Sequential Detection & System Identification

George V. Moustakides, University of Patras, Greece Rutgers University, NJ, USA

Outline

- Problem definition
- Scalar case
 - Constrained stochastic optimization
 - Optimum estimation (system identification)
 - Optimum detection
 - Optimum stopping time
- Vector case
- Further analysis

Problem definition

Observations become available sequentially

$$x_t \longrightarrow$$

$$f_0, f_1, \dots, f_{L-1}$$

$$y_t = f_0 x_t + \dots + f_{L-1} x_{t-L+1} + w_t$$

$$= X_t'F + w_t; t = 1, 2, \dots$$

$$F = [f_0, \dots, f_{L-1}]'$$

$$X_t = [x_t, \dots, x_{t-L+1}]'$$

System identification: Adaptively (sequentially)

estimate F

We are given sequentially pairs $\{(y_t,x_t)\}$ that are related through

$$y_t = X_t' F + w_t, \quad t = 1, 2, \dots$$

 $\{w_t\}$ is a noise sequence and F satisfies the following two hypotheses:

$$H_0: F = F_0 \quad (F_0 = 0)$$

 $H_1: F \sim Random$

Goal: Sequentially decide between H_0, H_1 . When decision is H_1 estimate F.

Applications include:

- Model validation of industrial systems
- Statistical analysis of structural changes
- Faulty sensor detection and identification
- Damage detection and isolation
- Water supply management

The scalar case

$$y_t = fx_t + w_t$$

$$H_0: f = 0$$

$$\mathsf{H}_1:\ f \sim \mathcal{N}(\mu_f, \sigma_f^2)$$

$$w_t \sim \mathcal{N}(0,\sigma^2)$$

$$\mathsf{P}\left(\sum_{n=1}^t x_n^2 o \infty\right) = 1$$
 $\{w_t\}, \{x_t\}, f ext{ indep.}$

T: Stopping time, to decide when to stop sampling

 d_T : Decision function to decide between H_0 , H_1

 f_T : Estimator for the impulse response

$$\{\mathscr{F}_t\},\ \mathscr{F}_t = \sigma\{(y_1, x_1), \dots, (y_t, x_t)\}$$

 $\{\mathscr{X}_t\},\ \mathscr{X}_t = \sigma\{x_1, \dots, x_t\}$

 $d_T: \mathscr{F}_T - \mathsf{measurable}$

 $\hat{f}_T:\mathscr{F}_T-\mathsf{measurable}$

 $T: \{\mathscr{X}_t\}$ — adapted $T: \{\mathscr{F}_t\}$ — adapted?

Grambsh (1983) Fellouris (2012)

Ghosh (1987),(1991) unattractive!

Detection part: (under H₀ or H₁)

Type
$$- \operatorname{I} : \operatorname{P}_0(d_T = 1 | \mathscr{X}_T)$$

Type
$$- \operatorname{II} : \operatorname{P}_1(d_T = 0 | \mathscr{X}_T)$$

Estimation part: (under H₁)

When $d_T = 1$ then estimate: $\hat{f}_T \implies (\hat{f}_T - f)^2$

$$\mathsf{E}_1[(\hat{f}_T - f)^2 \mathbb{1}_{\{d_T = 1\}} | \mathscr{X}_T]$$

When $d_T = 0$ then like: $\hat{f}_T = 0 \implies (0 - f)^2$

$$\mathsf{E}_1[f^2\mathbbm{1}_{\{d_T=0\}}|\mathscr{X}_T]$$

Constrained optimization

Select costs c_0 , c_1 , c_e and define the following combined cost function:

$$\begin{split} \mathscr{C}(T, d_T, \hat{f}_T) &= \\ c_0 \mathsf{P}_0(d_T = 1 | \mathscr{X}_T) + c_1 \mathsf{P}_1(d_T = 0 | \mathscr{X}_T) \\ + c_e \mathsf{E}_1 \left[(\hat{f}_T - f)^2 \mathbb{1}_{\{d_T = 1\}} + f^2 \mathbb{1}_{\{d_T = 0\}} | \mathscr{X}_T \right] \end{split}$$

$$\inf_{T,d_T,\hat{f}_T} T; \quad \text{subject to} : \mathscr{C}(T,d_T,\hat{f}_T) \leq C$$

No expectation!!

