# Sequential Detection of Changes Metrics and Optimum Tests

George V. Moustakides
University of Patras, Greece

# Outline

- Introduction: Problem definition, Applications,
   Existing formulations Questions
- A model for the change imposing mechanism
- Two generic setups for sequential change detection
  - Complete knowledge Shiryaev's metric
  - Pollak's metric
  - Lorden's metric

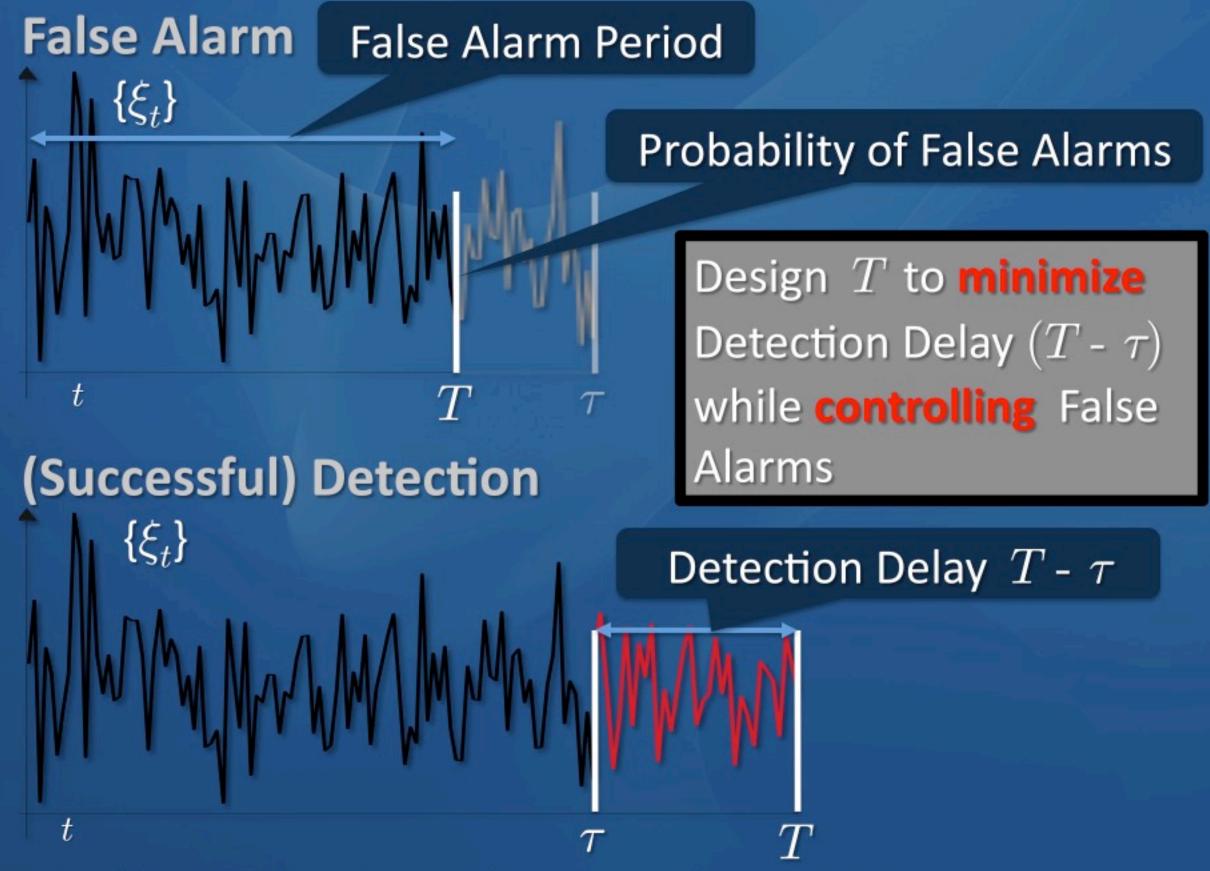


# Detect change as soon as possible

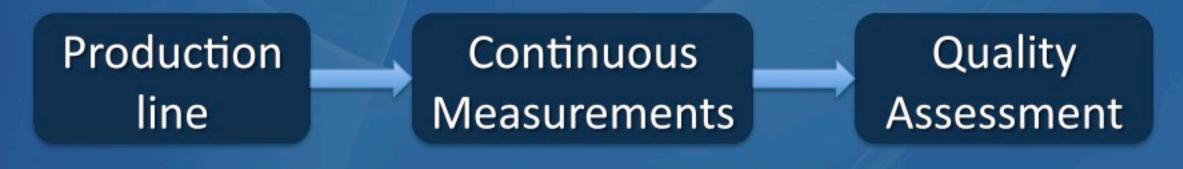
Data become available sequentially: at each time instant t we obtain a new sample  $\xi_t$ .

At every time t consult available data  $\xi_1$  ,...,  $\xi_t$  and  $\operatorname{decide}$ 

- A change took place: STOP Stopping Time T
- lacktriangle A change didn't take place: Ask for next sample  $\,\xi_{t+1}\,$

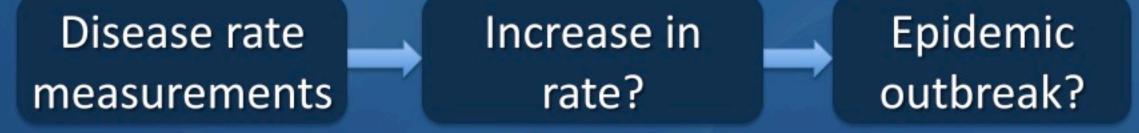


# Quality monitoring of manufacturing process

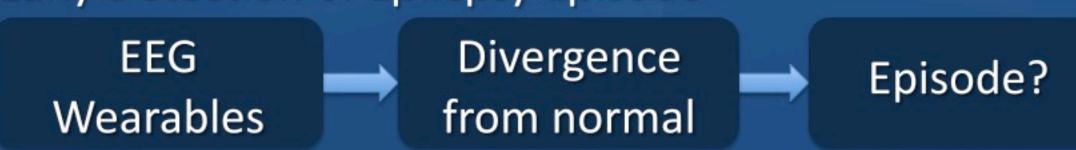


### **Medical Applications**

**Epidemic Detection** 



Early Detection of Epilepsy Episode



# **Financial Applications**

- Structural Change-detection in Exchange Rates
- Portfolio Monitoring

**Electronic Communications** 

Seismology

Speech & Image Processing (segmentation)

Vibration monitoring (Structural health monitoring)

Security monitoring (fraud detection)

Spectrum monitoring

Scene monitoring

Network monitoring (router failures, attack detection)

:

CUSUM: 3,000 hits in 2015. Google Scholar.

80% in Change Detection: 2300 articles

#### **Performance Metrics**

$$J(T) = \mathsf{E}_1[T - \tau \,|\, T > \tau]$$

What is the change-time  $\tau$  ?

Metric must measure only success

Failures will be dealt through False Alarm control

**Shiryaev** (1963):  $\tau$  is random with known prior:

$$J_{\mathsf{S}}(T) = \mathsf{E}_1[T - \tau \mid T > \tau]$$
 Too restrictive!

