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ABSTRACT

] It is shown that Page's stopping time is optimum, for the detection
of changes in distributions, in a well defined sense. This work is a
generalization of an existing result where it was shown that Page's

stopping time is optimum asymptotically.

RESUME

On montre que le temps d' arret de Page est optimum, dans un
sens bien defini, pour la detection de changements dans les distri- 4
butions. Ce travail generalise un resultat existant montrant I

optimalite asymptotique du temps d'arret de Page.
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1. Introduction.  Let us assume that X;,Xz,.. are independent and identi-

cally distributed random variables that are observed sequentially. Let also

X1....Xm-1 have distribution function Fy and X, .Xn+1.... distribution function

F,# Fog. The two distributions are known but the time of change m is .

assumed unknown. Let P, denoté the true distribution of X,;,X;,... when the
change oécurs at m and £, the expectation under this density. With
¥ ={¥in =1} we denote the natural filtration defined by»the sequence
X1.Xz... and with Y - {‘yn.nzof another filtration such that '}',’,’ C ‘f/,,. The
reason for int.roducirig this new filtration bis to allow randomized stopping times.
We extend the measures P, definedon F? to FPrm' defined on ‘ff as follows:

f A€F* then PntA/ Yo} =Putds/ FZ3. 1t A¢¥* but A€ then

PL'{A/ yn] = Pol A/#Y,} for every m. Finally we will assume that given any

two stopping times (s.t.) N, and N and any p, 0<p <1 there exists a
sequence of events A.c %, m=0 independent of U(Nl.Ng.'f"’) such that
Pn'(An) =p for any m and n. If the probability space is not reach enough to
support a randomization of this form we can embed it in a natural v%ay in an
appropriate larger space. From now on for simplicity with P, we will denote

the measures FP,,' defined on

- We define optimality of a s.t. in the sense of Lorden [4]. That is, if N a s.t.

define
Dn{N) = ess sup En{[N-m+1]*/ Yo'y} m =1 (1)
D(N) = sup D (N) (2)

Thus we consider the conditional expectation of the delay over those events .

~ before the change occurs, that favor the least the detection of the change. We

would like to minimize D(N) over all s.t. that satisfy
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EoéNiE?)O (3)
This is a min-max approach, because we try to minimize the worst possible per-
formance. Our goal in the next section will be to prove that Page's s.t. is

optimum in the above sense. Let us first define this s.t. For simplicity we will

assume that Ffg and F; are mutually absolutely continues. Let I(z) denote

the Radon-Nikodym derivative of F\ with respect to Fg, we define the following

sequence of random variables

Tw = maX{Tu_l(X).1) n=1 (4)
Consider now the following twos.t. N2, Np defined as

inf {n:Ty l(Xa) > (2) )

Ng (Np) = (6)
o  otherwise

where u isareal Let Np denote any randomization of the two times, that is at

every instant n with probability p we have Np = N§ and with probability

1-p we have Np = Np. Page's s.t. is defined a little differently here than it is

in the literature. Disregarding the randomization, Np is defined as the first n
for which 7, = max{T,_1{(X,).1} exceeds u. Notice that the two definitions are
equivalent when x> 1 but there isa big difference when - < 1. Clearly with the
old definition we stop at » = 1 but with the definition in (5) this is not the case.
As we will see in the next section there exists a nontrivial range of values 61’ 7
for which u € (0,1]. With the following lemma we give some properties of the

sequence 7, that will be used later.

lemma 1. For any n>wm>1 we have that 7, is an as. nondecreasing

convex function of 7,,, also T, can be written as
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n+l ‘ +
Tn =,21 [1 - Tyt (X;-1)] 1) ()
= =J v
E
where we define T_, =0,1(Xg) =1 and =1,
’ k+1

Proof. The property that 7, is a nondecreasing convex function of T
can be proved by induction and using the definition in (4). To prove (6), we can

see from (4) that

Te = Teal(Xe) +[1 = Teyl(X)]" ()
If we use (7) and induction we can easily show (6).

. L
A very important consequence of the monotonicity of 7, with respect to

Ty, is that onthe event Np>=m thes.t. Np is decreasing with 7,,.,, thus the

essential supremum in (1) is achieved for 7T,,_, = 1. This means that by restart-

ing the procedure at m gives the worst averaée delay. Since we have stationar-
ity this means that all the D,(Np) are equal. This equality is a very common
characteristic of min-max procedures when they try to balance different perfor-
mance measures. As we will see next, it plays an important role for the proof of

optimality..

