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Abstract.- Numerical properties of fast recursive least-squares algorithms are
important because of the use of these algorithms in various adaptive schemes. In
this paper, we first investigate how numerical errors propagate in unnormalized fast
transversal filter (FTF) algorithms aﬁd show how they create numerical instability,
resulting in two different modes of divergence. We then try to correct these bad
numerical properties by introducing some redundancy in the equations of these
algorithms. Because the obtained algorithms are still unstable..but less unstable
than the original algorithms. we use the redundancy to derive a stabilized FTF
algorithm. The same method is alsa applied for the stabilization of normalized fast

transversal filter (NFTF) algorithms. The stabilized NFTF algorithm has a compu-

tational cost comparable to the original unstable algorithm .
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I. INTRODUCTION

Recursive least-squares identification algorithms play an increasing
role in many adaptive control and signal processing problems. Adaptive and
computationally efficient versions of the recursive least-squares (RLS)
* algorithm |1| have recently been implemented under the form of fast
transversal filters (FTF) |2|..|7|. These fast least-sdquares algorithms
require a number of arithmetic operations proportional to the number N of
parameters to be estimated, which is comparable to the suboptimal gradient

type techniques. A useful classification of the different existing fast

sequential least-squares algorithms can be found in |B|.

Unfortunately, all these FTF algorithms are known to exhibit an unstable
behavi;ur and a sudden divergence due to the accumulation of round-off errors
in finite precision computation. This numerical instability remains the main
drawback of these algorithms and certainly limits their extensive use in
- adaptive control or signal processing applications. Thereforé, a better

understanding of their poor numerical properties and modifications to improve

these algorithms are of great interest.

Several techniques have been proposed to overcome the problem of
instability. In |6], |9]|, the algorithms are applied in spite of their
numerical instability, in parallel with a detection procedure that tries to
detect the divcrgence as soon as possible in order to reinitialize their

internal variables before the sstimated parameters become significantly



corrupted by the accumulation of numerical ‘errors. The algorithm is then
periocdically restarted by using more or less complex procedures. However,
the effect of such reinitializations is most of the time apparent (for
example in the prediction error), especially when small exponential

forgetting factors are used.

This is the reason why other stabilization techniques have been recently
presented [10|, |11]|. They can be understoéd as regularization techniques,
used to stabilize least-squares algorithms (whatever their computaﬁional
organization may be) when the exponential forgetting factor is not compatible
with the characteristics of the input signal (leading to the computation of
ill-conditionned autocorrelation matrices). However, these modified fast
algorithms are always suboptimal in the sense that the identification gain
that they recursively compute with time is no more equal to the theoretical
least-squares gain, thus reducing the tracking capability of the algorithm.
Moreover, since these methods do not try to handle the numerical instability
resulting from the specific transversal structure o? FTF algorithms, they
fail to stabilize these algorithms for specific input sequences (such as

white noise for example). This was confirmed in our simulations.

From a theoretical point of view, the numerical instability of the Fast
Kalman algorithm |1|. |2l has been analytically pointed out in |12| for a

first-order filter and a specific input signal.

The paper is organized as follows. In the first part, we explain a few
surprising facts observed in simulations. For this purpose, the propagation of

numerical errors in the FTF algorithm derived in |8| is investigated. In the



second part, we derive a stabilized FTF algorithm, which coincides with the
theoretical algorithm when no round-off errors propagate, i.e. in the ideal

case of infinite computational precision.

The FTF algorithm, derived in |6|, is briefly recalled in section 2,
as well as the notations we use. Section 3 is devoted to the numerical error
propagation analysis of the fastest FTF algorithms which are shown to be
unstable. The same analysis 1s also applied to these algorithms when computing
the backward scalar residual in a non optimal fashion. The computational
redundancy of these algorithms 1s then used in section 4 to modify and
stabilize the FTF algorithms. We also present the normalized version of this
stabilized FTF algorithm. From a computational point of view, it has roughly
the same complexity as the unstable normaliied fast transversal filter (NFTF)
algorithm, when computing the normalized backward scalar residual in a
non optimal fashion. As illustrated by simulation results given in section 5,
these stabilized unnormalized and normalized FTF algorithms prove to be
stable for various input sequences and exponential forgetting factors (no

reinitialization is needed) when using floating point or fixed point arithmetic.



Il. THE FTF ALGORITHMS

The notations used in this paper are similar to those in ]8[, excépt
for the vectors which are now column vectors. The aim of finite impulse
response identification algorithms is to determine the filter parameter

vector HN T which minimizes at each time T the cost :

2

_ T-k _uv
V(1) = A {y(Kk) - Hy o X (K]} (2.1}

"ne~1—

k=0

where A(0¢A¢1) is the exponential forgetting factor, y(T) is the signal to

be linearly estimated, XN(T] = [3(T-1],...,x(T—Nf{r regroups the N last
o N 4T

samples of the input signal x(T) and HN,T = [BN.T""‘HN,{] is the F#lter

coefficient vector. To obtain the known fastest FTF algorithms, we also assume

(prewindowed signal case]
y(T) = x(T-1) =0 for T ¢ G0

The filter coefficient vector HN T is recursively updated in time according

to the classical relations |1] :

- — P
U, = Pn, 71 (™ Cy,1
P _ a7
where eN(T) = y(T) HN,T-1 XN(T]

is the a-priori scalar residual at time T, and C

: N, T the (Nx1) Kalman gain
vector defined as ’

__ a1
CN,T = RN.T XN(T) (2.2)
where
TooTk T
Ry 1 = z A Xy (k) X (k) (2.3)

k=0



is the short-term autocorrelation matrix of the input sequence. Associated
with e:(T), we also define the a-posteriori scalar residual at time T :
T -

N'.I'._X‘N(:F) T T o - - T

T gy (M =y - H

The FTF algorithms compute the Kalman gain vector CN.T (and also HN,T)
using 4 sets of variables. The first set which has been previously defined
is related to the linear prediction of y(T) knowing the N values
{x(T-1),...,x(T-N)}. The second (respectively third) set is related to the
linear prediction of x(7-1) knowing its last N values {x(T-2),40.,x(T-N-1)}
(resp. x(T-N-1) knowing its N coming values {x(T=1),...,x{T-N)}). We denote
it as the forward (resp. backward) variables set. As shown in |8|, the
Kalman gain vector CN,T and its associated variables can be related to the
linear prediction of some specific sequence y(T) knowing {x(T-1),...,%x(T-N)}.
Each set consists of the (Nx1) identified filter coefficient vector (such
as HN,T]'the a.priori and a.posteriori scalar residuals (such as e:(T) and
eN(T]] and the corresponding energy residual (such as VN(Tll. These variables
are summarized in Table 1. For each set of variables, we can derive their

analytical expressions in the same way we did for the first set. For more

details, the interested reader is referred to the references.A

In order to save N multiplications per time step, the dual Kalman gain

vector LN,T defined as :

Ry g Xy (T) (2.4)

is recursively updated instead of the Kalman gain vector CN T As an example,

the FTF algorithm derived in |6| is summarized in Table 2 (where x1 denotes



the 1th component of the vector X = [81,....Xi.... T]. Because its computation
requires about 7N multiplications per time step, we denote it the FTF (7N)
algorithm (throughout this paper, the number of operations is only

approximate ; nevertheless, the general dependency of computational complexity
on N obtained by including only multiplications is sufficiently accurate to

permit comparisons between the different FTF algorithms).