**Pollak** (1985):  $\tau$  is deterministic and unknown:

$$J_{\mathsf{P}}(T) = \sup_{t \geq 0} \mathsf{E}_1[T - t \,|\, T > t]$$
 Leads to SR test

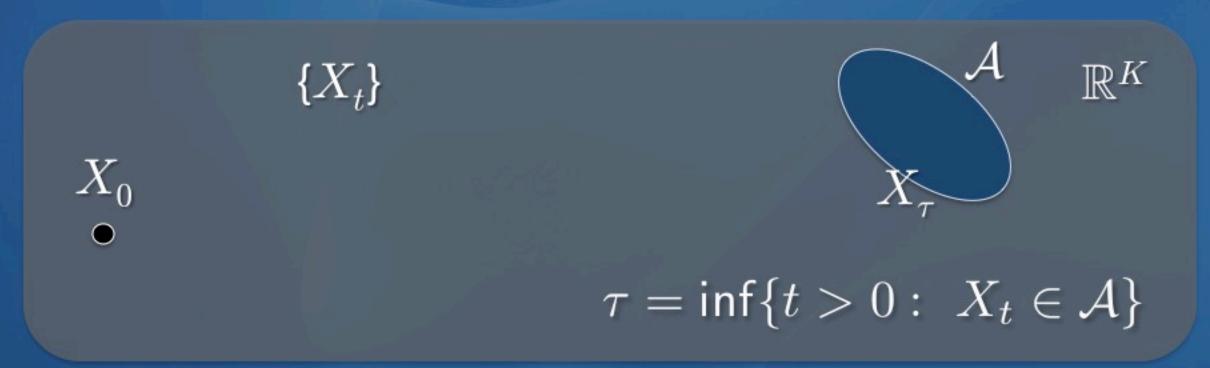
**Lorden** (1971):  $\tau$  is deterministic and unknown:

$$J_{\mathsf{L}}(T) = \sup \ \mathsf{Sup} \ \mathsf{E}_1[T - t \,|\, T > t, \xi_1, \dots, \xi_t]$$

Leads to CUSUM  $t \ge 0 \xi_1, \dots, \xi_t$  Too pessimistic (?)

# Model for change imposing mechanism

A random vector process  $\{X_t\}$  evolves in time in  $\mathbb{R}^K$  $\mathcal{A}$  is a subset in  $\mathbb{R}^K$ 

