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Problem definition

Detect change

Change in statistics

Ly

F P
Specify: a) Detector form
b) Change generation mechanisms
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Applications

Quality monitoring of manufacturing process (1930°s)
Biomedical Engineering

Electronic Communications

Econometrics

Seismology

Speech & Image Processing (segmentation)

Vibration monitoring (Structural health monitoring)
Security monitoring (fraud detection)

Spectrum monitoring

Scene monitoring

Network monitoring (router failures, intrusion detection)

Epidemic detection .....
CUSUM: 2,280 hits in 2013. Google Scholar
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We observe a process {z,} that has the

following statistical properties
Changetime

g (MU A0S is unknown!!!
L N
fl fer s S

At every time ¢ consult available data: z, ,..., z,

4 Change did not take place before ¢
Continue sampling

¢ Change took place before ¢
sampling!
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Structural health monitoring

- . k Change mechanism
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Formulations with expected delays
We are looking for a stopping time 1.

General criterion:
J(T) = El[T—T | T>’T]

Change mechanism independent from data
Shiryaev (1963): 7is random with prior.

igf J(T) subjectto: Po(T <7)<a

If prior is exponential: P(7 =t) = p(1 — p)’
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Define the statistic: m; =P(7 <t | x1,...,2¢)

T5=min{t>():7rt21/}

Threshold v € (0,1) such that the false alarm
constraint is satisfied with equality.

In discrete time when {z,} are i.i.d. before and after
the change.

In continuous time when {z,} is a Brownian motion
with constant drift before and after the change.

In continuous time when {z,} is Poisson with constant
rate before and after the change.

Time variation? Dependence? Multiple pre- and/or
post-change possibilities?
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TR = E1 |1 = 748N

Changetime 7is random with prior.
Pollak (1985): Follow a for prior.
Jp(T)= sup E1[T —7 | T > 7]
all priors

We can show:

Jp(T) =supEq[T —t | T >t
t>0

igf Jp(T) subject to: Eo|T] >~
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Discrete time: i.i.d. data before and after the change
with pdfs f,,

Compute recursively the following statistic:

S, = ({ENEA) /1 Emt) ; Pollak (1985):
fo(zt) S, if specially
Tp =inf{t >0:S; > v} designed, then

[JP(TP) o iglf Jp(T)] — 0; as o —¢ ¢

Order-3 Asymptotic optimality
Exact optimality? Tartakovsky (2012) counterexample.

Continuous-time? Time variation? Dependence?
Multiple pre- and/or post-change possibilities?
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Change mechanism dependent on data.

Lorden (1971): 7 dependence.
Follow a worst-case analysis.

JLAE sup E«[T —7 | T > 7]

data dependent T

JU(T) =SpEstpT Eq(d’ — t)¥ 1 s oy

t:_'\"{] L1y..03Lt
inf JL(T) subject to : Eq[T] >~
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CUSUM stopping time:

u; = lo STCAB, ) \ o
g | g
fﬂ(mlj"':mt)

my = Inf wug; running minimum
0<s<t

St — Ut — M1, CUSUM statistic

Tc =inf{t >0:85; > v}; CUSUM stop. time

For i.i.d. S = (S;_1)" + log (jﬁ;i%)
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my,

ML estimate of 7
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Discrete time: i.i.d. before and after the change
Lorden (1971) asymptotic optimality (order-1).
Moustakides (1986) strict optimality.

Poor (1998) strict optimality for exponential delay
penalty.

Continuous time

Shiryaev (1996), Beibel (1996) strict optimality for
Brownian Motion

Moustakides (2004) strict optimality for Ito processes
Moustakides (under review) strict optimality for
Poisson processes.

Time variation? Dependence? Multiple pre- and/or
post-change possibilities?
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Formulations with hard constraints
J(T) — El[T—T | T>T]

Detection delay can
be arbitrarily large!

