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Extension of Optimality of Well Known
Stopping Times

Given sequentially &1, &, ..., &, ...
{F,} the corresponding filtration
Given conditional probability measures

{Pn(gn‘Fn—1>}> {Q?’L(fn‘fn—l)}

Hypotheses Testing
Hy: {&,} statistics according { P, (&,|Frn_1)}

H,: {&,} statistics according {Q, (&, Fn-1)}
Decide between Hy and H;

Stopping Time N and decision rule dy
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Disruption
{&, 371 statistics according { P, (&, Fn_1)}
{&,}5° statistics according {Q, (& | Fr1)}

Detect unknown disruption time m

Stopping time N

Optimum Schemes

For {¢&,} i.i.d.

{ P&l Fu1)} = P(&)
{Qu(&nlFu1)} = Q(E0)

dQ(&n)
dP(&n)

l, =

Hypotheses Testing: SPRT
Disruption: Geometric prior

CUSUM
Shiryayev-Roberts
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All proofs need {/,} to be i.i.d. and not {¢,}

Given {Pn(€n|Fn—1)}7 {Qn(gnLFn—l)}

dPn(fn’Fn—1>

n

If, for all n,
Pn{ln < x‘fn—l} — F()(.CE)
then

Qn{ln < Jf|fn_1} = F1<£C> = /Ox ZdF()(Z)

and {l,}/ is i.i.d. under both measures induced by the two

sequences of conditional measures.
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Examples

Finite State Markov Chains

Two States:
1 — 1 —
p_ p p 0 = q q
l—p p l—q ¢
q 1l—q p 1—p
L=|? "P| P=
i—q 9 _
1-p »p 1 p p
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(Generalization:

— —

p=1Ipip2 - ps), T=q1q2 - qs
pi,q > 0and Xp; =>X¢q =1

1;, 1 =1,...,s, permutation matrices
pTh ql
1 ik
p_ | PP Q= 412
yua qT |

Cyclic case _ _
prp2p3 0 --- 0
0 p1p2ps--- 0

p2p3 O 0 -+ p1

T; can be time varying.
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AR Processes

Hy: &, = wy,, wy: iid. uniform on [-1 1]

Hy : €n — O‘fn—l + Wy,
wy: 1id. fi(w) on [—(1 —a) (1 — )]

Pn<ln S xlfn—1> — O5V{€n : 2f1<€n _ O‘&z—l) S 37}
= 0.5v{w : 2f1(w) < x}
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Random Walk on a Circle

Hy : {&,} i.i.d. uniform on unit circle

Hy:§, = g<€n—1 + wn)a wy, 1.1.d. f1<w>
(&) =& — 2km for 2km < & < 2(k+ 1)m

The transition density under H

hEnlén) = 3 fil6 = &uon + 2km)

therefore

ln = 27 k—g—i fl (gn - gn—l + 2k7T>

Pn(ln < x|Fn—1> —
2m) v{w 27Tk S filw + 2km) < x}
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Extension of Wald’s First Identity

to Markov Processes

Let X1, Xy, ..., iid and S, = kle X,

Simplest form: If E[|X;|] < co and N stopping time with
E[N] < oo then

E[Sx) = B ¥, X.] = EIXE[N]

If B[X] =0 then E[Sy] = 0.

Generalizations consider F|X;] = 0 and relax
F[N] < .

If B[|X|*] < oo and E[NY?] < 00, 1 < a < 2, then
E[Sy] = 0.



University of Patras [10]

The Markov Case

Let {&,} a homogeneous Markov process and 6(€) a scalar

nonlinearity. Consider X,, = 0(&,) and S,, = kf: 0(&x)
—1

B[ (&) =7
A first result
E[Sx] = i (0)E[N] = E[r'(&x, 0)] + E[r'(£o, 0)
w(s), (&, s) are solutions to the eigenvalue problem

e C0z(&1)|&0 = €]
€507 (&1, 5)|& = €]

y(§) =

E
(&, s) = B
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Proposed Extension:

E[Sy] = lim E0(£,)|E|N]| + Elw(&)| — Elw(én)]

where w(€) satisfies a Poisson Integral Equation that

has closed form solution for several interesting cases.

Requirements

1. Existence of invariant measure 7.
2. Class of functions 0(&): E;[|0(&)]] < oo.
3. Type of ergodicity E[0(&,)] — Ex0(E)].

