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Sequential Hypothesis testing

Conventional binary hypothesis testing:
Fixed sample size observation vector X=|x,...,z
X satisfies the following two hypotheses:

Ho: X ~ fo(X)
H1 ; X ~ fl(X)

Given the data vector X, decide between the two
hypotheses.

Decisionrule: D(X) € {0,1}
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Bayesian formulation

min{P(Ho)P(D = 1|Ho) + P(H1)P(D = 0[H1)}

Neyman-Pearson formulation

mEi)nP(D = 0|Hy); subject: P(D =1]|Hp) < «

H,
Likelihood ratio test: f1(X) = \
fo(X) &
K H
25 _ fl(mn) :_>1 /
Fori.i.d.: ug = Zlog (fo(-fb‘n) = A
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Sequential binary hypothesis testing

Observations z,...,x;,... become available

H o R I ey S DL . Lt - )
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Time Observations Decision
1 X1 D(z;)
2 T1,T2 D(z1, z2)
zé .{Bl,...,xt D(:Bl,,...,.fljt)
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We apply a procedure

15t rule: at each time instant ¢, evaluates whether
the observed data can lead to a reliable decision

Time Observations
1 L1
2 L1, L2

getting mo-t-" "Ela"ta. :

Tisa *D(ﬂjljjﬂjT) 6{011}
Random! 2"9 rule: Familiar decision rule

GV MOUSTAKIDES: Sequential Detection, Overview & Open Problems, ISR, Dec. 2011



Why Sequential ?

, we need significantly less samples to
reach a decision than the fixed sample size test,
for the same level of confidence (same error
probabilities)

For the Gaussian case it is 4 - 5 times less samples.
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SPRT (wald 1945)
e 10g (fl(mlj » ,CE‘{;))

t
fl(-fl?n)) (fl(fﬂt))
T — lo = us_1 + lo
=D tog () = iog (68
Here there are thresholds A<0Q < B
Stopping rule: T'=inf{t > 0: u; & (A, B)}

Decision rule: 1 when ur > B
D(z1,...,27) = { 0 when ur ; A
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Infinite Horizon

T
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Ho
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Amazing optimality property!!!

\\ | ] e i m— 'In\- o

min E|7T"[H| min E|7T'|H1]
dEl) L E

A,B need to be selected to satisfy the two error
probability constraints with equality

¢ l.i.d. observations (1948, Wald-Wolfowitz)
¢ Brownian motion (1967, Shiryaev)
¢ Homogeneous Poisson (2000, Peskir-Shiryaev)

Open Problems: Dependency, Multiple Hypotheses
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Finite Horizon

A H,
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Record linkage
Data Base (records)

attribute 1  attribute 2 attribute 3 attribute K

We assume known probabilities for , =0 or 1 under match

(Hypothesis H,) or nonmatch (Hypothesis H,) for each attribute.
1 T4

e e
10:31 |03‘32 | 1K
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Data from: Statistical Research Division of
the US Bureau of the Census
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Classical non-sequential test (all attributes)

| | | | 1
4 5 G 7 8

Average Number of Attributes K
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Total number of record
comparisons: 3703

26 38

4 5 6 7
Number of Attributes
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Total number of record
comparisons: 3703

60 2 7

4 5 6 ¥
Number of Attributes
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In collaboration with V. Verykios
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Sequential change detection _
Change in statistics

petect occurrence

as soon as possible
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Applications

Monitoring of quality of manufacturing process (1930’s)
Biomedical Engineering

Electronic Communications
Econometrics

Seismology

Speech & Image Processing
Vibration monitoring

Security monitoring (fraud detection)
Spectrum monitoring

Scene monitoring

Network monitoring and diagnostics (router failures,
intruder detection)

Databases .....
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Mathematical setup

We observe a process {z,} that has the
following statistical properties

f(] fOI‘OStST
Iy
f1 e ¢ < 1.