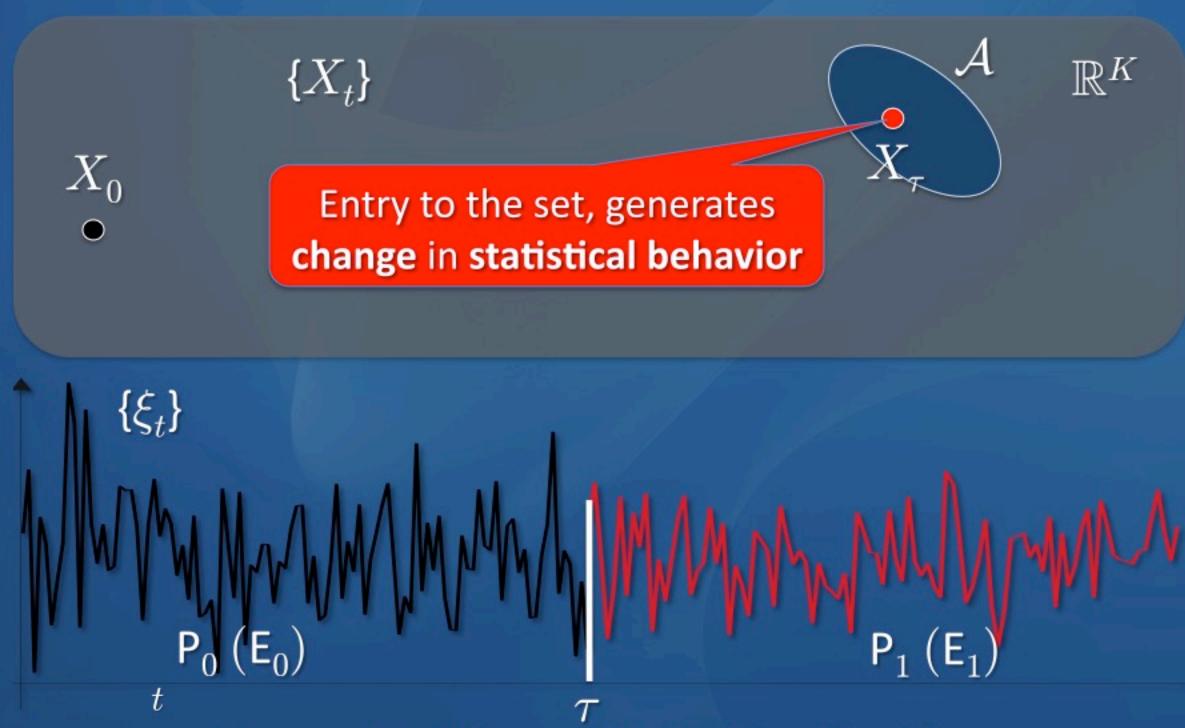


 $\tau$  is a first entry time, depends on  $\{X_t\}$ .

We would like to detect it.

If  $\{X_t\}$  observable and  $\mathcal{A}$  known, problem is **trivial**. If  $\{X_t\}$  (partially) hidden and/or  $\mathcal{A}$  unknown, problem is **challenging**.

# Instead of $\{X_t\}$ we observe process $\{\xi_t\}$

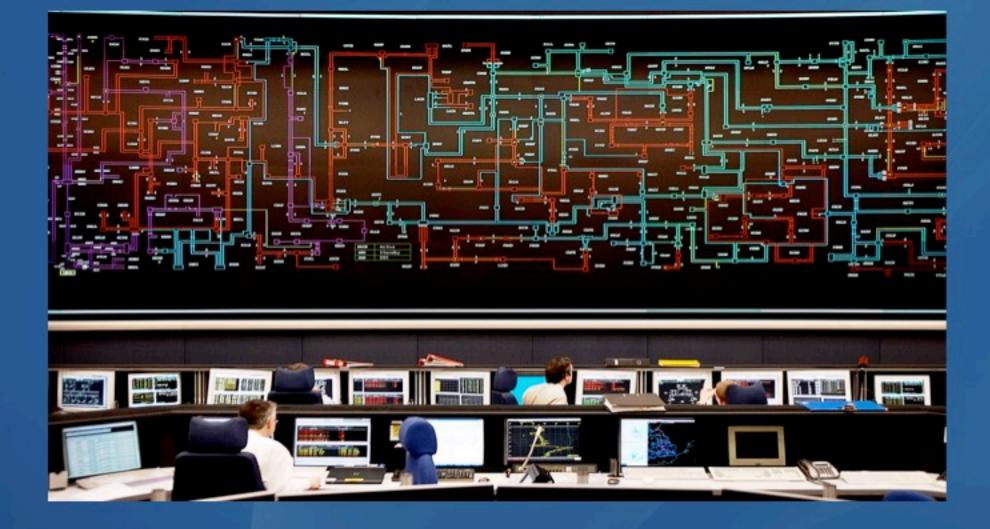


**Sequential Change Detection Problem** 

- First-entry: Model for change-imposing mechanism.
- Unifies all existing formulations
- Deeper understanding of change-imposing mechanism may lead to more efficient detectors.

#### Goal: detect occurrence of au

- au is a stopping time adapted to the filtration generated by the (partially) hidden process  $\{X_t\}$ .
- T is a stopping time adapted to the filtration generated by the observation sequence  $\{\xi_t\}$ .



#### **Power Grid:**

 $X_t$ : Energy at major points in the grid.

 $\xi_t = X_t + W_t$  noisy measurements.

 $\mathcal{A}$ : If  $X_t \in \mathcal{A}$  then, after short time major blackout.  $\mathcal{A}$  is known



#### Structure health monitoring:

 $X_t$ : Vibrations at every point of the structure (state)  $\xi_t = \mathbf{A} X_t + W_t$ : Low dimensional noisy measurements  $\mathcal{A}$ : If  $X_t \in \mathcal{A}$  then cracks (change in the structure)  $\mathcal{A}$  known or unknown.







