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Extension of Optimality of Well Known

Stopping Times

Given sequentially ξ1, ξ2, . . . , ξn, . . .

{Fn} the corresponding filtration

Given conditional probability measures

{Pn(ξn|Fn−1)}, {Qn(ξn|Fn−1)}
with Qn(ξn|Fn−1) ¿ Pn(ξn|Fn−1)

Hypotheses Testing

H0 : {ξn} statistics according {Pn(ξn|Fn−1)}
H1 : {ξn} statistics according {Qn(ξn|Fn−1)}
Decide between H0 and H1

Stopping Time N and decision rule dN
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Disruption

{ξn}m−1
1 statistics according {Pn(ξn|Fn−1)}

{ξn}∞m statistics according {Qn(ξn|Fn−1)}
Detect unknown disruption time m

Stopping time N

Optimum Schemes

For {ξn} i.i.d.

{Pn(ξn|Fn−1)} = P (ξn)

{Qn(ξn|Fn−1)} = Q(ξn)

ln =
dQ(ξn)

dP (ξn)

Hypotheses Testing: SPRT

Disruption: Geometric prior

CUSUM

Shiryayev-Roberts
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All proofs need {ln} to be i.i.d. and not {ξn}

Given {Pn(ξn|Fn−1)}, {Qn(ξn|Fn−1)}

ln =
dQn(ξn|Fn−1)

dPn(ξn|Fn−1)

If, for all n,

Pn{ln ≤ x|Fn−1} = F0(x)

then

Qn{ln ≤ x|Fn−1} = F1(x) =
∫ x
0 zdF0(z)

and {ln}j
i is i.i.d. under both measures induced by the two

sequences of conditional measures.



University of Patras [ 5 ]

Examples

Finite State Markov Chains

Two States:

P =




p 1− p

1− p p


 Q =




q 1− q

1− q q




L =




q
p

1−q
1−p

1−q
1−p

q
p




P =




p 1− p

1− p p




P (ln = q
p|Fn−1) = p, P (ln = 1−q

1−p|Fn−1) = 1− p
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Generalization:

~p = [p1 p2 · · · ps], ~q = [q1 q2 · · · qs]

pi, qi ≥ 0 and
∑

pi =
∑

qi = 1

Ti, i = 1, . . . , s, permutation matrices

P =




~pT1

~pT2

...

~pTs




Q =




~qT1

~qT2

...

~qTs




Cyclic case 


p1 p2 p3 0 · · · 0

0 p1 p2 p3 · · · 0
... ... ... ... ... ...

p2 p3 0 0 · · · p1




Ti can be time varying.
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AR Processes

H0 : ξn = wn, wn: i.i.d. uniform on [-1 1]

H1 : ξn = αξn−1 + wn,

wn: i.i.d. f1(w) on [−(1− α) (1− α)]

Pn(ln ≤ x|Fn−1) = 0.5ν{ξn : 2f1(ξn − αξn−1) ≤ x}
= 0.5ν{w : 2f1(w) ≤ x}
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Random Walk on a Circle

H0 : {ξn} i.i.d. uniform on unit circle

H1 : ξn = g(ξn−1 + wn), wn i.i.d. f1(w)

g(ξ) = ξ − 2kπ for 2kπ ≤ ξ < 2(k + 1)π

The transition density under H1

h(ξn|ξn−1) =
∞∑

k=−∞
f1(ξn − ξn−1 + 2kπ)

therefore

ln = 2π
∞∑

k=−∞
f1(ξn − ξn−1 + 2kπ)

Pn(ln ≤ x|Fn−1) =

(2π)−1ν{w : 2π
∞∑

k=−∞
f1(w + 2kπ) ≤ x}
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Extension of Wald’s First Identity

to Markov Processes

Let X1, X2, . . . , i.i.d. and Sn =
n∑

k=1
Xk.

Simplest form: If E[|X1|] < ∞ and N stopping time with

E[N ] < ∞ then

E[SN ] = E[
N∑

n=1
Xn] = E[X1]E[N ]

If E[X1] = 0 then E[SN ] = 0.

Generalizations consider E[X1] = 0 and relax

E[N ] < ∞.

If E[|X1|α] < ∞ and E[N 1/α] < ∞, 1 ≤ α ≤ 2, then

E[SN ] = 0.
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The Markov Case

Let {ξn} a homogeneous Markov process and θ(ξ) a scalar

nonlinearity. Consider Xn = θ(ξn) and Sn =
n∑

k=1
θ(ξk)

E[
N∑

n=1
θ(ξn)] =?

A first result

E[SN ] = µ′(0)E[N ]− E[r′(ξN , 0)] + E[r′(ξ0, 0)]

µ(s), r(ξ, s) are solutions to the eigenvalue problem

y(ξ) = E[esθ(ξ1)x(ξ1)|ξ0 = ξ]

eµ(s)r(ξ, s) = E[esθ(ξ1)r(ξ1, s)|ξ0 = ξ]
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Proposed Extension:

E[SN ] = lim
n→∞E[θ(ξn)]E[N ] + E[ω(ξ0)]− E[ω(ξN)]

where ω(ξ) satisfies a Poisson Integral Equation that

has closed form solution for several interesting cases.

