# Detecting Changes in Markov Process





**George V. Moustakides**University of Patras, Greece

### Outline

- Problem definition
- Model for change-imposing mechanism
- Performance measures
  - Known change-imposing mechanism
  - Unknown change-imposing mechanism
- Examples (emphasis on Markov processes)



#### Detect change as soon as possible

Data become available sequentially: at each instant t obtain new sample  $\xi_t$ .

**Detector:** At every time instant t consult available data  $\xi_1$ ,...,  $\xi_t$  and use them to decide whether a change took place until and including t.

#### Sequential detector

#### Each instant t decide between:

**STOP** 

- lacktriangle A change took place before and including t.
- lacktriangle A change didn't take place before and including t.

Ask for more observations

Consequently, a sequential detector is simply a stopping time T which is adapted to the observation history (filtration generated by the observations).



Structural Change-detection in Exchange Rates Portfolio Monitoring

**Electronic Communications** 

Seismology

Speech & Image Processing (segmentation)

Vibration monitoring (Structural health monitoring)

Security monitoring (fraud detection)

Spectrum monitoring

Scene monitoring

Network monitoring (router failures, attack detection)

:

CUSUM: 3,000 hits in 2015. Google Scholar.

80% in Change Detection: 2300 articles

# Model for change imposing mechanism

A random vector process  $\{X_t\}$  evolves in time in  $\mathbb{R}^K$   $\mathcal{A}$  is a subset in  $\mathbb{R}^K$ 



 $\tau$ : first entry time controlled by  $\{X_t\}$ , I want to detect it  $\{X_t\}$  observable and  $\mathcal A$  known: trivial.

 $\{X_t\}$  (partially) hidden and/or  $\mathcal{A}$  unknown: challenging.

We observe process  $\{\xi_t\}$ .





**Sequential Change Detection Problem** 

- First-entry: Model for change-imposing mechanism.
- Unifies existing formulations
- Helps understanding of existing metrics
- May lead to new formulations and better detectors.

#### Goal: detect occurrence of au

- au is a first entry time controlled by the process  $\{X_t\}$ .
- T is a stopping time adapted to the filtration generated by the observation sequence  $\{\xi_t\}$ .



Immediate Detection

#### **Power Grid:**

Dependent

 $X_t$ : Energy at major points in the grid.

 $\xi_t = X_t + W_t$  noisy measurements.

 $\mathcal{A}$ : If  $X_t \in \mathcal{A}$  then, after short time major blackout.  $\mathcal{A}$  is known



Delayed Detection

Structural health monitoring:

Dependent

 $X_t$ : Vibrations at every point of the structure (state)

 $\xi_t = \mathbf{A} X_t + W_t$ : Noisy measurements

 $\mathcal{A}$ : If  $X_t \in \mathcal{A}$  then cracks (change in the structure)  $\mathcal{A}$  known or unknown.







#### Independent $\{X_t\}$ and $\{\xi_t\}$ ?:

 $X_t$ : Field coordinates of the ball

 $\xi_t$ : Noisy vibration measurements

Independent

 $\mathcal{A}$ : Volume under the goal net.



# At some point in time: Attack!!!

Attacker no access to observations...

 $\{X_t\}, \{\xi_t\}$  independent

There are important applications where the two process are independent.

However, in the majority of cases the two process are dependent!!!

#### A more general model

In the bridge example we argued that the change is imposed by a first entry mechanism:

$$\tau = \inf\{t > 0: X_t \in \mathcal{A}\}$$

But we can have something far more complicated:

$$\tau = \inf\{t > 0 : \{X_{t-M}, \dots, X_t\} \in \mathcal{A}_M\}$$

More general model than first entry, for change imposing mechanism:

au: Stopping time adapted to history of  $\{X_t\}$ 

- au is a stopping time controlled by the process  $\{X_t\}$ .
- T is a stopping time controlled by the observation sequence  $\{\xi_t\}$ .

If stopping rule for  $\tau$  known, then we should use it!