# Independent $\{X_t\}$ and $\{\xi_t\}$ :

 $X_t$ : Field coordinates of the ball

Independent

 $\xi_t$ : Noisy measurements

 $\mathcal{A}$ : Volume under the goal net.

# Performance metrics - known entry set

#### **Delayed Detection** (Tracking)

$$\mathcal{J}(T) = \mathsf{E}_1[T - \tau | T > \tau]$$

$$\inf_T \mathcal{J}(T) = \inf_T \mathsf{E}_1[T-\tau|T>\tau]$$
 
$$\mathrm{subject\ to}: \mathsf{P}_0(T\leq \tau) \leq \alpha$$

#### Hard Limited Delay (Capture)

$$\mathcal{P}(T) = \mathsf{P}_1(T \le \tau + M|T > \tau)$$

$$\sup_{T} \mathcal{P}(T) = \sup_{T} \mathsf{P}_1(T \leq \tau + M | T > \tau)$$
 
$$\sup_{T} \mathsf{Subject to} : \mathsf{P}_0(T \leq \tau) \leq \alpha$$

# Delayed detection - known entry set

$$\inf_T \mathcal{J}(T) = \inf_T \mathsf{E}_1[T-\tau|T>\tau]$$
 
$$\mathsf{subject\ to}: \mathsf{P}_0(T\leq \tau) \leq \alpha$$

# **Optimal Stopping Theory**

Pair process  $\{(X_t, \xi_t)\}$  is i.i.d. before and after  $\tau$  with joint pdfs  $f_0$ ,  $f_1$ .

Moustakides (2016): The optimum test

$$\pi_t = \mathsf{P}_0(X_t \in \mathcal{A}|\xi_t) \qquad T_o = \inf\{t > 0 : S_t \ge \nu\}$$

$$S_t = S_{t-1} \frac{f_1(\xi_t)}{(1 - \pi_t) f_0(\xi_t)} + \frac{\pi_t}{1 - \pi_t}$$

# If additionally $\{X_t\}$ and $\{\xi_t\}$ independent processes, then

$$\pi_t = \mathsf{P}_0(X_t \in \mathcal{A}|\xi_t) = \mathsf{P}_0(X_t \in \mathcal{A}) = \pi$$

$$S_t = S_{t-1} \frac{f_1(\xi_t)}{(1-\pi)f_0(\xi_t)} + \frac{\pi}{1-\pi}$$

$$\tilde{S}_t = \frac{1-\pi}{\pi} S_t - 1, \quad \tilde{\nu} = \frac{1-\pi}{\pi} \nu - 1$$

$$\tilde{S}_t = (\tilde{S}_{t-1} + 1) \frac{f_1(\xi_t)}{(1 - \pi)f_0(\xi_t)}$$

$$T_o = \inf\{t > 0: \ \tilde{S}_t \ge \tilde{\nu}\}$$

Shiryayev test (1963)

# Unknown entry set

- What if entry set A is unknown?
- Can we still detect the first-entry to an unknown set? Equivalently detect the change-time  $\tau$  that inflicts change in statistics?

Focus on **change** of the statistics

# Performance metrics - unknown entry set

#### **Delayed Detection**

Worst-case analysis

$$\mathcal{J}(T) = \sup \mathsf{E}_1[T - \tau | T > \tau]$$

$$\inf_{T} \mathcal{J}(T) = \inf_{T} \sup_{\tau} \mathsf{E}_1[T - \tau | T > \tau]$$
 
$$\mathrm{subject\ to}: \mathsf{E}_0[T] \geq \gamma$$

#### **Hard Limited Delay**

$$\mathcal{P}(T) = \inf \mathsf{P}_1(T \le \tau + M|T > \tau)$$

$$\sup_{T} \mathcal{P}(T) = \sup_{T} \inf_{\tau} \mathsf{P}_1(T \leq \tau + M|T > \tau)$$
 subject to :  $\mathsf{E}_0[T] \geq \gamma$ 