Requirements

1. Existence of invariant measure π.

2. Class of functions θ(ξ): Eπ[|θ(ξ)|] < ∞.

3. Type of ergodicity E[θ(ξn)] → Eπ[θ(ξ)].

Background

Meyn & Tweedie: Markov Chains and Stochastic Stabil-

ity.
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Theorem (Meyn and Tweedie): Let {ξn} irreducible and

aperiodic then the following two conditions are equivalent:

i) There exists function V (ξ) ≥ 1, a proper set C and

constants 0 ≤ λ < 1, b < ∞ such that the following Drift

Condition is satisfied

E[V (ξ1)|ξ0 = ξ] ≤ λV + b1lC

V (ξ) is called Drift Function.

ii) There exists probability measure π, function V (ξ) ≥ 1

and constants 0 ≤ ρ < 1, R < ∞ such that

sup
|g|≤V

|E[g(ξn)|ξ0 = ξ]− πg| ≤ ρnRV (ξ)
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Denote P ng = E[g(ξn)|ξ0 = ξ]

The drift condition can be written as

PV ≤ λV + b1lC

Define space of function L∞V to be all measurable functions

g(ξ) such that

sup
ξ

|g(ξ)|
V (ξ)

< ∞

Define also a norm ‖g‖V in L∞V to be

‖g‖V = sup
ξ

|g(ξ)|
V (ξ)

then L∞V is Banach. Furthermore for g ∈ L∞V we have, due

to Theorem 1

|P ng − πg| ≤ ρnR‖g‖V V (ξ)
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Lemma: Let θ(ξ) ∈ L∞V consider the Poisson Integral

Equation with respect to the unknown ω(ξ)

Pω = ω − (Pθ − πθ), πω = 0

then the unique solution in L∞V is

ω =
∞∑

n=1
(P nθ − πθ)

Theorem: Let E[V (ξ0)] < ∞ then for any θ(ξ) ∈ L∞V
we have

E[SN ] = E[
N∑

n=1
θ(ξn)]

= (πθ)E[N ] + E[ω(ξ0)]− E[ω(ξN)]

lim
E[N ]→∞

E[ω(ξ0)]− E[ω(ξN)]

E[N ]
= 0
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Examples

Finite State Markov Chains

Let ξn have K states and P denote the transition proba-

bility matrix.

P has a unit eigenvalue, if this eigenvalue is simple and all

other eigenvalues have magnitude strictly less than unity

then the chain is irreducible and aperiodic and an invariant

measure π exists being the left eigenvector to the unit

eigenvalue of P , i.e. πtP = πt and [1 · · · 1]π = 1.
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Any function θ(ξ) can be regarded as a vector θ of length K

and its expectation under the invariant measure is simply

πtθ.

The Poisson Equation and the constraint takes here the

form
(P − I)ω = −(P − Jπt)θ

πtω = 0

where I is the identity matrix and J = [1 · · · 1]t.

If the null space of P is nontrivial then we can find vectors

θ with corresponding ω = 0.
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Finite Dependence

Consider {ζn}∞n=−m+1 i.i.d. with probability measure µ.

Define ξn = (ζn, ζn−1, . . . , ζn−m+1). For simplicity consider

m = 2, i.e. ξn = (ζn, ζn−1) and we are interested in

θ(ζn, ζn−1).

The invariant measure exists and it is equal to π = µ×µ.

Furthermore one can show that the process is irreducible

and aperiodic. In fact we can see that P n = π for n ≥ 2.

This means that the solution to the Poisson Equation is

ω =
∞∑

n=1
P nθ − πθ = Pθ − πθ

or

ω(ζ) = E[θ(ζ1, ζ0)|ζ0 = ζ ]− E[θ(ζ1, ζ0)]
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Generalized Wald’s identity takes the form

E[
N∑

n=1
θ(ζn, ζn−1)] = E[θ(ζ1, ζ0)]E[N ]+

E[ω(ζ0)]− E[ω(ζN)]

where

ω(ζ) = E[θ(ζ1, ζ0)|ζ0 = ζ ]− E[θ(ζ1, ζ0)]

Finding θ(ξ) functions for which ω(ξ) = 0 is easy. Let

g(ζ1, ζ0) be such that π|g| < ∞ then if

θ(ζ1, ζ0) = g(ζ1, ζ0)− E[g(ζ1, ζ0)|ζ0] + c

we have ω(ζ) = 0.
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AR Processes

We consider the scalar case

ξn = αξn−1 + wn, {wn} i.i.d., |α| < 1

Lemma: If wn has an everywhere positive density then

{ξn} is irreducible and aperiodic.

1. If E[|w1|p] < ∞ then V (ξ) = 1+ |ξ|p is a drift function.

2. If for c > 0 we have E[ec|w1|p] < ∞ (true for 1 ≤ p ≤ 2

when wn is Gaussian) then there exists δ > 0 such that

V (ξ) = eδ|ξ|p is a drift function.



University of Patras [ 20 ]

Finding closed form expressions is not easy here. Special

case where this is possible:

Polynomials.

If we have available the moments E[wj
1], j = 0, . . . , p,

then we can define polynomials sj(ξ), j = 0, . . . , p such

that

Psj = αjsj

with the coefficient of the highest power equal to 1. If wn

zero mean Gaussian then sj are the normalized Hermite

polynomials.

Any polynomial θ(ξ) of degree k ≤ p can be written as

θ(ξ) = θ0 + θ1s1(ξ) + · · · + θpsp(ξ)
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Because of the fact that Psj = αjsj we conclude that

P nθ(ξ) = θ0 + θ1α
ns1(ξ) + · · · + θpα

pnsp(ξ)

and πθ = limn→∞ P nθ = θ0.

To find ω(ξ) we apply the series and we have that

ω(ξ) =
p∑

j=1
θj

αj

1− αj
sj(ξ)