Ill. NUMERICAL ERROR PROPAGATION PROPERTIES OF FTF ALGORITHMS

The FTF algoritﬁms are known to exhibit an unstable behaviour and
a sudden divergence, due to round-off noise in finite precision implementation,
whatever the input sequence x(T) and the number N of estimated parameters
are. In fact, one'shoud not speak of the "divergence” of the FTF algorithms
fan algorithm is said to.diverge when the difference hetween'the theoreticél
and computed variables of the algorithm is increésing with time) since there

are actually two different hodes of divergence.

The first mode is well known and occurs when yN(T] exceeds unity (its
theoretical maximum value) shortly before eN[T) becomes negative and the
coefficients of the AN,T' BN,T' CN.T and HN.T filters diverge to infinity
IBI, |9!. It has immediate effects (when X < 1) since the computed a priori

scalar residual EE(T) also tends to infinity.

The second mode is less known and occurs when YN(T] diverges towards

zero togetherAwith the Kalman gain vector coefficients Ci

N, T (1 (8 i < N}. For

this case, because the identification gain vector coefficients become very
small, the tracking capability of the diverging algorithm is reduced and
tends to zero ! In fixed-point arithmetic, the computed Kalman gain vector
PN,T can even be exactly equal to the zero vector after some time |13|. This
mode of divergence is more difficult to detect because no variable escapes
from its theoretical domain of variation :vit is juét as if the algorithm

is slowly "freezing”. We give in section 5 an example where these two modes

of divergence have been observed one after the other.



Let us now show that these divergences are due to the accumulation
of numerical errors in finite precision arithmetic and explain why, for a
given processor accuracy, one mode of divergence is more likely to occur

than—the—othenf—Letﬁw-denotenthe—thaopetieal—vaiue—oi—a—vapiab&e—ai—tha—————————

algorithm, Vv the corresponding computed value and Ay the error between
and ¥ such that ¥ = ¢ + Ay. Let us consider the FTF (7N) algorithm of
Table 2 and assume that errors are introduced at some step T = T. of the

0
aigorithm so that :

cN[TD) = aN(Tol + AaN(Tol
YN[TO) = YN(TOJ + AyN(TO)

) BN(TOJ = BN(TOJ + ABN(TUJ

(3.1)
A = A + AA
N Ty T TN N.Tg
B, =B + AB
N Ty N T, N, Tq
c = C + AC
N Ty~ N T, N T,

Let us study how these errors propagate in the FTF(7N) algorithm for T ¥ T0+1.

assuming an infinite precision computation.
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Introducing the scalar variables :

BN(T)

GN(T] =W_—,ﬁ-1 y 0
AaN[T-1)

GN(T] =2—GT\I-(T.]——"‘1‘1

(3.2)

(3.3)

and following a first order error analysis, after some standard but tedious

calculations (summarized in Appendix A), the error propagation equations

can be written in a state-form as :

Z(T) = F(T) E(T-1) + V1(T] + V2(T]
e T
Aa, (T) Ay, (T) Ao, (T)
where 2(T) = NT] '-—N—T-j— - ﬁr‘
Y Tn( N
1 2 (-s0em)
2 N
F(T) = 1 ‘
36N[T) GN(T) + E-GN[T) [3+6N[T])
0 ANt ey g
V1 (T) = ZGN[T] V1 (m . with V,I (T) = SD + gm—— - ;;I—(T—] ABN(T]
: N+1,T
1 eN(TJ P
Vo(T) = 2v,(T) . with v,(T) = rwed) Aey (T)

L1 ABN{TD] i AyN(Tol ) AuN(T

0 2 BN[TO] yN(TO] aN(TO]

0

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.8)
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We first make the following hypothesis regarding the computed identified

and the (N+1]th component CN+1 of the

filter parameter vector A Ne1, T

N, T
computed (N+1]th order dual Kalman gain vector CN+1 T

. - “N+1
Hypothesis (H1) : there are no errors on AN,T and CN+1.T for T » T,
This hypothesis implies for T ¥ T0+1 :
P _ N+ _
AeN(T) = ACN+1,T =0 (3.10)
so that the error propagation equations (3.4) reduces to :
Z(T) = F(T) 2 (T-1) + V1(T] ' (3.11)
o
where now V1(T] = 230 GN[T] . - (3.12)

Lst us consider the trajectory of the state vector Z(T) in the state space

Rz. In practice, we can always assume that the input sequence x(T) satisfies :

aN(T] < (2x) aN(T-1] for T 5 Ty

and
there exists € » 0 such that BN(T] y A(1+g) BN(T-1) for T 3 TU*1

{T) and §;(T) defined in {3.2) and

As a conseguence, the scalar variabies GN N

(3.3) satisfy :

0 ¢ e GN(TJ (3.13)

and 0« ST € 1 (3.14)
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and the four entries of F(T), according to their definition (3.6}, are
positive real scalars (usually since dN(T] It uN(T—1] and BN(T) z BN(T-1),

we have Gﬁ[T) > 1 and GN(T] el

If we now define two sectors Sp and Sn oFIRz as :

Sp= {8 = [uv:]T/u y 0 .and v » 0}
- (= T/ ug 0and v 0}
S, = {g = EJ\a v N
and 1f we assume :
EHT-1)E S, end 55 ¥ 0 (3.15)

then, according to (3.13), (3.14) and (3.11), (3.15) we have :

F(T) E(T-1) & Sp and E(T) € Sp (3.186)

If now ||+|| denotes the following nom :
=l = 502 + 4uv + v far any £ = [u \BTC R?
then after some long but straightforward calculations, we can show that |13| :

I=mI% 5 11« 5 6y (M} [lET-1]% for T 5 T+ 1

According to (3.13), we thus have :

||E(T]||2 » {1+ % e} |IE(T—1]||2 for T ¥ T+ 1 (3.17)
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Similarly, it can be shown that :

"if E(T-1) & Sn and 8g ¢ 0, then E(T]GE.Sn and (3.17) is also verified” (3.18)

' This demonstration is sketched in Figure 1. From (3.16), (3.17) and (3.18),
we conclude that the system in (3.11) is unstable. The FTF (7N) algorithm is
thus unstable with respect to numerical error propagation. Moreover, the

mode of divergence of the algorithm depends directly on the initial errors (3.1)

More precisely, if at time TU :

. E[TU]€; Sp and Sq ¥ 0, then Z(T) diverges in the sector Sp i.e.