2. Optimal Stopping Time. Notice ﬁzist that for ¥y >0 we have D(N)> 1.
This is true because with Eo{N} =+ >0 it is not possible to stopat n» =0 a.s.
and thus we will take at least one sample. With this remark we can see that when
129> 0, the optimum s.t. (say N, )is: {stop at n =0 with probability 1~
otherwise stop at » = 1}. This yields D(N,) =1 and Eo{N,} =7. We now con-
sider the case 1 <7y < =, With the next lemma we will show that in order to find

the optimum s.t. it is enough to limit ourselves to a smaller class of s.t. -

Lemma 2. In order to minimize D(N) over the s.t. that satisfy (3) it is

-
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enough to consider only the s.t. that satisfy (3) with equality.

Proof. The proof goes as follows, if Eg{N ] = = we can always find a large
enough integer. K such that if we define N' = min {N.K} to have Eo{N'{=7.
Since N'< N a.s. we also have D(N') < D(N). Thus it is enough to consider s.t.
with finite Eq{N}. If 7 < Eof{ N} <= we can define a new s.t. N' by defining a

randomization at » = 0 as follows, N' isequalto N with probability 7/VEQ§N§‘

and otherwise equal to zero. Again N's< N as. thus D(N')<D(N) but

EofN' = v. And this concludes the proof.

In the following lemma we introduce a lower bound for D(N) which we will

use as our performance measure instead of D(N).

femma 3. For anys.t. N satisfying 0 < EOSNK < = we have that

N=1
Eot Y T
D(N)> =0

) | B Nz: [1 - 7y 0(x)]Y
p2

= D(N) (8)

where we define ), = 0. We have equality in (8) when N = Np.
=

Proof. Let [(A) denote the index function of the event A, then we define
k=1 '
Bn(N) = En{ [N-m+1]*/ Y} = Eof [.ﬁ T YW =m) 7 .., o)
. =m j=m

Notice that in (1) Dn(N) was defined as the essential supremum of B (N).

Since D(N)= D, (N) for every m =1 we have
Eof [1 = Tm-al (Xn-1)]" I(N 2 m) | D(N) =

Eof IV =m) 3 [1 = Ty_ol (Ke)]* :[_TL(X,-) i (10)

k=m
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When N = Np we have equality in (10). This is true because D(Np) = Dm(Np)
for every m and because as we said in the introduction the essential
supremum of B (Np) Ais achieved on the event {Np =2m {N\{Tm-1 =1} Wecan
see that [1 ~ T2l (X,,,_,)]* I(N =m) is nonzero on this event.Summing now
(10) for all m =1 after interchanging summations and expectations and using

(8). the right hand side gives
o0 k_
$ Ef IV 2m) 3 [1 - Tal -] TTLOG) | =
m=l k=m j=m

ol ﬁ ﬁ [1- Tpal(Xm]” T[ll(X)i-

m=1l k=m

Eol 3 [ 311 - Tmal(Xn_)]" Hzm];

k=1 m=l

-1
Eof ﬁ Ti-1 } = Eof ]&: T § (11)
k=1 k=0 )
For the left hand side we have that

1

S Bl IN = m)[1 = Tt (Xn)]" ) = Bof % [1 = Tmeal(Xm)]') (12)

m=1 m=0

The quantity in (12) is less than Eo{ N} thus finite. For N = 1 we also have that

T - metoe)] = (13)
k=0

thus the quantity in (12) is greater than the probability P, {N =1} which is
nonzero since by assumption we have E‘ofN } > 0. And thus we have shown (8).
We have equality for N = Np because, as we said before all the D,(Np) are
equal to D(Np). l

Let us denote by Np Page's s.t. for which x4 and p have been defined in

such a way that (3) is satisfied with equality. In order now to show that this s.t. is

b
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the optimum it is enough to show that among all s.t. that satisfy Eo{N} =7 itis

the one that minimizes D(N). This is shown in the following theorem.

Theorem. Let = >y > 1 Among all s.t. that satisfy Eo{N] =7 Page'ss.t.
Np minimizes D(N) by simultaneously minimizing its numerator and maxim-
izing its denominator. -

Proof. Llet J(N) be the denominator of D(N). We would like to find its
supremum for the class Eg{N] = y. We can see here why it was necessary to
limit ourselves to this class, if we had instead the class Eo{N } = 7, this gives as
optimum N = which is unwanted. In order now to apply existing results, we
consider optimization over the class _E‘OSNQ < 7. Notice that since [1 -z]* <1,
for =0, we have -that 0<J(N)<+v Thus the constrained optimum
J =sup J(N ){ exists. From [3] we then have that there exist a.Lagrange multi-
plier A>0 and a s.t. N, that satisfy: EofN,}<7 A E¢f{N,} -7]=0 and

