# Sequential Change Detection: Overview & Recent Results

George V. Moustakides
Rutgers University &
University of Patras, Greece

## Outline

- Problem definition: Detectors and Change generation mechanisms
- Formulations involving expected delays
- Formulations involving hard delay constraints
- Decentralized detection (sensor networks)
- Intrusion detection in wireless networks



Specify: a) Detector form b) Change generation mechanisms

## **Applications**

Quality monitoring of manufacturing process (1930's)

**Biomedical Engineering** 

**Electronic Communications** 

**Econometrics** 

Seismology

Speech & Image Processing (segmentation)

Vibration monitoring (Structural health monitoring)

Security monitoring (fraud detection)

Spectrum monitoring

Scene monitoring

Network monitoring (router failures, intrusion detection)

Epidemic detection .....

CUSUM: 2,280 hits in 2013. Google Scholar

We observe **sequentially** a process  $\{x_t\}$  that has the following statistical properties

$$x_t \sim \left\{ \begin{array}{ll} f_0 & \text{for } 0 < t \leq \tau \\ f_1 & \text{for } t > \tau \end{array} \right.$$

Changetime is unknown!!!

#### Detect occurrence of $\tau$ as soon as possible

At every time t consult available data:  $x_1$ ,...,  $x_t$ ,  $x_{t+1}$ 

- lacktriangle Change did not take place before t Continue sampling
- Change took place before t 
  Stop sampling!

## Sequential Detector ←→ Stopping time

#### Structural health monitoring



Change mechanism independent from data

Amplitude of oscillations overly large



Change mechanism dependent on data

# Formulations with expected delays

We are looking for a stopping time T.

General criterion:

$$J(T) = \mathsf{E}_1[T - \tau \mid T > \tau]$$

Change mechanism independent from data

Shiryaev (1963):  $\tau$  is random with known prior.

$$\inf_T J(T) \ \ \text{subject to} : \mathsf{P}_0(T \leq \tau) \leq \alpha$$

If prior is exponential:  $P(\tau = t) = p(1 - p)^t$ 

Define the statistic : 
$$\pi_t = P(\tau < t \mid x_1, \dots, x_t)$$

$$T_{S} = \min\{t > 0 : \pi_{t} \geq \nu\}$$

Threshold  $\nu \in (0,1)$  such that the false alarm constraint is satisfied with equality.

In discrete time when  $\{x_t\}$  are i.i.d. before and after the change.

In continuous time when  $\{x_t\}$  is a Brownian motion with constant drift before and after the change. In continuous time when  $\{x_t\}$  is Poisson with constant rate before and after the change.

Time variation? Dependence? Multiple pre- and/or post-change possibilities?

$$J(T) = \mathsf{E}_1[T - \tau \mid T > \tau]$$

Changetime  $\tau$  is random with unknown prior.

Pollak (1985): Follow a worst-case analysis for prior.

$$J_{\mathsf{P}}(T) = \sup_{\mathsf{all priors}} \mathsf{E}_1[T - \tau \mid T > \tau]$$

We can show:

$$J_{\mathsf{P}}(T) = \sup_{t>0} \mathsf{E}_1[T-t \mid T>t]$$

$$\inf_T J_{\mathsf{P}}(T) \text{ subject to} : \mathsf{E}_0[T] \geq \gamma$$

Discrete time: i.i.d. data before and after the change with pdfs  $f_0$ ,  $f_1$ .

Compute recursively the following statistic:

$$S_t = (1+S_{t-1}) rac{f_1(x_t)}{f_0(x_t)};$$
 Pollak (1985):  $S_0$  if specially  $T_{\mathsf{P}} = \inf\{t>0: S_t \geq \nu\}$  designed, then  $[J_{\mathsf{P}}(T_{\mathsf{P}}) - \inf_T J_{\mathsf{P}}(T)] o 0;$  as  $\gamma o \infty$ 

Order-3 Asymptotic optimality

Exact optimality? Tartakovsky (2012) counterexample.

Continuous-time? Time variation? Dependence? Multiple pre- and/or post-change possibilities?

#### Change mechanism dependent on data.

Lorden (1971):  $\tau$  unknown dependence. Follow a worst-case analysis.

$$J_{\rm L}(T) = \sup_{\rm data\ dependent\ } {\rm E}_1[T-\tau\mid T>\tau]$$

$$J_{\mathsf{L}}(T) = \sup_{t \geq 0} \sup_{x_1, \dots, x_t} \mathsf{E}_1[(T-t)^+ \mid x_1, \dots, x_t]$$

$$\inf_{T} J_{\mathsf{L}}(T) \quad \text{subject to} : \mathsf{E}_0[T] \geq \gamma$$

#### **CUSUM** stopping time:

$$u_t = \log\left(\frac{f_1(x_1,\ldots,x_t)}{f_0(x_1,\ldots,x_t)}\right);$$
 running LLR

$$m_t = \inf_{0 < s \le t} u_s$$
; running minimum

$$S_t = u_t - m_{t-1}$$
; CUSUM statistic

$$T_{\mathsf{C}} = \inf\{t > 0 : S_t \ge \nu\}; \quad \mathsf{CUSUM} \text{ stop. time}$$

For i.i.d. 
$$S_t = (S_{t-1})^+ + \log\left(\frac{f_1(x_t)}{f_0(x_t)}\right)$$



Discrete time: i.i.d. before and after the change Lorden (1971) asymptotic optimality (order-1). Moustakides (1986) strict optimality. Poor (1998) strict optimality for exponential delay penalty.

#### **Continuous time**

Shiryaev (1996), Beibel (1996) strict optimality for Brownian Motion Moustakides (2004) strict optimality for Ito processes Moustakides (under review) strict optimality for Poisson processes.