W rre L, T e
(in fact.17N[T] diverges to infinity until'sﬁtT) {cf. Table 2) becomes

negative, which causes'?N(T) to be also negative)

This is what we called the first mode of divergence.

. E[TO)GE:Sn and 8g & 0, then E(T) diverges in the sector S, i.e.

;&(T] 0, , Gk(T) >0+

(since, according to the equations given in Table 2, the computed variables
EN(T] and V&IT] are always positive scalars as long as'sﬁ(TJ does not

become negative, which is the case here)

This is the second mode of divergence.
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If the hypothesis (H1) is now extended to :

1 . A ~ N+1 ” ”
Hypothesjs (H2) : AAN,T. ACy,q,7 @re "small” with respect to
Ao, (T) -
SO and _EETTT for each time T » T0

then, it can be shown |13| that the previous result is still valid. Let us
simply note that (H2) is satisfied in practice : if at time Td, Vh[Td]>1
(or BN(Td) < 0), i.e. AYN[Td] >> 0, it is well known that the computed

identified filter parameter vectors KN T and N.T . are not significantly
*'d *'d

corrupted by round-off noise (with respect to ?N[Td]. E&(Td]J. as 1s

illustrated by the reinitialization procedures taking'ﬁh T -1 as initial
*'d

condition |6|, |9|.

The results presented above have been verified in simulation. The two
modes of divergence have been observed corresponding to round-off errors
on aN(TDJ and BN(TUJ that are positive (E(TOJEZ Sp, S ¥ 0) or negative
(E(TU)Ei Sp 8g ¥ 0) [13|. We have thus shown that the FTF(7N) algorithm
of Table 2 was unstable with respect to numerical errors, the mode of
divergenpe depending on-the values of these errors. In fact, the same analysis
applied to the FAEST(7N) algorithm |4|, |5| (which computes YN[TJ"1 instead
of YN(T]] shows that this algorithm has exaétly the same numerical properties

as the FTF(7N) algorithm |13].
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The previous results (in particular, the inequality (3.17)) are true
whether or not aN(T] is assumed to be computed with a finite or an infinite

precision (i.e. AaN(T) =0 for T TO).Thus a natural way to try to improve

the robustness of the FTF algorithms 1is to try to campute the two energy
residuals YN(T] and BN(T] in a better way. However, the computation of BN(T]
considered alone is much more unstable than the computation of YN(T]. This

is the reason why the relation of Table 2 :

P _ _ “N+1
is replaced by the N-terms convolution :
rPm = xa-v-n -8 T xm (3.20)
N N,T-1 N *

thus avoiding the computation of BN(T]. This algorithm is now denoted as
the FTF(7N+N) algorithm since (3.20) now requires N additional multiplications

per time step. In fact, when the architectures of the signal processor is
optimized for convolution, it is much more easier (and sometimes faster !)

to compute (3.20) than (3.19). Unfortunately, the same analysis as before
shows that this FTF(7N+N) algorithm is still numerically unstable, but less
unstable than before (the key characteristics of the F(T) matrix in (3.4)

are not modified). This appears clearly on simulations.

This is the reason why we propose., in the next section, a new method
to stabilize both normalized and unnormalized FIF algorithms in order to
make them suitable for practical implementation and contribute to the

extension of their application fields.
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IV. STABILIZATION OF FTF ALGORITHMS

It is widely known that two independent facts can cause the instability
of any exponentially windowed least-squares identification algorithm |6|, |11|.
First, if the exponential forgetting factor value A is not compatible with
the inpuf sequence characteriétic% (possibly time-varying) then the algo-
rithm can be unstable, independently of the way it is implemented (recursive
least-squares, FTF algorithms, ladder algorithms...). Sufficient conditions
for a safe choice of the exponential forgetting factor value have been
estimated in |11|. A second fact is that for some least-squares>algorithms,
round-off errors accumulate until the algorithm diverges. As we have shown in
the previous section, this is the case for the FTF algorithms but it is not
true for the recursive least-squares algorithm, iF_it is correctly impiemented
110[, or for least-squares ladder algorithms |12|. These two facts prevent
the wide uae.of FTF algorithms. However, we have to distinguish the first
fact which is common to all exponentially windowed least-squared identifica-
tion algorithms and which can be overcomed by taking a better value for the
gxponential forgetting factor A from the second (which is the major drawback
of FTF algorithms only). Gur goal here is to resolve the numerical instability
of the exponentially windowed FTF algorithms, assuming implicitly that the
exponential forgetting factor value is compatible with the characteristics

of the input sequende.

For the sake of simplicity, we shall only consider the case of the

FTF(7N+N) algoritbm discussed previously. However, it is quite obvious that
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our method of stabilization can be easily extended to any FTF algorithm in
which the backward a-priori scalar residual rﬁ[T) is computed according
to the convolution (3.20) of the backward transversal filter.BN T with the

input sequence x(TJ.

Indeed, the stabilization of any FTF algorithm cannot be efficient when
there is no way to "measure” the givergence of the computed algorithm (with
respect to its theoretical behaviour), allowing with some adequate feed-béck
to correct the erroneous variables. Now, if we add the computation of the
backward energy residual BN[T] to the previous FTF(7N+N) algorithm, we
introduce some redundancy in the algorithm. We can then compute, the "control

variable” EN(T) defined as :

- P = .y SN+

EN(T) = T (T) + A By (T-1) Cy g ¢ | (4.1)
e - =

- _ Ay .= T - ~N SN N

EN(T) = {x(T-N-1) - By 1_, XTI} ¢ AB(T-1) {Cy 1 4 * Ra(T=T) AN,T_1}

= FlAy,7-1 % By, 11

(93]

) (4.2)

from the equations of Table 2. As before.jﬁ denote the computed variable
corresponding to the theoretical variable y. According to (3.19) and (3.20)
this control variable E&[T] is exéctly equal to zero when the equations of
the algorithm are propagated with an infinite precision (EN[T) = 0). In
fact, computer simulations show that IE&(T)I grows exponentially with time.
Instead of using EN(T] in a passive way to detect the divergence of the

algorithm [EN(T] acts sooner than VN(T]]. we propose now to use this control
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variable to correct the other computed variables and prevent any divergence.
Having computed, at any time T, a control variable EN[T) different from zero,
there are multiple ways to correct the variables of the algorithm. This is