# Delayed detection - unknown entry set

 $\{X_t\}$  and  $\{\xi_t\}$  independent processes

$$\mathcal{J}_{\mathsf{P}}(T) = \sup_{\tau} \mathsf{E}_1[T - \tau | T > \tau]$$

We can show (Moustakides 2008):

$$\mathcal{J}_{\mathsf{P}}(T) = \sup_{t \geq 0} \mathsf{E}_1[T-t|T>t]$$
 Pollak (1985)

$$\inf_{T} J_{\mathsf{P}}(T) \quad \text{subject to} : \mathsf{E}_0[T] \geq \gamma$$

Discrete time: i.i.d. data before and after the change with pdfs  $f_0$ ,  $f_1$ .

# Shiryaev-Roberts-Pollak test

Compute recursively the following statistic:

$$S_t = (S_{t-1} + 1) \frac{f_1(\xi_t)}{f_0(\xi_t)}$$
  $T_P = \inf\{t > 0 : S_t \ge \nu\}$ 

Pollak (1985): If  $S_0$  specially designed, then

$$[J_{\mathsf{P}}(T_{\mathsf{P}}) - \inf_T J_{\mathsf{P}}(T)] o 0; \ \ \text{as} \ \gamma o \infty$$

Exact optimality? Tartakovsky (2012) counterexample.

Change in the drift of a BM: Polunchenko (2016)

Dependence? Multiple pre- and/or post-change possibilities? Time variation?

# $\{X_t\}$ and $\{\xi_t\}$ dependent processes

$$\mathcal{J}_{\mathsf{L}}(T) = \sup_{\tau} \mathsf{E}_1[T - \tau | T > \tau]$$

We can show (Moustakides 2008):

$$\mathcal{J}_{\mathsf{L}}(T) = \sup_{t \geq 0} \sup_{\xi_1, \dots, \xi_t} \mathsf{E}_1[T - t | T > t, \xi_1, \dots, \xi_t]$$

Lorden (1971)

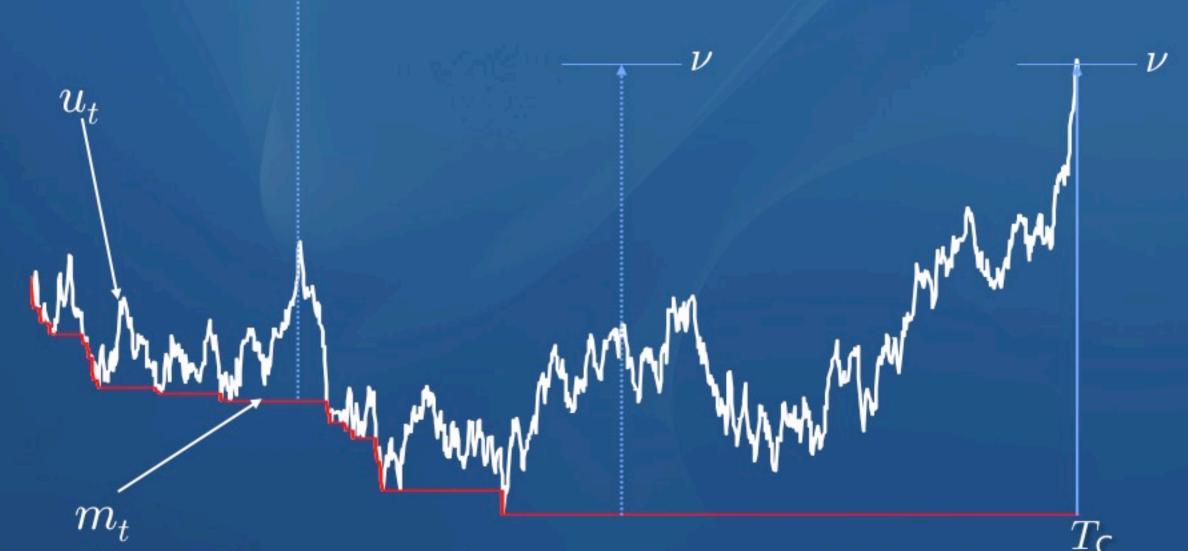
$$\inf_{T} J_{\mathsf{L}}(T) \quad \text{subject to} : \mathsf{E}_{0}[T] \geq \gamma$$

