma.

Lemmma 1. Let «(z) be a non-decreasing funclion such that
w(z) + w(—x) is also non-decrcasing for >0 It f(z)€ F, sg<0 and

sy 2 s, then

o I

i [ o @)@z = [ oy, (2))f (z-so)dz

(28)

oa on

w [ ol @)fia-s)dz s [ oy, (2))f (a5 )dz

Proof. We only prove the firsl inequalily since In a similar way we can
prove the second. Nolice first some imporlant properties of Lhe [unction v, {(z)
defined in (18). It is non-decreasing with z , the funclion ¥,(z + ;—) is odd
symmelric non-decreasing and for £ = 0 il is non-negalive. Nolice also Lhat Lhe
density hy(z) puts all its mass on points where ¥,(z) is maximum. Since
¥,(z) and w(x) are non-decreasing Lheir composition is also non-decreasing,

thus
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:/;w(v'r(ﬂ)f(z ~so)dz = [V, (z+s0))f (x)de

< [y, ) (2 )iz (29)

Using (29) in order to prove 1. it is enough to prove the following

£ (¥ (@) rlx)dz > [y, (2))f (x)dz (30)

or by eliminating common terms

£m('¢,(z))h,(1)dﬁ: > fw(w,(z))h(z)d.r (31)

Since hy(x) puts its mass on points where [¥,(z)! is maximum we can see

that (31) is equivalent to

w(M) + w(-M 7

AM L olM) > [y, (2)h(z)de (32)
where M is the maximum valuc of ¥, (x). Nolice now that

:/;w('gb,(:c))h.(z)d.x < _fw(¢,(z+ ;—))h(z)d:z

= [P )+ o(was F)fraran < SHLLOCH). (o

The last equality comes from the fact that ¥, (z+ %) is odd symmetric. The

last inequality is true because w(x) + w(—-z) is by assumption non-decreasing

for z > 0 and y,(z+ —z—) is nonnegative for x > 0. Thus (32) is true.
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To prove Theorem 3 we apply Lemma 1. Selecling w(z) =z we have from
i andii. in (28) thal ¥,(z) has the maximum mean for f;(z) under Hy
and the minimum under F,. This is Important because if we take the threshold
7 belween Lhese two means then we are assured Lhat we will have exponential
decrease for bolh errors for any density f(zx) € F' To show now the inequali-
ties in (13) and (:4) we first show Lhat they are equivalent. Notice that in order

Lo show any of the two, using (9), it 1s enough to show that for any 7 2 0 we

have

fe-rv'(z)j (z~s,)dz < j‘e—"’(n_/,(z—s)d:r

(39)

few'(z)_f (x—sgldz < few'(l)j,(z)dz

By change of variables and using the syminietries of ¥,(z) and f(z) we can

see that

o0

ST (a5 )dz = [ (2 osg)da (36)

—o0

—ag

where sg' = s—s; < 0. Thus the first inequality is equivalent Lo the second. The

second inequality is true by a simple application of Lemma ! with u(z) = e™

And this concludes the proof.
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y ¢ 0.001 0.01 0.1 0.5
0.0 0.000 0.000 0.000 0.000
0.492 0.459 0.318 0.078
0.1 0.005 0.005 0.003 0.001
0.391 0.372 0.258 0.063
0.2 0.020 0.019 0.013 0.003
0.315 0.295 0.204 0.050
0.3 0.045 0.042 0.030 0.007
0.241 0.226 0.157 0.038
0.4 0.079 0.075 0.052 0.013
0.178 0.167 0.116 0.028
0.5 0.124 0.116 0.081 0.020
0.124 0.116 0.081 0.020

TABLE 1.