~ the reason why we need to state clearly the modification brought to the
original FTF(7N+N) algorithm. This modification can be viewed as a way of

implementing the following procedure :

At each time T, given the previously computed filter parameter vectors

AN,T-1' BN,T—1' CN,T-1 and thelr corresponding energy

residuals EN(T-1J. EN(T-1].7 (T-1) and
) N

having computed the control variable E&[T) (non equal to zero
because of round-off errors),

P - -P
replace {AN,T-1; eN[T]} and {BN,T—1’ rN(T]} re;pectively by

'{A'N,T-1’ eZET)} and {B rz'(T)} where :

N,T-1°

Py _ 4y _ pa¥ _ .
eN(T] = x(T-1) AN.T-1 XN[T 1) (4.3)
rOIT) = x(T-N-1) - BT . X (T) (4.4)
N N, T-1 "N
and where the (Nx1) transversal filters AN T-q @nd
B& T-4 Or® obtained by minimizing the quadratic error
criterion :
W (T) = A(A? o W L (A -A )
N N, T-1 N,T-1 N,T-2 N,T-1 N, T-1
+ A(B! B R (8! -8B, . )

N, T-1  °N,T-1 N,T-1 "°N,T-1 N,T-1

v o gMZ (4.5)



-10 -

where p is a given strictly positive scalar and
E&[T] is defined as the control variable E&[T]

__except iE_ggpends on the modifiedrfiltar parameter

' ' .
vectors AN,T—1' BN.T-1 :

Eq(T) = FIAL =03 Bl 1 y) (4.6)

N, T-1 N, T-1

where the function f(A;B) has been defined in (4.2),

Since the theoretical autocorrelation matrix RN T is positive definite, minimi-

’ ’
zing the cost W\ (T) with respect to AN.T-1 and By ;_4 can also be viewed as

. — . ’ —
minimizing a norm betwsen AN.T-1 and AN,T-1 on one side, BN,T-1 and BN,T—1 on

the other side, but penalizing also this minimization by the variable g&(T]
which we like to be small. Speaking in a different way, the modified transversal

' L} y ]
filters AN.T-1 and BN,T-1 have to minimize the control variable EN(T), but

staying also close to the initially computed transversal filters KN T-1 and

BN T-1 respectively, the closeness being relative to the input x(T). According

to (4.68), we verify that, in the ideal case where the algorithm is propagated
with an infinite precision, the modified procedure stated above does not change

' = ’ =R ’ _ = =
the algorithm since AN.T-1 AN,T—1' BN,T-1 BN,T-1 and EN[T] EN(T) £ (T)

If we now define the scalar variable :

(4.7)
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then, the function f(A;B) defined in (4.2) can be written as :

. .l:;\l(T-1)AN{x[T-1J-ATXN[T~1]}
(4.8)

f(A;B) = {x(T-N-1) - B X (T)} + AB (T-1 CN T-1

Since f(A;B) is linear with respect to B but non-linear with respect to A, we

next linearize f(A;B) with respect to A, around A= A . The linearized ap- -

N, T-1
proximation of f{A;B) takes the form :

f[A;B]Z{x[T-N—1]-BTXN[T]}+AB (-1 +k (T-1)aN o P

N, T-1

- A (4.9)
k (T- 1)AN - 1( ] X (1-1)

Using this equality for expressing E&(TJ in the cost w (T), we can easily
1] .
express the minimizing filters AN T-1 and BN,T-1 in terms of AN T-1° BN.T-1

and some other (theoretical) variables |13|

B.N.T—1 = BN.T—1 -p E&[T] CN.T _ (4.10)
- A - - T - ' =P
NT-1 = AN,T-1 p k (T-1) N T-1 E (m C -1 P kN[T 1) EN(TJQN(T]dN,T—Z
(4.11)
where :
21 -1 =T
dy 1 =% Rat b...01] (4.12)
Transposed and convolved with the input sequence x(T) and according to the
definitions (4.3) and (4.4), the relations (4.10) and (4.11) give :
P! _ =P _ 1 _ ,
rN(T] = rN[T) p[;aTTT 1) EN(T] {4.13)
P! _ 1 _ ,
eN(T] = (1- pk (T- 1]CN T- 16 (T))e (1)- pk (T- 1]A L——TT—TT 1]£N(T]

(4.14)



-21 -

Since the only "measured” variable is E&(T]. while Eﬁ(T) is unknown, we have
to use relations (4.13) and (4.14) to express E&(T]. given in (4.6) and (4.8),

in terms of E&(T]

2
o 1 i — 22N 1
g (T) = (1 °(§§T?T 1)+ gk (T-1) AN.T-1‘?§TT?TT 1
-N = 2N P
¢ 20 By g Ry(T-1% € 1y Ty
- 2 N —p._.2. 1=
o RyT-nZ L BmA R (4.15)

In fact, it can be shown that the terms'including dN T in relations (4.11) and
(4.15) can be neglected, without any harm to the algofithm. For the theoretical

~

variables YN(T). YN{T~1]. CN.T and CN,T-1 used in the previous relations, we
now assume that the variables of the stabilized algorithm, once corrected
using the modified procedure stated above, are a good approximation of the

corresponding theoretical variables. Thus, the theoretical variables at time

(T-1) can be approximated according to :

Co71 T Cyo1oq (4.0
and
Y (T-1) 2 Y (T-1) (4.173

In order to save one division per time step, we can also note that :

- BAT-1) B (T-1)
o (T-1) = — - N

- N
N EN{T"1] GN(T'1]

Yy (T-1) = x“”;NtT41)
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If now CN+1 T denotes the (N+1]th order dual Kalman gain vector computed

P -
f N :
rom AN,T-1’ eN[T] and CN,T—1
0 , 1
. ey (T)
c, = - —_— (4.18)
NeTL T - Xa (T-1)
c N AL
N,T-1 N, T~1
] ’
then, assuming AN,T-1 énd BN.T—1 close to their theoretical values AN,T-1 and
BN,T-1’ we obtain :
— - - h—
Cn, T By, 7-1
_ R~/ “N+1
. © SNt T Gver .
I -
_B'
N,T-1 .
- _ N1 '
< CN+1,T CN+1,T . (4.19)
1
- Substituting this expression of CN T in (4.10), we obtain :
, -
E!N,T-’l BN,T-1
= 1 - ] ~|
” EN*1' . P EN(T) CN+1,T (4.20)
PEN+1,T N
-1 -1
e ) L —

The theoretical energy residual YN(TI can also be approximated in terms of
7N{T] and E&(T) using (4.18). However, in practice the same results can be

obtained when it is simply assumed that :

Yy (T) = VN(T] (4.21)
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We have summarized in Table 3 the complete set of equations for the
stabilized FTF algorithm, in which the transversal filters AN T-1 and BN T-1

and their corresponding a-priori scalar residuals are corrected at each time T,

“in reration to—the numerical errors*measuredwthrough*the"control~variab1e'ENFT}r—*

For notational simplicity, all computed variables are denoted as the cor-

responding theoretical variables.

