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Overview
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Using {£,} detect 7 as soon as possible
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Quality control
Systems monitoring

Remote sensing and GIS
Smart cameras — Human computer interaction
Image processing

Optical communications

Changepoint models for hazard functions
Occurrence of industrial accidents

Epidemic detection

Monitoring of link failures in computer networks
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P 2 T L Pq

P_.: nominal measure

P, : alternative measure

P_: measure induced by the change
E_[.]: corresponding expectation

Both P, and P__ are assumed known
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We are interested in

With every new data point £, we decide whether
* Stop and raise an alarm
* Continue sampling

For the decision at time ¢ we use all the available
iInformation up to time ¢

Vo — glas Bl (e s

Sequential test << stopping time 1 adapted to
the filtration {7, }
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Detection delay what is 77 ]

JT) =E.[T—(7)T > 7]

False alarm
Average period between false alarms:

ool T

False alarm probability:
P(T < 7)

J(T)
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Changepoint mechanism

There is a mechanism that to
impose the change. This decision can be

* Independent from the observations {¢,}
* Depend on the observations {¢,}

If independent, then 7 appears as random
variable with prior

Pl =0 7,

If {7,} known then Bayesian formulation
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Bayesian Formulation

Zero modified geometric
0h— (| — jul)l —n) " i b e

minE(T —7|T >7|; st. PT <7) <

T
fo(&t)
Sy = (51 +1 :
= )(1_p)fm(ft)
Top — 1N TS |
l.i.d.: Shiryaev (1963,1978), Poor (1998). BM:

Shiryaev (1961). Poisson: Peskir and Shiryaev
(2002), Dayanik (2005,2006,2008)
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The mechanism decides without consulting the
observations but P(7 = t) = 7, is

jp(T) — = [T — ’TlT > fr] Pollak’s (1985)
| criterion )
= sup E¢|T — t|T > t]}/
t>0

i%f Jp(T) = inf sup E;|T — t|T > t]

4 >0
8.t. Exo|d|'Z 7
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Pollak (1985) proposed the following stopping
time known as Shiryaev-Roberts-Pollak

fo(&t)

T (| ST (S
: 1S adin
—_— ; > _
Tsrp = inf{t : Sy 2 V}\\ equalizer |

E:|Tsrp — t|Tsgrp > t| = constant

Jp(Tsrp) — il%f Jp(T) = o(1), asy — o0
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In 1997 appears a proof that the SRP test is
optimum (Annals of Statistics)

Yajun Mei (2006), shows that the proof is
problematic

The conjecture remained unanswered until last
year (2010): Tartakovsky and Polunchenko,
produced a counterexample. After 25 years we
can finally say that

The SRP test is NOT optimum
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CUSUM and Lorden’s criterion

The changepoint mechanism decides to impose
the change by consulting the observations {£,}
and possibly additional information.

In this case 7 becomes a stopping time adapted
to a larger filtration than {F, }.

"Lorden’s (1971)1*
jL(T) = ET[T — T‘T > ’T] %’cerion )
= sup essupkE, [T — t|T > t, F]
>0
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( State space
Xt —_— A.Xt_l —!_ BWt \\ model
& = CXe P,

J

' N
\L Measurements }

Possible cause for change is for example “large”
oscillations

e anmaeer || Xe|[r="ct
A— A

A bomb set to explode at a specific time
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inf J1,(T") = inf sup essupE|T" — t|T > t, F4]
u 1" t>0

2ol B 2
The optimum scheme: CUSUM

dP
Ty = log (dP : (.ﬂ)) l.i.d.: Moustakides (1986)
o Ritov (1990), Poor (1998)

My — ININIE

0<s<t BM: Shiryaev (1996),
Beibel (1996)

Ito: Moustakides (2004)

Yyt = ur —my = 0
Tc =inf{t: y; > v}
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Homogeneous Poisson disorder

Let {V.} denote a homogeneous Poisson process

with rate A satisfying
N { PN O [ T,

o lort > 7
A
U = (Ao — Ag)t + log A—UM
ur = at+bNy— T a,b opposite signs J

Show optimality of CUSUM
First step compute ARL: E [Z] and E__[1]
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Optimality of CUSUM
JL(T) = sup essupE:[T — t|T > t, F]

t>0
=l =

Eo|T] 2 Ex|Tc| =y = Ju(T) = Ju(Tc)
hy) = Ex[Tc|yo = ]

g9(y) = EolTc|yo = v ' Equalizer |
essupE|To — t|Tc > t, Fi| = g( O)V
Ju(Ic) = g(0) Eoo|Tc] = h(0)
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Ex[T] 2 h(0) = J(T) = 9(0)

Lemma IuPT = Emlz[fﬂ[eit]dt]
Ew|T] = h(0) = ;f:[eit 2 > ¢g(0)

Em[fUT eVtdt| = g(0)Es|eYT] KT )
HE oo [h(yr) — €97 g(yr)]

S
Lemma: h(y) —eYg(y) >0, Yy>0
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Nonhomogeneous Poisson

Let {NV.} denote a nonhomogeneous Poisson
process with rate )\, that satisfies

WIIO < T;
AT —
pwy fort > T,

w, is adapted to our observations (that can
include more information than {N.}) and pis a
known constant.
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CUSUM test: ;
ur = (1= p) |, ws ds + (log p) Ny

7 — e
0<s<t

Ut — Uiy
Tc = IntSEERT >0}

Is it optimum? but in a Lorden-  sense
JL(T) = sup essupE N — N¢|T > t, Fy]
>0
EBDVV&q;EfY
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Epidemic Detection

Detect the onset of an epidemic: when the
incidence rate of a particular disease increases
significantly above some standard level

w, : describes the nominal incidence rate, which
can be a function of several observable quantities
as population, pollution measurements etc.

p > 1 :smallest increase in incidence rate that
should be considered ... alarming.

Detect rapidly
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