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Routing and type of environments

Deterministic / Static

Obi One
Kenobi g
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Deterministic / Dynamic
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Stochastic / Static

This specific obstacle geometry
appears 17% of the time

To each obstacle geometry we
assign a
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Stochastic / Dynamic

To each of obstacle geometry we
assign a probability (transition probability)

of obstacle dynamics
P(s;ls:)
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Routing of “unintelligent™ vehicles

If the only available

information is the transition
probabilities of the obstacle
geometries, then there exists

an that can ¢
be pre computed.

Optimality criteria
Cost based: every action, collision has a cost.
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Routing of “intelligent” vehicles

R2D2 can identify obstacles
inside a finite visual horizon.

_@

Goal: Come up with an route
tracing scheme that combines prior and
sequential information.

GV Moustakides: Optimal Routing of Autonomous Vehicle. Rutgers University, Dec 17, 2012 8



@

@
® @
Start

@

@

Discrete Space and Time

Obstacles:

Can move freely only

Obstacles:

and

End

Vehicle:®

The dynamics between different columns are statistically

independent.
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Consider the ® o ¢ @ ®
[-th column

® O ® O
The obstacle
geometries ® O ® & o
constitute the
possible statesof ® @ & @
the Markov
process. ® ® 0 o

dy gy dahy gy Gy dy
We assign transition probabilities: Pl(Sjl S;)
and compute the stationary probabilities ﬂ'l(sj):

m1(5;) ZP; CAERLAED.
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Vehicle:
Is allowed either to wait at the current node or i
of the next column.

Its visual horizon extends to the next column and
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Start End

The vehicle observes state s, of the next column.

While the vehicle moves to the next column, the state
of the next column changes to s,
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Vehicle is at node m of column [ and observes state s,
of column [+1
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For each column we must provide an Action Table:

Action Table for Column !

These tables must be selected
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A cost based approach
To every action and event we assign a cost:

** Displacement cost:
Moving from node m of column {
to node n of column /41, has a cost ¢ (m,n).
Consider ¢;(m,n)=c),.

* Waiting cost:
Waiting at node m of column [ has a cost ¢;,(m).
Consider ¢;(m)=cyy-

** Collision cost:
Colliding at node n of column [ has a cost ¢,(n).
Consider ¢;(n)=c,.
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To each collection of Action Tables there
corresponds an

The goal'is to find the Action Tables that

These problems are conventionally solved with

stochastic optimization techniques and in
particular with the help of
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Optimal soelution for “impatient™ vehicles
No waiting is allowed!!

At every time instant the vehicle moves forward to
the next column.

The optimum solution will be obtained by
construction.

Vi (m): from node
m, column [, till the end.
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Start

Vﬂ(l) IS the optimum average cost of the original
problem.

Key step in defining the optimum Action Tables is the
determination of the (backward) evolution of V,(m).
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VN (m) — CpD
@ @
End
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@
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VN(m) = CpD

@
Assume available VEH(TL) for any
node 7 in column [+1. &
We will then compute V;(m) for any
node m in column /.
. ® |
*# Vehicle from node 77w can move to I T

ANY node n of the next column.

*» Vehicle when at node 77, can
observe state s, of the next column.

" State s; can change to ANY state s..
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V}(m) optimum average residual cost (goal).

V,(m | 8?:): optimum average residual cost when state
S; 1S observed.

V,(m | 5?:::”): optimum average residual cost when

state S, Is observed and the vehicle decides
to. move to node v of the next column.

Vi(ml|si,n) =cp +cc Y Pryi(sjlsi) + Viga(n)

S; oM
Best displacement when at 772 and observe S.:

Vi(m|s;) = min V;(m|s;, n)

Nop = arg min V;(m|s;, n)
mn
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Action Table for Column [

State [ N N ] aEn S “ Rl ]
Node 2

m & it g

By computing V,(m| s;) from V,(m/| s;,n) we
construct the

Vi(m Z"”H si)Vi(m|si)
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With visual horizon:
Vi(ml|si,n) = cp +cc Y  Piga(sjlsi) + Vig(n)

$j21° Column: [

Col [+1
Vi(mls;) = m1nV(m|si, n) Node: meNi;?n =
State: s

Z’}Tl_|_1 Vi(m|s;)

Without visual horizon:
Vilm|n) = cp +cc Y mza(s;) + Viga(n)

Sj3ﬂ

Column: l9 Column: [+1
Vi(m) = min V;(m|n) Node: m Node: n,
T
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Optimal solution for “patient” vehicles

Waiting is allowed!!

We also assume that when
the vehicle waits at a node.

Vz(m|8@a 71) = Cp T Cc Z Pz+1(5j\8i) - Vz+1(m)

Sj M

V,g(m|’w) = civ + Vg(m) Nonlinear equation

Vi(mls;) = min {min Vilmle ), V,},(m\w)}
(m) Z’ﬂ'Hl Vi(m|s;)
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Define: V;(m|s;) = min V;(m|s;, n)
TL
Without loss of generality assume the ordering:
Vi(m|sg) < Vi(mls1) < --- < Vi(m|sp)

For 0O<n<L, define the increasing sequence:

Fo = 3 [Vilmlsn) — Vi(mlslmisa (s1)

=\

Let 0OS A< L be the largest integer satistying ¢y, >

ew + Sieo[Vi(m|si) — cw]misi(si)

a0l =
i :io mi4+1(83)
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Extensions

** Collisions may. occur during waiting
Vi(m|w) = ew + Vi(m)
Vi(m|w) = ew + coPi(Collision) + V;(m)

Vi(m|w) = ew +cc Y m(s}) + Vi(m)

l
sjam

Vi(m|sg,w) = ew +cc Y Pi(shsh) + Vi(m)

[
Sjam
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%+ Vehicle can have a larger visual horizon

v+ State can contain information other than location
like: speed, acceleration, etc.

** Obstacles and Vehicle can move in any direction
(even backwards)

** On line estimation (identification) of state elements
(for example position, speed and acceleration)
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