Sequential Detection Overview & Open Problems

George V. Moustakides, University of Patras, GREECE

Outline

- Sequential hypothesis testing
 - SPRT
 - Application from databases
 - Open problems
- Sequential detection of changes
 - The Shiryaev test
 - The Shiryaev-Roberts test
 - The CUSUM test
 - Open problems
 - Decentralized detection (sensor networks)

Sequential Hypothesis testing

Conventional binary hypothesis testing:

Fixed sample size observation vector $X=[x_1,...,x_K]$ X satisfies the following two hypotheses:

$$H_0: X \sim f_0(X)$$

$$H_1: X \sim f_1(X)$$

Given the data vector X, decide between the two hypotheses.

Decision rule:
$$\mathsf{D}(X) \in \{0,1\}$$

Bayesian formulation

$$\min_{D} \{ P(H_0)P(D = 1|H_0) + P(H_1)P(D = 0|H_1) \}$$

Neyman-Pearson formulation

$$\min_{\mathsf{D}} \mathsf{P}(\mathsf{D} = 0|\mathsf{H}_1); \quad \mathsf{subject} : \mathsf{P}(\mathsf{D} = 1|\mathsf{H}_0) \le \alpha$$

Likelihood ratio test:

For i.i.d.:
$$u_K = \sum_{n=1}^K \log\left(\frac{f_1(x_n)}{f_0(x_n)}\right) \stackrel{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\gtrless}} \lambda'$$

Sequential binary hypothesis testing

Observations $x_1,...,x_t,...$ become available sequentially

$$\mathsf{H}_0: \ x_1, \ldots, x_t, \ldots \sim f_0(x_1, \ldots, x_t, \ldots)$$

$$\mathsf{H}_1: \ x_1, \ldots, x_t, \ldots \sim f_1(x_1, \ldots, x_t, \ldots)$$

Time	Observations	Decision
1	x_1	$D(x_1)$
2	x_1, x_2	$D(x_1,x_2)$
		•
t	x_1, \ldots, x_t	$D(x_1,\ldots,x_t)$

We apply a two-rule procedure

 1^{st} rule: at each time instant t, evaluates whether the observed data can lead to a reliable decision

Time	Observations	
1	x_1	
2	x_1, x_2	
T	r_{T}	
	(x_1,\ldots,x_T)	

STOP getting more data.

T is a **stopping** rule Random!

$$\mathsf{D}(x_1,\ldots,x_T) \in \{0,1\}$$

2nd rule: Familiar decision rule

Why Sequential?

On average, we need significantly less samples to reach a decision than the fixed sample size test, for the same level of confidence (same error probabilities)

For the Gaussian case it is 4 - 5 times less samples.

SPRT (Wald 1945)

$$u_t = \log\left(\frac{f_1(x_1, \dots, x_t)}{f_0(x_1, \dots, x_t)}\right)$$

$$u_{t} = \sum_{n=1}^{t} \log \left(\frac{f_{1}(x_{n})}{f_{0}(x_{n})} \right) = u_{t-1} + \log \left(\frac{f_{1}(x_{t})}{f_{0}(x_{t})} \right)$$

Here there are two thresholds A < 0 < B

Stopping rule:
$$T = \inf\{t > 0 : u_t \not\in (A, B)\}$$

Decision rule:

Tuile:
$$\mathsf{D}(x_1,\ldots,x_T) = \begin{cases} 1 & \text{when } u_T \ge B \\ 0 & \text{when } u_T \le A \end{cases}$$

Amazing optimality property!!!

$$\begin{split} \mathsf{P}(\mathsf{D} = 1|\mathsf{H}_0) &\leq \alpha & \mathsf{P}(\mathsf{D} = 0|\mathsf{H}_1) \leq \beta \\ & \min_{T,\mathsf{D}} \mathsf{E}[T|\mathsf{H}_0] & \min_{T,\mathsf{D}} \mathsf{E}[T|\mathsf{H}_1] \end{split}$$

SPRT solves both problems simultaneously

A,B need to be selected to satisfy the two error probability constraints with equality

- I.i.d. observations (1948, Wald-Wolfowitz)
- Brownian motion (1967, Shiryaev)
- Homogeneous Poisson (2000, Peskir-Shiryaev)

Open Problems: Dependency, Multiple Hypotheses

Record linkage

We assume known probabilities for x_i =0 or 1 under match (Hypothesis H_1) or nonmatch (Hypothesis H_0) for each attribute.