$$\inf_{T,d_T,\hat{f}_T} \mathsf{E}[T] \ge \mathsf{E}[\inf_{T,d_T,\hat{f}_T} T]$$

Optimum estimation

Fix T and d_T . Consider the auxiliary minimization:

$$\inf_{\hat{f}_T} \mathsf{E}_1[(\hat{f}_T - f)^2 \mathbb{1}_{\{d_T = 1\}} | \mathscr{X}_T]$$

Optimum estimator:

$$\hat{\mathsf{f}}_T=R_T^{-1}V_T$$
 MMSE estimator! $V_t=V_{t-1}+y_tx_t, \quad R_t=R_{t-1}+x_t^2$ $V_0=\mu_f\sigma^2\sigma_f^{-2} \qquad R_0=\sigma^2\sigma_f^{-2}$

$$\inf_{\hat{f}_T} \mathsf{E}_1[(\hat{f}_T - f)^2 \mathbb{1}_{\{d_T = 1\}} | \mathscr{X}_T] =$$

$$\sigma^2 R_T^{-1} \mathsf{P}_1 (d_T = 1 | \mathscr{X}_T)$$

$$\begin{split} \mathsf{E}_{1} \left[f^{2} \mathbb{1}_{\{d_{T} = 0\}} | \mathscr{X}_{T} \right] &= \mathsf{E}_{1} \left[\hat{\mathsf{f}}_{T}^{2} \mathbb{1}_{\{d_{T} = 0\}} | \mathscr{X}_{T} \right] \\ &+ \sigma^{2} R_{T}^{-1} \mathsf{P}_{1} \left(d_{T} = 0 | \mathscr{X}_{T} \right) \end{split}$$

$$\mathscr{C}(T, d_T, \hat{f}_T) \ge \mathscr{C}(T, d_T, \hat{f}_T)$$

Optimum detection

$$\begin{split} \mathscr{C}(T, d_T, \hat{\mathbf{f}}_T) &= \\ c_0 \mathsf{P}_0(d_T = 1 | \mathscr{X}_T) + c_1 \mathsf{P}_1(d_T = 0 | \mathscr{X}_T) \\ &+ c_e \mathsf{E}_1 \left[\hat{\mathbf{f}}_T^2 \mathbbm{1}_{\{d_T = 0\}} | \mathscr{X}_T \right] + c_e \sigma^2 R_T^{-1}. \end{split}$$

Fix T and consider the auxiliary minimization:

$$\inf_{d_T} \left\{ c_0 \mathsf{P}_0(d_T = 1 | \mathscr{X}_T) + c_1 \mathsf{P}_1(d_T = 0 | \mathscr{X}_T) \right.$$
$$\left. + c_e \mathsf{E}_1 \left[\hat{\mathsf{f}}_T^2 \mathbb{1}_{\{d_T = 0\}} | \mathscr{X}_T \right] \right\}$$

Optimum detector:

$$\mathsf{d}_T = \left\{ \begin{array}{ll} 1 & \text{if} \ c_0 \leq \mathsf{L}_T \left\{ c_1 + c_e \hat{\mathsf{f}}_T^2 \right\} \\ 0 & \text{otherwise,} \end{array} \right.$$

$$L_T = \frac{\sigma}{\sigma_f \sqrt{R_T}} e^{\frac{1}{2\sigma^2} R_T^{-1} V_T^2 - \frac{1}{2} \mu_f^2 \sigma_f^{-2}}$$

Using the optimum estimator and detector yields

$$\mathscr{C}(T, d_T, \hat{f}_T) \ge \mathscr{C}(T, d_T, \hat{\mathsf{f}}_T) \ge \mathscr{C}(T, \mathsf{d}_T, \hat{\mathsf{f}}_T)$$

Optimum stopping time

Apply optimum detector and estimator, then

$$\mathcal{C}(T, \mathsf{d}_T, \hat{\mathsf{f}}_T) = \mathsf{E}_0 \left[\left(c_0 - \mathsf{L}_T \left\{ c_1 + c_e \hat{\mathsf{f}}_T^2 \right\} \right)^- | \mathcal{X}_T \right] + c_1 + c_e (\mu_f^2 + \sigma_f^2)$$