¢ Changetime 7: either random with known prior or
deterministic but unknown.

¢ Both pdfs f,, f, are considered known.
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We are interested in detection schemes.

sequential scheme one can think of, at
every time instant ¢ it will have to make one of the
following two decisions:

¢ Either decide that a change didn’t take place before
t, therefore it needs to continue taking more data.

¢ Or that a change took place before t and therefore
it should stop and issue an alarm.
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Shiryaev test (Bayesian, Shiryaev 1963)

Changetime 7is random with Geometric prior.

If 1'is a stopping rule then we define the following
cost function

J(T)=cE[(T-7)"|+P(T < 1)

Optimum 1':

min J(T)
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Define the statistic: 7 = P(7 < t|xq, ..., z¢)

There exists € (0, 1) such that the following rule is
optimum.

T =haiks > ) 2ps 244

In discrete time when {z,} are i.i.d. before and after
the change.

In continuous time when {z,} is a Brownian motion
with constant drift before and after the change.

In continuous time when {z,} is Poisson with constant
rate before and after the change.
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Shiryaev-Roberts test (Minmax, Pollak 1985)
Changetime 7is deterministic and unknown.

For any stopping rule I’ define the following criterion:

J(1') = E.{((T —7)|T > 7
Optimum 1':
mjin J(T)

subjectto  Eo|T'| > v
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In discrete time, when data are i.i.d. before and after
the change with pdfs f,,, f;.

Compute recursively the following statistic:

Ji(ze)
fo(we)’ Pollak (1985)
I'p = MIEEIESS =0

St = (14 S;-1)

J(Tp) — mjin J(T)|'=0o(l); 'as v > o

I ATNId ‘l‘ P o e o o S ’ rJIUUIH\-H el 'JIUUI o I el UrJLIIIII—IIII—ri

Mei (2006) showed that the proof was problematic.
Tartakovsky (2011) found a counterexample.
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CUSUM test (minmax, Lorden 1971)
Changetime 7is deterministic and unknown.

For any stopping rule I’ define the following criterion:

J(T)=sup sup E{[(T —7)"|z1,...,2,]

U I8 ir
Optimum 1':

min J(T)

subjectto Eo|T"| > v
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Compute the Cumulative Sum (CUSUM) statistic y,
as follows:

[ASCSE . v o0t
Running LLR us = log (f 2 i ))
fﬂ(mlj B ,,ﬂjt)
Running minimum m; = Inf wug
0<s<t

CUSUM statistic Yo— Ug STl

CUSUM test S=inf{t>0:y; > v}
fl(-fb‘t))
e
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my
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Discrete time: i.i.d. before and after the change
Lorden (1971) asymptotic optimality.
Moustakides (1986) strict optimality.

Continuous time

Shiryaev (1996), Beibel (1996) strict optimality for BM
Moustakides (2004) strict optimality for Ito processes
Moustakides (>2012) strict optimality for Poisson
processes.

Open Problems: Dependent data, Non abrupt
changes, Transient changes,...
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Decentralized detection

Sensor 1

*
*

LR

n .

oK

e b

Sensor i

X

{

GV MOUSTAKIDES: Sequential Detection, Overview & Open Problems, ISR, Dec. 2011




A,

If more than 1 bits,
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The Fusion center if at time ¢ receives information
from sensor ¢ it updates an estimate of the global log-
likelihood ratio:

A ut— + B; 1t bit is 1
?:St_ T Ai if bit is 0

and performs an SPRT (if hypothesis testing) or a
CUSUM (if change detection) using the estimate of
the global log-likelihood ratio.
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Optimum

Q-SPRT <
.comesis O-SPRT 1

RLT-SPRT e
-~-m-~= B -BFPHT |

i
o

s
«
"
[
-
L
=10
&
—
Ly
:-_:..
<

Q0

GV MOUSTAKIDES: Sequential Detection, Overview & Open Problems, ISR, Dec. 2011