Time variation? Dependence? Multiple pre- and/or post-change possibilities?

## Formulations with hard constraints

$$J(T) = \mathsf{E}_1[T - \tau \mid T > \tau]$$

Detection delay can be arbitrarily large!

Several applications require detection delay at most m.

$$\tau < T < \tau + m$$

If  $\tau + m < T$ , this is regarded as failure.

$$\mathcal{J}(T) = \mathsf{P}_1(\tau < T \le \tau + m \mid T > \tau)$$

Interested in detection probability

### Change mechanism independent from data

au random with known prior. (Shiryaev-like)

$$\sup_{T} \mathcal{J}(T) \text{ subject to } : \mathsf{P}_0(T \leq \tau) \leq \alpha$$

au random with unknown prior. (Pollak-like)

$$\mathcal{J}_{P}(T) = \inf_{t > 0} P_{1}(t < T \le t + m \mid T > t)$$

$$\sup_{T} \mathcal{J}_{\mathsf{P}}(T) \ \ \text{subject to} : \mathsf{E}_{0}[T] \geq \gamma$$

#### Change mechanism dependent on data.

au unknown dependence. (Lorden-like)

$$\mathcal{J}_{\mathsf{L}}(T) = \inf_{t \geq 0} \inf_{x_1, \dots, x_t} \mathsf{P}_1(t < T \leq t + m \mid x_1, \dots, x_t)$$

$$\sup_{T} \mathcal{J}_{\mathsf{L}}(T) \ \ \text{subject to} : \mathsf{E}_{0}[T] \geq \gamma$$

Exact solution only for m=1 (detect the change with the first sample under the alternative regime).

$$T_{\mathsf{Sh}} = \inf \left\{ t > 0 : \frac{f_1(x_t)}{f_0(x_t)} \ge \nu \right\}$$

Shewhart (1931). Optimality: Bojdecki (1979); Pollak and Krieger (2013); Moustakides (under review).

If there are two possible changes?

1) 
$$f_0 \to f_1^1$$
 2)  $f_0 \to f_1^2$ 

Run two separate CUSUMs in parallel (2-CUSUM).

Dragalin (1997); Hadjiliadis, Moustakides (2006); Hadjiliadis, Poor (2009): Asymptotic optimality (orders-1,2,3).

$$J_{\mathsf{L}}(T) = \sup_{i=1,2} \sup_{t \geq 0} \sup_{x_1,\dots,x_t} \mathsf{E}^i_1[(T-t)^+ \mid x_1,\dots,x_t]$$
 
$$\inf_T J_{\mathsf{L}}(T) \text{ subject to} : \mathsf{E}_0[T] \geq \gamma$$

**Theorem:** If  $\gamma_0 \ge \gamma \ge 1$ , then the Shewhart test

$$T_{\mathsf{Sh}} = \inf \left\{ t > 0 : (1-q) \frac{f_1^1(x_t)}{f_0(x_t)} + q \frac{f_1^2(x_t)}{f_0(x_t)} \geq \nu \right\}$$

is optimum. 2-CUSUM is not strictly optimum.

## Decentralized detection



Fellouris-Moustakides (2014)



If more than 1 bits, quantize overshoot!

#### Communication with Fusion Center is:

- at random times
- asynchronous
- control over average communication period with  $A_i$ ,  $B_i$

If sensor i sends a bit at time t, the Fusion Center updates an estimate of the global log-likelihood ratio:

$$\hat{u}_t = \left\{ \begin{array}{ll} \hat{u}_{t-} + B_i & \text{if bit is } 1 \\ \hat{u}_{t-} + A_i & \text{if bit is } 0 \end{array} \right.$$

and performs a CUSUM test using the estimate of the global log-likelihood ratio.



#### Smart Fence: Chraim and Pister, U of California, Berkeley (2013)









Long-term deployment setup at the Chevron-Richmond refinery. The result of this test was a detection rate of 100% with no false alarms. The sensors withstood strong winds and rainy weather.

## Intrusion detection with Radosavac and Baras

MAC Layer: If the channel is not in use, nodes wait a random (back-off) time and then ask to reserve the channel.

- The node with the smallest back-off time reserves the channel.
- Back-off times of legitimate users are uniformly distributed. So  $f_0 = U[0, W]$ .
- Intruder's goal is to reserve the channel more often than a legitimate user. Back-off distribution  $f_1$ =? is unknown.

Use back-off time measurements to detect intruder.

We would like to apply CUSUM on the back-off times for intruder detection. But we do not know  $f_1$ !

#### Intruder characterization

- N legitimate nodes have probability 1/N of reserving the channel.
- A node is characterized as "intruder" if its probability to reserve the channel is at least  $\eta/N$  where  $\eta>1$ .

Example: If  $\eta=1.1$  this means I can tolerate illegitimate behavior provided it is no larger than 10% of the legitimate one!

$$\mathsf{P}_1(\mathsf{Reserve\ channel}) \geq \frac{\eta}{N} \Longleftrightarrow \int_0^W x f_1(x) dx \leq \epsilon \frac{W}{2}$$

#### Defines a class $\mathcal{F}$ of possible pdfs

$$J_{\mathsf{L}}(T,f_1) = \sup_{t \geq 0} \sup_{x_1,...,x_t} \mathsf{E}_1[(T-t)^+ \mid x_1,\ldots,x_t]$$

$$\inf_{T} \sup_{f_1 \in \mathcal{F}} J_{\mathsf{L}}(T, f_1) \quad \text{subject to} : \mathsf{E}_0[T] \geq \gamma$$

CUSUM with 
$$f_1^*(x) = \left\{ \begin{array}{cc} Ce^{-\mu x} & \text{for } 0 \leq x \leq W \\ 0 & \text{otherwise.} \end{array} \right.$$