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Problem definition

Detect change
Change in statistics
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Specify: a) Detector form
b) Change generation mechanisms
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Applications

Quality monitoring of manufacturing process (1930’s)
Biomedical Engineering

Electronic Communications

Econometrics

Seismology

Speech & Image Processing (segmentation)

Vibration monitoring (Structural health monitoring)
Security monitoring (fraud detection)

Spectrum monitoring

Scene monitoring

Network monitoring (router failures, anomaly detection)

Epidemic detection .....
CUSUM: 2,280 hits in 2013. Google Scholar
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We observe a process {z,} that has the
following statistical properties
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At every time ¢ consult available data: z ,..., T,
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Stopping times
We observe sequentially a process {x;}

A random time 7' € {0,1,2,...} is called a

stopping time adapted to {x;} when the event
{T =t} depends only on {z1,...,x:}

Optimal Stopping Theory
For {¢:(x)}, {as(x)} deterministic functions

Optimize

Elor(xr)|] or E Z ai(xt) + ¢r(zT)
| t=0
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Change generation mechanisms

Structural health monitoring
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Formulations with expected delays
Pre-change : Py (Eg); Post-change : Py (E1);
We are looking for a stopping time 7.

General criterion:

J(T) — El[T—T | T>T]
Change mechanism independent from data
Shiryaev (1963): 7is random with prior.

Exponential prior: Hlr =)= ull — p)t
i%f J(T) subjectto: Po(T < 7)<«
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Discrete time: i.i.d. data before and after the change with

pdfs f,, f1-
fi1(x¢)

Define the statistic: S, =1{5;_1 + 1
RS ) (1 — )
TNttt > 0555 0%

Threshold v > 0 such that the false alarm constraint is
satisfied with equality.

In continuous time when {z,} is a Brownian motion with
constant drift before and after the change.

In continuous time when {z,} is Poisson with constant
rate before and after the change.

Time variation? Dependence? Multiple pre- and/or post-
change possibilities?
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JT)=ET—7|T > 7}

Changetime 7is random with prior.
Pollak (1985): Follow a for the prior.
Jp(T)= sup E1|T —7 | T > 7]
all priors

We can show:

Jp(T) =supEq[T —t | T >t
t>0

i%f Jp(T) subject to: Eo|T] > v
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Discrete time: i.i.d. data before and after the change with

pde f{]ffl'
Compute recursively the following statistic:

f1 (s,
St = (St 1) P Pollak (1985):
| b S, if specially
I = Inf{t Al 25 > V} designed, then

[JP(TP) — i%f JP(T)] — (P 21590 —¢ o¢

Exact optimality? Tartakovsky (2012) counterexample.

Continuous-time? Time variation? Dependence? Multiple
pre- and/or post-change possibilities?
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Change mechanism dependent on data.

Lorden (1971): 7 dependence.
Follow a worst-case analysis.

YL — sup E1|[T —7 | T > 7]

data dependent T

JU(T) =sup sup Eqi[(T —#)" | z1,..., 7]

tEU 4 by R i
i%f JL(T') subject to: Eo|T] >~
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CUSUM stopping time:

bwp,, & _
u; = log (fl:: i t)) . running LLR
o102, &1)

m:; = Inf wug; running minimum
0<s<t

St = uy — me_1q; CUSUM statistic

Tc =inf{t >0:5; >v}; CUSUM stop. time

For i.i.d. S; = (S;_1)" + log (;;zt;)
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my,

ML estimate of 7
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Discrete time: i.i.d. before and after the change
Lorden (1971) asymptotic optimality (order-1).

Moustakides (1986) strict optimality.

Continuous time
Shiryaev (1996), Beibel (1996) strict optimality for
Brownian Motion with constant drifts before and after.

Moustakides (2004) strict optimality for Ito processes

Moustakides (under review) strict optimality for Poisson
processes.

Time variation? Dependence? Multiple pre- and/or post-
change possibilities?
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Formulations with hard constraints
J(T) — El[T—T | T>’T]

Detection delay can
be arbitrarily large!

Several applications require detection delay

T<T<71T4+m

If 7+ m < T, this is regarded as
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J()=P1(T<T<m4{T>T)> 7)

Interested in detection probability

Change mechanism independent from data
7 random with known prior. (Shiryaev-like)

sup J (1) subject to: Po(T < 7) < &
Ji
7 random with unknown prior. (Pollak-like)
ElL) = gggPl(Tg t+m | T > t)
sup Jp(7T') subject to : Eg|T| > v
i
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Change mechanism dependent on data.
7 unknown dependence (Lorden-like)

J(T)=inf inf Pi{(T<t+m]|xz1,...,24)

tEU L1yeeeydlt

sup JL(T') subject to: Eo[T] > v
T

Exact solution only for (I=7+1, i.e. detect the
change with the first sample under the alternative

regime). }
: ) T =Y {t >0 : f1($ti > .7/}
f0($t,,

Shewhart (1931). Optimality: Bojdecki (1979); Pollak and
Krieger (2013); Moustakides (2014).
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Decentralized detection

@ Sensor network
- @

Challenge: Data
guantization.

« Isitsiklis (1993) nonsequen.
Veeravalli (1999,2001)
_—, Dayanik,Poor,Sezer (2008)

Tartakovsky,Veeravalli (2008)
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Fellouris-Moustakides (under review)
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If more than 1 bits,
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Communication with Fusion Center is:
" at random times
" asynchronous

= control over communication rate with A, B.

If sensor ¢ sends a bit at time £, the Fusion Center updates
an estimate of the global log-likelihood ratio:

| - ﬁﬁ_ - BE if bit is 1
=13 d._+A; ifbitis0

and performs a CUSUM test using the estimate of the
global log-likelihood ratio.
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Number of sensors=5; Communication period=6

- =0~ — 1-bit Q-CUSUM
) — 2-bit Q-CUSUM
inf-bit Q-CUSUM

— =0~ — 1-bit D-CUSUM
— = 2-bit D-CUSUM
inf-bit D-CUSUM
Centralized CUSUM
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False alarm period
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Smart Fence: Chraim and Pister, U of California, Berkeley (2013)

Long-term deployment setup at
the Chevron-Richmond refinery.
The result of this test was a
detection rate of 100% with no
false alarms. The sensors
withstood strong winds and rainy

weather.
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