Computer simulations have clearly shown that the correction Of-KN,T-1 does
not contribute much to the stabilization mechanism : the algorithm is nume-
rically stable whether we use AN,T-1 or KN,T-1' This confirms the experi-
mentally known fact that the computation of AN,T—1 is numerically stable
while the one of BN,T-1 is unstable. Hence, the relation (4.11) can be skipped,
thus reducing by N the number of additional multiplications required at each
time step. With respect to the classical FTF(7N+N) algorithm, the additiocnal
complexity essentially comes from the relation (4.20} giving B.N,T-1 in terms
of E&,T-1 and EN+1,T' requiring (2N) multiplications per time step. This is
the reason why the algorithm of Table 3 is denoted as the stabilized FTF(7N+N+2N)
algorithm. Its complexity is comparable to the one of the Fast Kalman algo-

rithm |1], |3], while its robustness with respect to numerical errors is

much better (cf. section 5J).

The theoretical analysis of the numerical error propagation in the sta-

bilized FTF(7N+N+2N) algorithm seems unfortunately quite complicated. Fortuna-

simulations clearly show this algorithm is numerically stable (cf. section 5).
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In the same way, one might think that this modified algorithm is suboptimal.
We have tried to address this problem using computer simulations by comparing

at each time T, the dual Kalman gain vectors C computed on one side using

N, T
the definition (2.4) (the autocorrelation matrix RN,T being computed recursively
in time according to the classical recursive least-squares algorithm i1|] and,
on the other side using the stabilized FTF(7N+N+2N) algorithm summarized in
Table 3. These simuiations show that these two computed identification gain
vectors are identical (modulo of course the computer accuracy, i.e. 10—7] for

gach time T and different types of input sequences. The algorithm of Table 3

is thus both numerically stable and optimal in the least-squares sense.

Before giving some simulation results showing this algorithm is robust
with respect to numerical errors, we now present briefly the normalized version
of the stabilized FTF(7N+N+2N) algorithm. The numerical properties of NFTF
algorithms are comparable to the properties of the unnormalized algorithms |6|.
They are thus unstable with respect to round-off errors and it 1is interesting
to apply to the normalized case the stabilization technique used before. In-
deed, the simplest way to obtain a numerically stable NFTF algorithm is to
"normalize” the relations previously presented, using the derivation of |B|.

It can be shown |13| that the relations (4.10) to (4.14) can be included into
the NFTF (11N+N) algorithm derived.in |6| {in which the backward a-posteriori
normalized scalar residual ;N[T) is computed using the normalized version of
the convolution (3.20)) without increaéing significantly the computational Cpst
of the stabilized algorithm. The reason is that it is possible to bypass the

computation of the corrected transversal filters A& T-1 and By

N, T-1 by directly

expressing AN T and BN T i.e. the normalized versions of the [N+1]th order
T - T . -
vectors [] Ay, and L-BN,T 1]', in terms of Ay, 7-1 @nd By ;_, respec-
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tively, modifying only some multiplicative coefficients in the usual relations.
The stabilized NFTF(11N+N) algorithm, derived in |13|, is summarized in Table 4.

All computed variables take their values in [}1. +:]. Since the computations

of AN:?' éN:T’ EN}T and~éN+1:Trare—not basically modified, -the additional_ _._
computational cost due to the stabilization procedure is independent of the

number N of estimated parameters, which is a very interesting feature, and is
roughly equal to twenty multiplications per time step for the computation of
the control variable EN(T). This is the reason why this stabilized algorithm,
like fhe original unstable version (obtained by taking p = 0 in the equations

of Table 4) is denoted as the stabilized NFTF{11N+N) algorithm.

We now briefly comment in the next section some of the results obtained
in simulating the normalized and unnormalized stabilized algorithms of

Tables 3 and 4.



-26 -

V. SIMULATIONS

In this section, computer simulations are presented in order to verify
the results previously stated. These simulations have been conducted using
1877-FORTRAN with 32-bit single precision, floating-point arithmetic on a
VAX 11/750 minicﬁmputer system under a VMS operating system. These results
are particularly interesting when the stabilized FTF (or NFTF) algorithm is

compared to the classical FTF (or NFTF) algorithms.

The parameter py used in these simulations is the one defined in |6| to
initialize the FTF algorithms with arbitrary initial conditions (here equal

to zero) so that

The integer W also denotes the "observation window” of the algorithm and is
chosen as a multiple of the number N of estimated parameters, so that the

exponential forgetting factor value A computed according to ¢

is then related to the number N.

As is noted in section 3, we now give an example showing both modes of
divergence. The FTF(8N) algorithm given in [6| (it is very similar to the
FTF(7N) algorithm summarized in Table 2, except it recursively computes the

Kalman gain vector C instead of the dual Kalman gain vector C

N, T N.T] has been

simulated for N = 10, W = 10N, g = 0.1 and a centered white noise with unit

variance as input sequence x(T).
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Let us point cut that these selected parameters, as well as the input
signal x(T), can be considered as "favourable” since the exponential forgetting
factor value X is, with respebt to N, close to unity (since W is much larger

than N) and the input signal stationary, with the identity as autocorrelation

matrix. In spite of these conditions, we can see on Figure 2, where wc havo

plotted the value of the energy residual YN(T) versus time T, that YN(T) becomes

strictly greater than its theoretical maximum value, i.e. unity, three times
between T=1 and T=4000 (each one of these times 1s followed by the reinitiali-
zation procedure presented in |6]), and then suddenly diverges definitely to
zero, elong with the energy residuals aN(T] énd BN(T] (whose theoretical asymp-
totic values are equal to (1—Xf1=100). For this second mode of divergence, we
have not tried to reinitialize the algorithm. With respect to the theoratical
analysis of section 3, we have to note that, since aN(T) and BN[T] are here
computed in such a way that the state vector Z(T) does not belong to SP nor

to Sn (the numerical errors on uN(T) and BN(T] are of opposite signs at each
time T), the sequential occurence of the two modes of divergence of the

algorithm shows the importance of "local” conditions, i.e. the value of

aN(T). YN[T)... at time T, 1n such a case.