Several applications require detection delay

T<T <T1T4+m

If 7+ m < T, this is regarded as
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T =Bl <T <7 L4nAEE>"7)
Interested in detection probability

Change mechanism independent from data

7 random with known prior. (Shiryaev-like)
sup J(T') subject to: Po(7T' < 7) < a
f

7 random with unknown prior. (Pollak-like)
Je(L)y =Lt <d&st - m | 1°>1)

t>0
sup Jp(7T') subject to: Eg|T| > v
}
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Change mechanism dependent on data.
7 unknown dependence. (Lorden-like)

JL() =N = B =i PT . . .., T1)

t>0x1,...,2¢

sup JL(T') subject to: Eo|T| > v
@
Exact solution only for (detect the change with

the first sample under the alternative regime).

: 1
TSh:mf{t>0: fi(@) 21/}
Jo (%)
Shewhart (1931). Optimality: Bojdecki (1979); Pollak and
Krieger (2013); Moustakides (under review).
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If there are two possible changes?

1) fo—= fi  2) foo fT

Run two separate CUSUMs in parallel (2-CUSUM).
Dragalin (1997); Hadjiliadis, Moustakides (2006); Hadjiliadis, Poor
(2009): Asymptotic optimality (orders-1,2,3).

J(T) = supsup sup Ej[(T —8)F | a1,..., a4

tEU L1yl

ian JL(T') subject to: Eo|T] > v

Theorem: If v, > ~ > 1, then the Shewhart test

fi (i?f»'t) f1 (ﬂft) .v}
fo(@ ) f(}(iﬂt) N

TSh:inf{t:)O:(l— )

is optimum. 2-CUSUM
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Decentralized detection

@ ~ Sensor network

Challenge: Data
guantization.

-

» [sitsiklis (1993) nonsequen.
Veeravalli (1999,2001)
A Dayanik,Poor,Sezer (2008)

Tartakovsky,Veeravalli (2008)
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Fellouris-Moustakides (2014)

1 1
Uy - Uy
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Level triggered sampling

0

If more than 1 bits,
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Communication with Fusion Center is:
e at random times
e asynchronous

* control over communication period with

If sensor ¢ sends a bit at time ¢, the Fusion Center
updates an estimate of the global log-likelihood ratio:

uy— + A; if bitis 0

and performs a CUSUM test using the estimate of the
global log-likelihood ratio.
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Number of sensors=5; Communication period=6

| | |
- =0~ — 1-bit Q-CUSUM
— — 2-bit Q-CUSUM
inf-bit Q-CUSUM
— =0~ — 1-bit D-CUSUM
— = 2-bit D-CUSUM
inf-bit D-CUSUM
Centralized CUSUM

_.ul"’
L 0.—-""
_e” % _4

g

-
-

- f
e
— -

-
A 4
o

>,
=
@)
T
c
e
5
3
)
(]

8 10
10 10

False alarm period

G.V. Moustakides: Sequential Change-Detection, Princeton, January 2014




Smart Fence: Chraim and Pister, U of California, Berkeley (2013)

Long-term deployment setup at
the Chevron-Richmond refinery.
The result of this test was a
detection rate of 100% with no
false alarms. The sensors
withstood strong winds and rainy

weather.
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Intrusion detection with Radosavac and Baras

MAC Layer: If the channel is not in use, nodes wait a rand-
om (back-off) time and then ask to reserve the channel.

* The node with the smallest back-off time reserves
the channel.

" Back-off times of legitimate users are uniformly
distributed. So f,=U[0,I¥].

" |ntruder’s goal is to reserve the channel more often
than a legitimate user. Back-off distribution j;="7is

Use back-off time measurements to detect intruder.
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We would like to apply CUSUM on the back-off times for
intruder detection. But we do not know f;!

Intruder characterization

= NV legitimate nodes have probability 1/ /N of
reserving the channel.

" A node is characterized as “intruder” if its

probability to reserve the channel is at least /N
where n >1.

Example: If n = 1.1 this means | can illegitimate

behavior provided it is no larger than 10% of the
legitimate one!
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U ' W
P1(Reserve channel) > T / rfi(z)dr < iy
0

Defines a class JF of possible pdfs
JU(T, f1) =sup sup E{[(T —t)" | z1,..., x4

ﬁ:j(] L1y.eeyLt

inf sup J (T, f1) subject to: Eo|[T] > ~
I f1er

T Ce PT for0 <z < W
0 otherwise.

CUSUM with f{(xz) = 4

.
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