Define the function

$$\mathcal{G}(R) = \int_{-\infty}^{\infty} \left(c_0 - \frac{\frac{\sigma}{\sigma_f} e^{\frac{R^{-1}V^2}{2\sigma^2} - \mu_f^2 \frac{1}{2\sigma_f^2}}}{\sqrt{R}} \left[c_1 + c_e R^{-2} V^2 \right] \right)^{-1} \times \frac{e^{-\frac{1}{2\sigma^2} (R - \frac{\sigma^2}{\sigma_f^2})^{-1} (V - \mu_f \frac{\sigma^2}{\sigma_f^2})^2}}{\sqrt{2\pi\sigma^2 (R - \frac{\sigma^2}{\sigma_f^2})}} dV + c_1 + c_e (\mu_f^2 + \sigma_f^2)$$

Moustakides: Sequential Detection & System Identification, UCONN, November 2013

Theorem:

Function $\mathscr{G}(R)$ is strictly decreasing in R.

It is also true that

$$\mathscr{C}(T,\mathsf{d}_T,\hat{\mathsf{f}}_T)=\mathscr{G}(R_T)$$

Optimum stopping time:

$$\mathsf{T} = \inf\{t \ge 0 : \mathscr{G}(R_t) \le C\}$$

$$R_t = R_{t-1} + x_t^2; \ \ \mathsf{P}(R_t \to \infty) = 1$$

Summary: We sequentially observe $\{(y_t, x_t)\}$

$$y_t = fx_t + w_t$$

$$H_0: f = 0$$

$$\mathsf{H}_1:\ f\sim\mathcal{N}(\mu_f,\sigma_f^2)$$

Sequentially decide between H_0, H_1 . Whenever decision in favor of H_1 estimate f. Find triplet $T,\ d_T,\ \hat{f}_T$ that solves

$$\inf_{T,d_T,\hat{f}_T} T;$$
 subject to $: \mathscr{C}(T,d_T,\hat{f}_T) \leq C$

$$R_t = x_t^2 + \dots + x_1^2 + \sigma_f^{-2} \sigma^2$$

$$V_t = y_t x_t + \dots + y_1 x_1 + \mu_f \sigma_f^{-2} \sigma^2$$

$$\mathsf{T} = \inf\{t \ge 0 : \mathscr{G}(R_t) \le C\}$$

$$\hat{\mathsf{f}}_\mathsf{T} = R_\mathsf{T}^{-1} V_\mathsf{T}$$

$$\mathsf{L}_{\mathsf{T}} = \frac{\sigma}{\sigma_{f} \sqrt{R_{\mathsf{T}}}} e^{\frac{1}{2\sigma^{2}} R_{\mathsf{T}}^{-1} V_{\mathsf{T}}^{2} - \frac{1}{2} \mu_{f}^{2} \sigma_{f}^{-2}}$$

$$\mathsf{d_T} = \left\{ \begin{array}{ll} 1 & \text{if} \ c_0 \leq \mathsf{L_T} \left\{ c_1 + c_e \hat{\mathsf{f}}_\mathsf{T}^2 \right\} \\ 0 & \text{otherwise,} \end{array} \right.$$

Theorem:

The triplet T, d_T , \hat{f}_T is optimum in the sense that it solves the optimization problem:

$$\inf_{T,d_T,\hat{f}_T} T;$$
 subject to $: \mathscr{C}(T,d_T,\hat{f}_T) \leq C$

Proof:

For any other triplet satisfying the constraint we can write

$$C \ge \mathscr{C}(T, d_T, \hat{f}_T) \ge \mathscr{C}(T, \mathsf{d}_T, \hat{\mathsf{f}}_T) = \mathscr{G}(R_T)$$

$$\Rightarrow T \geq \mathsf{T}$$

Vector case

$$x_t \longrightarrow f_0, f_1, \dots, f_{L-1} \longrightarrow \bullet \longrightarrow y_t$$

 w_{t}

$$y_t = X'_t F + w_t$$

 $F = [f_0, \dots, f_{L-1}]'$
 $X_t = [x_t, \dots, x_{t-L+1}]'$

$$\mathsf{H}_0:\ F=0$$

$$H_1: F \sim \mathcal{N}(\mu_F, \Sigma_F)$$

$$\mathcal{C}(T, d_T, \hat{F}_T) =$$

$$c_0 \mathsf{P}_0(d_T = 1 | \mathcal{X}_T) + c_1 \mathsf{P}_1(d_T = 0 | \mathcal{X}_T)$$

$$+ c_e \mathsf{E}_1 \left[\|\hat{F}_T - F\|^2 \mathbb{1}_{\{d_T = 1\}} + \|F\|^2 \mathbb{1}_{\{d_T = 0\}} | \mathcal{X}_T \right]$$

$$\inf_{T,d_T,\hat{F}_T} T;$$
 subject to $: \mathscr{C}(T,d_T,\hat{F}_T) \leq C$