As is noted in section 3, the substitution of the convolution (3.20) to
equation (3.19) for the computation of the backward a-prilorl scalar resldual
rz(T) greatly improves the robustness of the FTF algorithms with rospect to
round-off errors, without however making them numerically stable. We have
simulated most of the known FTF algorithms, in their initial vorsions as well
as in their modified versions (denoted FTF(-+N)) where rZ(T) is computoed
according to (3.20). We give in Table 5 the average number of sampling stops
between two conseccutive divergences of thase alpgorithms, for varlous expo-

nential forgetting factor values A, N=10 and a eentered white noisn with unil
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variance as input signal x(T). Each algorithm is reinitialized when YN(T]
first exceeds unity. We apply the qualification "very unstable" to algorithms
for which the average number of sampling steps between two consecutive di-
vergences is of the same order of magnitude as the number N of estimated pa-
rameters. It is interesting to observe that even though the Fast Kalman (10N)
algorithm |1|, |3| has a higher computational cost, it does not have a better

'

robustness with respect to round-off errors.

We now compare the stabilized FTF(7N+N+2N] algorithm of Table 3 with the
classical FTF(7N) and FTF{7N+N) algorithms, for N=500, W=3N, p=10 and a
centered wﬁite noise with unit variance as input signal x[T); We point out that
the exponential forgetting factor value A is, with respect to N, very small
and, in particular, very inferior to the minimal values estimated in [111.
Observing the values of YN(T) computed by the FTF(7N)} algorithm |6| and
plotted Figure (3.a), we see that this algorithm diverges very quickly, even
before having reached its stationary state. As a consequence, it cannot be
used in practice with such a value of X. Iﬁ Figure (3.b), we give the values
of EN(T) and YN[T) computed by the FTF(7N+N) algorithm. This figure glves a
typical example of the exponential growth of |EN(T)| which is only used hore
to reinitialize the algorithm at the first time where |£N[T]| > 1, 1.&..hmfurn
the estimated parameters HN,T are too significantly corrupted by round-off
errors. The comparison of Figures (3.a) and (3.h) clearly demonstrates the
spectacular improvement of the average number of sampling steps between two
consecutive reinitializations when the FTF(7N+N) algorithm is implemented. Thao
Figure {3.c) 1is similar to the Figure (3.h) except it has been obtalned for
the stabilized FTF(7N+N+2N) algorithm derived in sectlon 4. We note again
that the forward transversal filter A is not corrected (i.e. Al = A )

N, T N.T N, T
so that the computational cost of this stabilized algorithm is roughly similar
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to the one of the Fast Kalman algorithm |1|, |3|. The parameter p, weighting
E&(T)Z in the quadratic cost WN[T) defined in (4.5), is equal to unity. In

fact, this value has no importance provided it is not equal (or close) to zero

(we obtain for p = O the previously simulated FTF(7N+N) algorithm). Figure (3.c)
clearly demonstrates that-this stabilized FTF{ZN+N+2N} algorithm-—is—nume-
rically stable : the energy residual YN(T) does not diverge to zero or infinity
while the values of gN(T). plotted in the same scale as in Figure (3.b], cannot
be distinguished from zero. More precisely, IEN(T)| is close to 10—5 at the
beginning of the simulation (N+1 < T ¢ 10000} and then decreases to 10-6,
10-7. i.e. to the accuracy of the computer. This phenomenon shows the stabili-
zation mechanism of the stabilized FTF(7N+N+2N) algorithm. Since the input
signal x(T) is in fact périodic, the period being 10000 samples of a white
gaussian noise signal, the periodicity of YN(T] observed on Figure (3.c) shows

that the algorithm works well from the beginning to the end (the simulation

has been conducted up to T=10B without any problem).

These conclusions remain valid when N is small (N=10, A=0.95) and for
stationary (white noise, autoregressive process...) or non-stationary (speech
sequences) input signals [13]. We have also the same results when simulating
the NFTF(11N), unstabilized (p=0) or stabilizea (p#0} NFTF(11N+N) algorithms

in floating-point arithmetic [13].

Finally, we would like to give one example of how the stabilized NFTF
(1MN+N) algorithm works in fixed-point arithmetic with a 16-bit wordlength.
These normalized algqrithms have been simulated without any particular care,
following simply the equations of Table 4 with p=0 (original NFTF({11N+N)
algorithm |6|] or p=1 (stabilized NFTF (11N+N) algorithm). Each computed

variable takes its values in [-1 +i] and the simulated accuracy is close
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to 10_5. The simulations have been done for N=10, W=2N (A=0.95!), p=1

and a centered white noise of variance 0.9 as input signal. We have plotted

in Figures (4.a) and (4.b) the values of the normalized control variable

1/2

A
£y (T) [13], and of v, (T) for the original NFTF(11N+N) algorithm and the
N N

stabilized NFTF(11N+N)} algorithm respectively. Figure (4.a) confirms an
already knownlfact {14] : the NFTF(11N+N) algorithm does not work when the
éxponential forgetting factor value A is strictly less than unity for a
coding dynamic of 16 bits in fixed-point arithmetic. Indeed, all variables
diverge towards zersg, as well as gN{T). In particular, the nommalized Kalman

A
gain vector C
4

N T also diverges towards the zero vector (for an accuracy close

to 10 , eN,T is exactly the zero vector after some time !). As a consequence,

this algorithm has approximately the same properties as a well-known suboptimal
gradient type aigorithm. Oon the contrary, it appears on Figure (4.b} (where

T is now vérying from 1 to 5000 000) that the stabilized NFTF(11N+N) algorithm

summarized in Table 4 works well. The same results have also be obtained

with speech signals |13l.
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Vi. CONCLUSION

We have First pre§gqted aﬁ§impleripvestiggjjon of the numerical instability .
of the FTF algorithms, which allows us to explain the two modes of divergence
observed in simulations. Then we have derived a new stabilization method,

whose theoretical basis is very simple : a control variable is generated by
introducing an adequate redundancy in the algorithm, and is used to correct,

at each time step, thé computed variables when its non-zero value indicates

the divergence of the algorithm. As we saw in the simulations, this technique
can be applied to normalized and unnormalized FTF algorithms and make them
numerically stable, without modifying their optimality. The additional computa-
tional cost to be paid for the stabilized algorithms is so small (especially

in the normalized case where it is independent of the number N of estimated

parameters) that these stabilized algorithms are attradtive. Overally, the

results given here will help to extend the application fields of FTF algorithms.
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APPENDIX A

DERIVATION OF THE ERROR PROPAGATION EQUATIONS

FOR THE FTF(7N} ALGORITHM

In this Appendix, the error propagation eguations (3.4), (3.8) are derived,
following a first order error analysis from the equations of the FTF(7N)

algorithm summarized in Table 2.