Discrete time: i.i.d. data before and after the change with pdfs  $f_0$ ,  $f_1$ .

#### **CUSUM** test

$$S_t = \max\{S_{t-1}, 0\} + \log \frac{f_1(\xi_t)}{f_0(\xi_t)}$$
  $T_{\mathsf{C}} = \inf\{t > 0 : S_t \ge \nu\}$ 

 $S_t = u_t - m_t$ 



Discrete time: Lorden (1971) asymptotic optimality. Moustakides (1986) exact optimality.

Continuous time: Shiryaev (1996), Beibel (1996) Brownian Motion with constant drift before and after. Moustakides (2004) strict optimality for Ito processes.

Discrete time: Moustakides-Veeravalli (2016) Non abrupt changes

Dependence? Multiple pre- and/or post-change possibilities?

# Hard Limited Delay - unknown entry set

M=1 corresponds to immediate detection with the first sample after the change

$$\mathcal{P}_{\mathsf{S}}(T) = \mathsf{P}_1(T = \tau + 1 | T > \tau)$$

$$\mathcal{P}_{\mathsf{P}}(T) = \inf_{t \ge 0} \mathsf{P}_1(T = t + 1 | T > t)$$

$$\mathcal{P}_{\mathsf{L}}(T) = \inf_{t \geq 0} \inf_{\xi_1, \dots, \xi_t} \mathsf{P}_1(T = t + 1 | T > t, \xi_1, \dots, \xi_t)$$

$$\sup_{T} \mathcal{P}_{\mathsf{S}}(T)$$
 s.t. :  $\mathsf{P}_{0}(T \leq \tau) \leq \alpha$ 

$$\sup_{T} \mathcal{P}_{\mathsf{P}(\mathsf{L})}(T)$$
 s.t. :  $\mathsf{E}_0[T] \geq \gamma$ 

$$T_{\mathsf{Sh}} = \inf \left\{ t > 0 : \frac{f_1(\xi_t)}{f_0(\xi_t)} \geq \nu \right\}$$
 Shewhart test (1931)

Optimality: Bojdecki (1979): Shiryaev like

Pollak and Krieger (2013): Pollak like

Moustakides (2014): Lorden like

Pollak and Krieger (2013): Multiple post-change possibilities.

Moustakides (2014): Time variation

# Dependent samples

$$\mathcal{P}_{\mathsf{L}}(T) = \inf_{t \geq 0} \inf_{\xi_1, \dots, \xi_t} \mathsf{P}_1(T = t + 1 | T > t, \xi_1, \dots, \xi_t)$$

$$\sup_T \mathcal{P}_{\mathsf{L}}(T) \quad \text{subject to} : \mathsf{E}_0[T] \geq \gamma$$

**Markovian** pre- and post-change pdfs for observations  $\{\xi_t\}$ 

$$T_{\mathsf{Sh}} = \inf \left\{ t > 0 : c(\xi_{t-1}) \frac{f_1(\xi_t | \xi_{t-1})}{f_0(\xi_t | \xi_{t-1})} \ge \nu(\xi_t) \right\}$$

Moustakides (2015): With properly designed functions  $c(\xi)$  and  $\nu(\xi)$  we solve the constrained optimization.

Simple solution for conditionally Gaussian pdfs.