MMSE estimates

Complexity $O(L^3)$

$$\hat{\mathsf{F}}_t = \mathbf{R}_t^{-1} V_t$$

$$\mathbf{R}_t = \mathbf{R}_{t-1} + X_t X_t', \quad \mathbf{R}_0 = \sigma^2 \Sigma_F^{-1} \quad \mathbf{P}_t = \mathbf{R}_t^{-1}$$

$$V_t = V_{t-1} + y_t X_t, \quad V_0 = \sigma^2 \Sigma_F^{-1} \mu_F$$

Recursive Least Squares (RLS)

Complexity $O(L^2)$

$$e_t = y_t - X_t' \hat{\mathsf{F}}_{t-1}$$

$$K_t = \mathbf{P}_{t-1} X_t$$

$$\gamma_t = 1/(1 + X_t' K_t)$$

$$\hat{\mathsf{F}}_t = \hat{\mathsf{F}}_{t-1} + \gamma_t e_t K_t$$

$$\mathbf{P}_t = \mathbf{P}_{t-1} - \gamma_t K_t K_t'$$

Optimum MMSE estimates (Implementation of Kalman Filter); Extremely fast convergence.

High Complexity, Nonrobust to finite precisions

Adaptive System Identification

Moustakides: Sequential Detection & System Identification, UCONN, November 2013

Least Mean Square (LMS) estimates

$$e_t = y_t - X_t' \hat{F}_{t-1}$$

$$\hat{F}_t = \hat{F}_{t-1} + \gamma_t e_t X_t$$

$$\gamma_t = 1/t$$

Amazing algorithm!

Very low complexity (2L).

Insensitive to finite precision and Robust to model mismatch.

It is **THE** algorithm used in practice for real-time applications.

Slow convergence; Non-optimum estimates.

$$\mathbf{R}_{t} = X_{t}X'_{t} + \dots + X_{1}X'_{1} + \sigma^{2}\Sigma_{F}^{-1}$$

$$V_{t} = y_{t}X_{t} + \dots + y_{1}X_{1} + \sigma^{2}\Sigma_{F}^{-1}\mu_{F}$$

$$\mathsf{T} = \inf\{t \geq 0 : \mathscr{G}(\mathbf{R}_{t}) \leq C\}$$

$$\mathbf{A} > \mathbf{B}$$

$$\downarrow$$

$$P(\lambda_{\min}(\mathbf{R}_t) \to \infty) = 1 \quad \mathscr{G}(\mathbf{A}) \stackrel{\Downarrow}{<} \mathscr{G}(\mathbf{B})$$

$$\hat{\mathsf{F}}_\mathsf{T} = \mathbf{R}_\mathsf{T}^{-1} V_\mathsf{T}$$

$$\mathsf{L}_\mathsf{T} = \frac{\sigma^L}{\sqrt{|\Sigma_F||\mathbf{R}_\mathsf{T}|}} e^{\frac{1}{2\sigma^2} V_\mathsf{T}' \mathbf{R}_\mathsf{T}^{-1} V_\mathsf{T} - \frac{1}{2} \mu_F' \Sigma_F^{-1} \mu_F}$$
Update for determinant
$$\mathsf{L}_\mathsf{T} = \mathsf{L}_\mathsf{T} \left\{ c_1 + c_e \|\hat{\mathsf{F}}_\mathsf{T}\|^2 \right\}$$

$$\mathsf{d_T} = \left\{ \begin{array}{ll} 1 & \text{if} \ c_0 \leq \mathsf{L_T} \left\{ c_1 + c_e \| \hat{\mathsf{F}}_\mathsf{T} \|^2 \right\} \\ 0 & \text{otherwise,} \end{array} \right.$$

Further analysis

- The function $\mathcal{G}(\mathbf{R})$ can be computed only numerically. This is tractable solely for the scalar case. Obtain efficient approximations for small constraint cost values C (asymptotically optimal solutions for T).
- Instead of looking for the optimum triplet, fix a suboptimum (adaptive) estimator (e.g. LMS) and optimize only over the stopping time and the decision function.