Introducing :
AaN[T—1J
0« eN(TJ =—a—TT—j——\( 1 (A1)
N
and
) XBN[T-1]
0 ¢ eN[T) = -_BN_(_TJ_— <1 (A2)

and keeping only first order errors, we obtain from each equation of Table 2

the following error equations :

T .

P
« gy(T) = x(T-1) - AN,T-1

XN(T-1]

Pery _ _ 4aT ) (A3)
Bey (T) = = BAy L 4 X (T-1)
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P
. aN[TJ = XGN(T-1J + YN(T-1) BN[T]
AaN(T] AaNlT-1) AYN(T-1) e, (T) P
—_— = 0 (T) ——— + (1-0(T)) ——— * 2 ——= Ag, (T) LA4)
_ e ___aNlT) N o\ T 1) ... N xN_(IU‘,I_l, ,,,uN_(I_)_ i
kaN[T-1)
. YN+1[T] = —?ﬁIFFT—. YN[T-1)
Using (A4), we have :
Ay (T) Ao, (T-1) Ay, (T-1) e (T)
N+1 N N P
—_— = (1-02(T)) ——=— + 0 (T] -2 Ae (T) (AS5)
Yeq (1) NS R TN N T ay (1) °ON
P o _ AN+1
©ory (T = - B (- Gy g
ArL(T) ARy (T-1)  atht]
N O N+1,T (A)
P 8,(T-1) N+1
r (M) PN BNt T
i Py N+
8T = 1oy, (70 m(T) L) o
P N+1
Sy (M 4 e ML T By (D )
8,,(T) 8, (T) P N+1 Y (T)
N N ry(T) 3N+1'T N+1
S LAl
N ON(T)
AYN(T) _ AYN+1(TJ i AeN[TJ
YN(T] YN+1[T] ON[T)
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Using the previous equalities, we have :

ayy (T (1-62(T) Bay (T-1)  Q4LT) Ay (T-1) . ABy (T-1)
= + + ( - 1)
YN(T) BNlTl aN[T-1) eN(TJ YN(T-1] eN[T) BN[T—1]
e (T) N
-2 N 1 __ N+1,T
N+1,T
b 2
. BN[T) = ABN(T—1] + YN(T] rN[T)
Using (A2), we have after some calculations :
ABN(T} y Aa,, (T-1) AYN(T-1)
= ( - 1) (1-02(T)) ——s— + e (T) (== - 1)
BN(T] . GN(T] N aN(T—1J 9 (TJ YN[T*1]
' N +1
R s 2o - 1) N oy T pel(T) + 2(5 - Ly, 1
B (1) By (T-1) By (1) ay M By (1) N
N+1,T
LAS)

According to relations (A4), (A8) and (A9}, we are now able to compute at
each time T » [T0+1], the relative errors on the energy residuals aN(T).
YN(T) and BN(T]. Let us now concentrate on these numerical.- errors and study

how they evolve with time.
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We first notice (after some straightforward calculations) that if sN[T] denotes

the sum :
AB (T) Ay, (T) Aa (T)
. o _____1_ . ,”N,i e N — N L I _— —
B MR BT Y (T T T T (A0)
then
(2
sn(T} = s,(T-1) = Sq for T ¥ (T0+1J
where
’ ABN(TD) AYN(TOJ AaN(TDJ
BT DR S vilirvan ¢ nutinliorwe ¢ o A4 (A11)
No) NTo N''0
ABNlT-1] . AYN(T-1] AaN(T-1]
Replacing —EETT:TT by {2s, + Y (T + a (1) } in (A8), we obtain :
AYN(T] 2 9&[TJ AaN(T-1] OﬁfT] 1 AYN(T-1]
- - - -1 :
W~ e T am T g Gy o am P
N+1
e (T) At
8y (TY 3y (1 AeyT) wes B v 2Gm " s (A12)
N+1,T
Introducing the state vector :
[_- I
Ao (T) Ay (T} Ao (T)
2(T) = N N N (A13)

aN(T] YN[TJ aN(TJ

L



-36 -

and denoting

(A1)

"
L}
-

R ™)

8y (T) = 20, (T) - 1 , (A15)

we obtain from relations (A4) and (A12), the error propagations (3.4], (hoa)

analyzed in section 3.
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Table |

Definition of FTF variables

definition : : ’
identified a.priori a-posteriori energy
filter coefficient | scalar residual| scalar residual residual
set (Nx1) vector
output P .
‘ HN,T eN(T) eN(T] VN(‘]
variables
forward A e () e (T) o (T)
. N, T N N N
variables
backward B () ry (T) B (T)"
. N, T N N N
variables
Kalman C Y (T) Y (T)
. N,T N N
variables
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Table 2

The FTF(7N) algorithm |6}

+ variables available at time T : aN(T-1]. BN(T-1). YN[T-1]

AN,T-1" B E and H

N, T-1° N,T-1 N,T-1
-+ new information at time T : y(T), x(T-1)

n
Computation of the dual Kalman gain vector CN T

T

P _ _ - -
ey (T) = X(T=1) = Ay o X\ (T-1)
e (T) = v (T-1) e (T)
N N N
a (T) = Aoy (T-1) + e (T) e (T)
N N N N
AaN(T-1]
e T T
0 1
n BZ(T]
CN+1,T - N - Xay (T-1)
CN, T-1 AN, T-1
. -
A, = A, T-1 T BT By rog
n,
P TS
ry(T) = = AB(T-1) ¢ iy o
4"
} P N+1
Oy (T) = 1+ vy g (T) (T Cy )
Y (m)
y_(T] = _.N:l___
N BN(T]

~ P
rN[T} = YN(T) rN(T]
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. "
XSN(T-1) + rN[T] rN(T]

Vv

T Onet,T T ONe,T

EN+1

Filtering of the y(T) signal

EZ(T]

cN(T}

N
By, 1-1 7 T By
S y(T) - HL X ()
oY N,T-1 "N

LoP

= vy (1) ey (T)

v
M, -1 7 T Oy p

L -

-—BN’ T"1

1
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Table 3

A stabilized FTF (7N+N+2N]) algorithm

» variables available at time T : aN(T-1), BN(T—1], YN(T—1)

n
E— - At Byt Cyppe—and g
+ new information at time .T : y(T), x(T-1)
Computation of the control variable EN(T)
T
P = -1) - -
eR(T) = x(T-1) = Ay o X (T-1)
Py T
r (T) = x(T=N=1) = By ', X (T)
)aN[T-1}
Yyoq(T) = o2 Yy (T-1)
AaN(T—1) + YN(T—1] eN(T]
o (™M -1
YT = {0 v (MIng (M 1 * 5oy AvuT-17 T (D
2 N »
K (T-1) = A Ny, (T-1)
N N
P N P N
Ey(T) = ry(T) + AN’T_1KN(T—1]eN(T) *+ AB(T-1) C\ 1+ 4
1 N2 2 4
£N(T) = <1 + p(YN[T) 1) +p AN,T-1KN[T_1] (;ETT:TT - 1)
N 2 N P -1
20 Ay 7-1 KT Gy poq 8y Ey(T)
Correction of the transversal filters Ay 7.4 3nd By - 4
9 9
[a =
AN T-1 T AN, Te
P ' N P -N,N o ,
ey (T) = (1 - pk (T-1) Cy o ,Ex(T)) & (T) - p} Ay, -1 VYR (T £y (T)