Background
Meyn & Tweedie: Markov Chains and Stochastic Stabil-

1ty.
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Theorem (Meyn and Tweedie): Let {&,} irreducible and

aperiodic then the following two conditions are equivalent:

i) There exists function V(§) > 1, a proper set C' and
constants 0 < A < 1, b < oo such that the following Druft

Clondition 1s satisfied

EWV (&) =& < AV +ble

V(&) is called Drift Function.

ii) There exists probability measure 7, function V(£) > 1
and constants 0 < p < 1, R < oo such that

sup |E[g(&,)|&0 = &) — mg] < p"RV (§)

lg|<V
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Denote P"g = E|g(£,)|&0 = &

The drift condition can be written as

PV < \V + bl

Define space of function L3 to be all measurable functions
g(&) such that

19(€)]
V()

< X0

Define also a norm ||g||y in L3 to be

l9(€)]
V(¢)

lgllv = sup
§

then £77 is Banach. Furthermore for g € L3F we have, due

to Theorem 1

|[P'g —7mg| < p"R||g|lvV (§)
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Lemma: Let 6(§) € L3P consider the Poisson Integral

Equation with respect to the unknown w(§)
Pw=w—(P8—m70), mw=0
then the unique solution in L7 is

w= >3 (P9 — 70

n=1

Theorem: Let E[V(&))] < oo then for any (&) € LP

we have
BISx] = B[ 0(¢)
= (m0)E|N] + Elw(&)] — Elw(én)]

- Blw(&)] - Blw(éy)

=0
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Examples

Finite State Markov Chains
Let &, have K states and P denote the transition proba-

bility matrix.

P has a unit eigenvalue, if this eigenvalue is simple and all
other eigenvalues have magnitude strictly less than unity
then the chain is irreducible and aperiodic and an invariant
measure 7 exists being the left eigenvector to the unit

eigenvalue of P, ie. m'P=rx'and [1---1]7r = 1.
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Any function 6(£) can be regarded as a vector 6 of length K

and its expectation under the invariant measure is simply

.

The Poisson Equation and the constraint takes here the

form

(P—1w = —(P— Jrn")0
mhw = 0

where I is the identity matrix and J = [1---1]".

If the null space of P is nontrivial then we can find vectors

6 with corresponding w = 0.
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Finite Dependence
Consider {(,}r .+ 1i.d. with probability measure pu.
Define &, = (G, Cuots - - -, Gooma1). For simplicity consider

m = 2, ie. & = ((, (1) and we are interested in

9<Cn7 Cn—l)-

The invariant measure exists and it is equal to m = p X .
Furthermore one can show that the process is irreducible
and aperiodic. In fact we can see that P" = m for n > 2.

This means that the solution to the Poisson Equation is

w= 5 P"0—70=P0— 70

n=1

or

w(¢) = E0(C1, Co)|¢o = ¢] — E[0(C1, o))
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Generalized Wald’s identity takes the form

ELS 8(Gur Gu1)] = EI0(G1, G BIN]+
Elw(Go)] — Blw(Cy)]

where

Finding (&) functions for which w(§) = 0 is easy. Let
g((1, ¢p) be such that 7|g| < oo then if

0(C15 o) = 9(C15 o) — Elg(C1, Co)|Co] + ¢
we have w(() = 0.
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AR Processes

We consider the scalar case

& =ab, 1+ w,, {w,}iid, o <1

Lemma: If w, has an everywhere positive density then

{&,} is irreducible and aperiodic.
1. If E||w1|P] < oo then V(§) = 1+|€|P is a drift function.

2. If for ¢ > 0 we have E[e“"1I"] < oo (true for 1 < p < 2
when w,, is Gaussian) then there exists § > 0 such that
V(&) = " is a drift function.
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Finding closed form expressions is not easy here. Special
case where this is possible:

Polynomials.

If we have available the moments E [w{], i =0,...,p,

then we can define polynomials s;(§), 7 = 0,...,p such
that

Ps; = o S;
with the coeflicient of the highest power equal to 1. If w,
zero mean Gaussian then s; are the normalized Hermite

polynomials.

Any polynomial #(£) of degree k < p can be written as

(9(5) = (90 + 9181(5) + e 9p8p<€)
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Because of the fact that Ps; = a’ s; we conclude that
P"O(&) = Oy + 010" s1(&) + - - + 0,05, (€)

and 76 = lim,,_,., P"0 = 0,.

To find w(§) we apply the series and we have that

p 1%

w(€) = X 07— 54(¢)

j=1 71— o