In collaboration with V. Verykios

Sequential change detection

Detect occurrence as soon as possible

Applications

Monitoring of quality of manufacturing process (1930's)

Biomedical Engineering

Electronic Communications

Econometrics

Seismology

Speech & Image Processing

Vibration monitoring

Security monitoring (fraud detection)

Spectrum monitoring

Scene monitoring

Network monitoring and diagnostics (router failures, intruder detection)

Databases

Mathematical setup

We observe sequentially a process $\{x_t\}$ that has the following statistical properties

$$x_t \sim \begin{cases} f_0 & \text{for } 0 \le t \le \tau \\ f_1 & \text{for } \tau < t. \end{cases}$$

- lackloain Changetime au: either random with known prior or deterministic but unknown.
- lacktriangle Both pdfs f_0 , f_1 are considered known.

Detect occurrence of τ as soon as possible

We are interested in sequential detection schemes.

Whatever sequential scheme one can think of, at every time instant t it will have to make one of the following two decisions:

- lacktriangle Either decide that a change didn't take place before t, therefore it needs to continue taking more data.
- lacktriangle Or that a change took place before t and therefore it should stop and issue an alarm.

Sequential Detector ←→ Stopping rule

Shiryaev test (Bayesian, Shiryaev 1963)

Changetime τ is random with Geometric prior.

If T is a stopping rule then we define the following cost function

$$J(T) = c \operatorname{E}[(T - \tau)^{+}] + \operatorname{P}(T \le \tau)$$

Optimum T:

$$\min_{T} J(T)$$

Define the statistic: $\pi_t = \mathsf{P}(\tau \leq t | x_1, \dots, x_t)$

There exists $\nu \in (0,1)$ such that the following rule is optimum.

$$T_S = \inf\{t > 0 : \pi_t \ge \nu\}$$

In discrete time when $\{x_t\}$ are i.i.d. before and after the change.

In continuous time when $\{x_t\}$ is a Brownian motion with constant drift before and after the change.

In continuous time when $\{x_t\}$ is Poisson with constant rate before and after the change.

Shiryaev-Roberts test (Minmax, Pollak 1985)

Changetime τ is deterministic and unknown.

For any stopping rule T define the following criterion:

$$J(T) = \sup_{\tau} \mathsf{E}_1[(T-\tau)|T>\tau]$$

Optimum T:

$$\min_{T} J(T)$$

subject to

$$\mathsf{E}_0[T] \geq \gamma$$

In discrete time, when data are i.i.d. before and after the change with pdfs f_0 , f_1 .

Compute recursively the following statistic:

$$S_t = (1 + S_{t-1}) \frac{f_1(x_t)}{f_0(x_t)};$$
 Pollak (1985) $T_P = \inf\{t > 0: S_t \ge \nu\}$

$$[J(T_P) - \min_T J(T)] = o(1); \text{ as } \gamma \to \infty$$

Yakir (AoS 1997) provided a proof of strict optimality. Mei (2006) showed that the proof was problematic. Tartakovsky (2011) found a counterexample.

CUSUM test (minmax, Lorden 1971)

Changetime τ is deterministic and unknown.

For any stopping rule T define the following criterion:

$$J(T) = \sup_{\tau} \sup_{x_1, \dots, x_{\tau}} \mathsf{E}_1[(T - \tau)^+ | x_1, \dots, x_{\tau}]$$

Optimum T:

$$\min_{T} J(T)$$

subject to
$$E_0[T] \ge \gamma$$

Compute the Cumulative Sum (CUSUM) statistic y_t as follows:

Running LLR

$$u_t = \log\left(\frac{f_1(x_1, \dots, x_t)}{f_0(x_1, \dots, x_t)}\right)$$

Running minimum $m_t = \inf_{0 \le s \le t} u_s$

CUSUM statistic

$$y_t = u_t - m_{t-1}$$

CUSUM test

$$\mathcal{S} = \inf\{t > 0 : y_t \ge \nu\}$$

$$y_t = (y_{t-1})^+ + \log\left(\frac{f_1(x_t)}{f_0(x_t)}\right)$$

Discrete time: i.i.d. before and after the change Lorden (1971) asymptotic optimality. Moustakides (1986) strict optimality.

Continuous time

Shiryaev (1996), Beibel (1996) strict optimality for BM Moustakides (2004) strict optimality for Ito processes Moustakides (>2012) strict optimality for Poisson processes.

Open Problems: Dependent data, Non abrupt changes, Transient changes,...

Decentralized detection

If more than 1 bits, quantize overshoot!

The Fusion center if at time t_n receives information from sensor i it updates an estimate of the global log-likelihood ratio:

$$\hat{u}_t = \begin{cases} \hat{u}_{t-} + B_i & \text{if bit is 1} \\ \hat{u}_{t-} + A_i & \text{if bit is 0} \end{cases}$$

and performs an SPRT (if hypothesis testing) or a CUSUM (if change detection) using the estimate of the global log-likelihood ratio.