0
~ eE(T)
Cnet, T~ . T o (1)
CN: T_1
. f;
N, T-1 . |
_ !
- ]
LV
1 Nel -1
1+pCN+1.T EN(T] &
Prory L Pery o1 ,
vy (T) = o (1) - p (YN(T] 1) g (T)

- Classical FTF algorithm

Pl

N(T]

eN(T] = YN(T—1] e

P'
uN(T] = AaN(T~1] + eN(T] e N[T]
ny
AN, T AN -1 e By iy
() = yo(T) P T
N N N
B (T) = AB.(T-1) + r(T) T (T)
N N N N
- -
Cn, T n s BN, 71
LT et T Bnetyt
DJ 1
ny
By, 1 7 BN, T TN By g
Filtering of the y(T) signal
P T
en(T) = y(T) = Hy 10 Xy (T)
(T) = yo(T) e (T)
En = YN EN
n
HN,T = HN,T—1 - sN[T] C

N, T
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Table 4
A stabilized NFTF (11N+N) algorithm

. 1/2
+ variables available at time T : YN(T-1]

T S AT Byia Sy
+ new information at time T : y(M, x(T-1)
Computation of the control variable gN(T)
P T
en(T) = Ay 71 Xyeq(T)
P _aT
r(T) = By ig Xyaq (T
- A'1/2yN(T—1J1/2 e:(T]
e 2 -1/2
eN(T) = (1 +v7)
- “c
eN(T] = v eN(T)
172 _ “c _11/2
Yyeq (71775 = () vy (T-1)
- 1/2 .
_ 4 =1/2 P
ry(T) = A7y (T ()
- 1/2
c _ _ o2
rN(T) = (1 rN(T])
- -1 1/2
172 _ c
YN(T) = rN(T] YN+1[T]
- - AN -1 | - 12 SNrer | o
gN(T] = PN(T] -1 = eN(T] + A — eN(T]
g+ g+
N, T-1 N, T-1
1/2 172 ENCIA
AMUORED VIS § A L. N
N+1
BN+1
, N, T-1
1 2 N+1
A A
ky(T-1) = [ AT S SA4 SX P R TR kyy (T-1)
BN+1 A1



\

’
+2pKN[T—1] KN(T—1] YN(T-1]

A
EN(TJ

B
EN(T]

' (T) = 1 _.

=p kN[T-1] YN(T-1]

=pB
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Z
1? + pkﬁ(T—1} (

-1/2
&N

N+1 -1/2 _,
N, T-1 YN(T] EN(T]

1 .
YN(T-1]

-1/2 oP
N

(m

(m

1)

=
CNJT-1
X
AN, T-1

1
g EN[T]

Correction of scalar normalized residuals eK(T), FE(T)

P N A ~p ~N+1 /2 o 0172 A
o (T) = (1 - Cy 1 4 E0(TY) e(T) « AL (v, (T-1) Yy (T-11 rgy(m
“pr_ P “1/2 1/2, .B
rR(T) = 2T - (yy(T) v (M%) ggm

Classical FTF algorithm
v = Aoy -2 ;;ET)
eS(T) = (1 + V)12
- _ “c
eN[T) = v eN(T)
1/2
< 1/2 _ “c _
Yyoq (117172 = 8Ty yy(1-1) L
0

- e -1/2" “Nel A 12t

Cyer. 7 = (eptm « 2725 o AT ey |, AV Ze (A 1y
Cn,T-1

Ay - =272 Em A e -T2 Em A Ay |

Ay,T =2 eN N, T-1 L8N en'T) Ay, 1-1 o :
N, T-1
- -1/2 1/2 P
ny(m = 272y T
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1/2
C ~ =2
rN(T) = (1 rN(T]]
12 ¢, 1/2
) YN(T] = rN(T] YN+1[T)
C
N, T
' 1 ° /2 .
= = = {c + A r. (T) B }
C _ -1/2 B N+1,T N N,T"1
0 rN(T] A rN(T] EN(T]
o . CN'T
- _,-1/2 ‘¢ - . ( . -V/2 e B
By, 7 = A (T By 1oy {ry (1) + 2 r (Mg (T}
0
Filtering of the y(T) signal
Pry = y(1) - 1. T (@
eyt T N,T-1 "N
Ho _ = H - oMV P C

N, T N, T-1 N

eN(T]] CN,T
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Tabile 5

Average number of sampling steps

Between two consecutive divergences

For N = 10 and a centered white noise of unit variance as input signal

forgetting
factor A A=0.99 A=0.98 A=0,95
{(W=10N) (W=5N) (W=2N)

Algorithm
FAEST (7N) 1 000 |{very unstable | very unstable
FTF (7N) 1 000 |very unstable | very unstable
FTF (8N) 1 000 |very unstable | very unstable
Fast Kalman (10N) 20 000 9 000 1 400
FTF (7N+N) 30 000 10 000 1 500
FTF (8N+N) 28 000 10 000 1 500
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Figure 1: Numerical error propagation analysis for the FTF(7N) algorithm

(2(T) = FITIZ (T-1) + V{(T))
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Figure 2: YN(T) for the FTF(BN) algorithm

(N=10, W=10N, p =0.1, x(T) white noise]
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Figure (3.a): YN(T) for the FTF(7N) aigorithm
{N=500, W=3N, 1 =10, x[T) white noise)

YN(T]

100

(.81

0461

(.61

0.21

o . J . -

] |
o 25' 000 50 000 ' 75 000 100 GO0




0ad1

0238

0623

0,00

(023

0,38

Figure (3.b): yn(T) and gN(T) for the FTF(7N+N] algorithm
{N=500, W=3N, u =10, x(T) white noise]
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Figure (3.c): Y (T} and & \(T) for the stabilized FTF(7N+N+2NJ algorithm
(N=500. W=3N, ¥ =10, x(T) white noise])
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Figure (4.a): YN[T]‘/2 and &N(T) for the NFTF[11N+N] algorithm with a 16-bit fixed-point arithmetic
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Figure (4.b): Y (T)1/2 and & \(T) for the stabilized NFTF(11N+N) algorithm with a 16-bit fixed-point arithmetic
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