N is optimum for the unconstrained problem

T=sypt g (1= 12 05))" - (19

and also J = J + Ay. If X =0 then the optimum s.t. for (14) is N, = = which
does not satisfy EofN,} <y thus we have A >0, but then we will have that
Eo§N,| = v. Thus we see that the optimum s.t. for the larger class we have con-
sidered is also optimum for the smaller class E'OIN }'= 7 we had in the begin-
ning. We also have A <1 'because if A>1 then the optimum time for (14) is
N, = 0 which does not satisfy E‘ofN,,f = 7. In order now to find explicitly N,

notice that 2z, = T,_,l(X,) is a Markov sequence, thus we can apply the methods
in [1] and [6]. If we consider that To=2 =1 then J becomes a function of 2,
J(z) is nonnegative because for N = 0 we have J(N)=0. Alsoitis decreas-

ing in z because [1 - T,..J(X,)T is decreasing a.s. in To. Thus J(z) exists



-B8-

for every z and is decreasing. We would like to show now that it is also continu-

ous. This is done in the following lemma.

Lemma 4. 1f z,>2; then J(z) satisfies

J(zg) = J(2)) Sz, — 22 (15)

Proof. TFollowing [8], the function J(z) is the limit of the sequence

Jn(2z) defined by

jQ(Z) =0
(16)
— _ +
T.(z) = Eof [ [1 - 20(x)]" = A+ Toy(max(z(X,).11) ]}
We will show that Jn(zg) — Jp(21) =<2, — z3. We use induction. It is true for

n =0 If it is true for m, using the fact that e* -4 <a —-b for a>d and

that max [a,1] =a + [1 —a]* we have that

jnﬂ(za) = jrwl(zl) =
Eof[1 - 2l (X)) - [1 - 24l (X)]* + max{z,i(X,).1] - max[zzl(X).1] § =

Eof (z, -2zl (X)) | = 2, — 2 (17)

Thus we have proved that 0s J(23) — J(2,) < 2, — zp, which means that J(z) is

continuous.

To find now the optimum st. we consider the tfunction
A(z) =[1 -2]* =\ + J(max(z,1]). We are interested in finding the set of
points for which A(z) is nonpositive. Notice that A(z) is decreasing, thus if
there is a u suchthat A(z)=<0 for z >y then the optimum s.t. is to stop the
first time we have z, = Tn_;l(X,) > 4 and any randomization when z, = u. If
no u exists,then A(z) >0 for every z and then the optimum s.t. is N, = o,

but this last situation is not possible since we have E'UIN,,] =7

-

)

4

)
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For the numerator (say G(N)) we follow a similar approach.\ We consider -

the class Eo{N{=7. The constrained optimization problem has a solution
; : , , -1

because from (6) we.have Eq{7,] <7 andthus G =inf G(N) < IS: EofT;] < oo,
. .§=0

where K is an integer greater than 7. Extending the results in [3] to this case,
we can show as before that there exist a Lagrange multiplier A >0 é.nd a s.t.
N, sat.isfying' EOZ N, f =7 and N, being optimum for the unconstrained prob-
lem |

— Nt

G=i7,1,on§j§Tj—)\§ : (18)
Again assuming To = 2z =1 we can show that G(z) exists, and it is increasing
and nonposmve To show the continuity it is easier than before. From Lemma 1
we have that 7; is an a.s. convex function of Ty thus G(z) will be also convex
and since it is increasing it will be continuous on [1,®). In order now to find the
optimum s.t. we consider the function B(z) = max[1,z2] -\ + G(max[1,z]) and
we look for the set of values for which B(z)= 0. Since B(z) is increasing this
set is of the form 2z > u and thus we'recover again that the optimum s.t. is

Pages s.t. And this concludes the proof.

Remark 1t is very difficult in general to relate explicitly v with u and
the randomization probability p. There is though a range of values of ¥ where
this is possible. Let us consider the case x=< 1. For this case Np is equivalent
(disregarding the randomization) to:{stop at the first n for which I(X,)=>pu i
In other words, given that there is no stop before n we have that Tm =1 for
m <n. Indeed if for.some m we had T, >1 then T, = Tl (X)) > lép
thus having a stop at m, contra&iction. For this case we can compute the

expectation of Np under Py and P,.

- 1
BN = T Pty <i — PP Y =

i=01 (19)
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Thus for 1 < 7= [ Pott{Xy) > 1} ]—l the relation between 7,4 and p is given by

1
Polt(Xy > ul + (1-p)Poll (X)) = 1

7= (20)

For the other values of ¥ the integral equation defined in Page's paper (5] can

be used, but clearly this is a more complicated situation. For large values of ¥

the approximation ¥ = u (see [4]) can be used.

2]

(4]

(s}

(6]
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