In example 
$$\ \tau = \inf\{t>0: \ \{X_{t-M},\dots,X_t\} \in \mathcal{A}_M\}$$
 instead of guessing

safer to consider unknown stopping rule  $\tau = ???$ 

We assume that we know:

- lacksquare au: adapted to the history  $\{X_t\}$
- $f_t(X_t, \xi_t | X_{t-1}, \xi_{t-1}, \dots, X_1, \xi_1)$

### Performance measures

#### Known change imposing mechanism

Delayed detection

 $\inf_T \mathsf{E}[T-\tau|T>\tau]$ 

Shiryaev (1961)

Hard limited detection delay

 $\sup_{T} \mathsf{P}(T \leq \tau + M | T > \tau)$  subject to :  $\mathsf{P}_{\infty}(T \leq \tau) \leq \alpha$ 

subject to :  $P_{\infty}(T \leq \tau) \leq \alpha$ 

Immediate detection

 $\sup_T \mathsf{P}_{\infty}(T=\tau|T\geq\tau)$ 

subject to :  $P_{\infty}(T < \tau) \leq \alpha$ 

#### Unknown change imposing mechanism

$$\inf_T \mathcal{J}(T) = \inf_T \sup_\tau \mathsf{E}[T-\tau|T>\tau] \qquad \text{Worst-case} \\ \text{subject to} : \mathsf{E}_\infty[T] \geq \gamma \qquad \text{analysis}$$

Independent  $\{X_t\}$  and  $\{\xi_t\}$ 

$$\inf_{T} \sup_{t>0} \mathsf{E}_t[T-t|T>t]$$
 subject to :  $\mathsf{E}_\infty[T] \geq \gamma$ 

Pollak (1985)

Worst-case scenario over  $\{X_t\}$  **NOT**  $\{\xi_t\}$ 

Dependent  $\{X_t\}$  and  $\{\xi_t\}$ 

$$\inf_{T}\sup_{t>0}\operatorname{ess\,sup}\mathsf{E}_t[T-t|T>t,X_1,\ldots,X_t]$$
 
$$\operatorname{subject\ to}:\mathsf{E}_\infty[T]\geq\gamma$$

Lorden?? (1971)

$$\sup_{T} \mathcal{P}(T) = \sup_{T} \inf_{\tau} \mathsf{P}(T \leq \tau + M | T > \tau)$$
 
$$\sup_{T} \mathsf{Subject to} : \mathsf{E}_{\infty}[T] \geq \gamma$$

Independent  $\{X_t\}$  and  $\{\xi_t\}$ 

$$\sup_{T}\inf_{t>0}\mathsf{P}_t(T\leq t+M|T>t)$$
 
$$\mathrm{subject\ to}:\mathsf{E}_{\infty}[T]\geq\gamma$$

Pollak like

Dependent  $\{X_t\}$  and  $\{\xi_t\}$ 

Lorden like

$$\sup_{T}\inf_{t>0}\operatorname{ess\,inf}\mathsf{P}_{t}(T\leq t+M|T>t,X_{1},\ldots,X_{t})$$
 
$$\operatorname{subject\,to}:\mathsf{E}_{\infty}[T]\geq\gamma$$

#### Hidden Markov Model (Fuh, Mei, Tartakovsky)

$$\{(z_t, \xi_t)\}: \{z_t\}$$
 HMP,  $\{\xi_t\}$  Observations  $f_i(z_t, \xi_t|z_{t-1}, \xi_{t-1}, \dots, z_1, \xi_1) = g_i(z_t|z_{t-1})h_i(\xi_t|z_t)$ 

By considering only observations, resulting pdfs are change-time dependent: No stationarity!!!

ess sup 
$$\mathsf{E}_t[T-t|T>t,\xi_1,\ldots,\xi_t]$$

Conditioning on the pair process we obtain **stationary** conditional pdfs.

ess sup 
$$E_t[T - t | T > t, \xi_1, z_1, \dots, \xi_t, z_t]$$

Change mechanism consults  $\{z_t\}$  AND  $\{\xi_t\}$ 

 $i=\infty,0$ 

# Examples

#### Immediate detection

$$\tau = \inf\{t > 0: X_t \in \mathcal{A}\}$$

Known: 
$$A$$
,  $f_{\infty}(X_t, \xi_t | X_{t-1}, \xi_{t-1}, \dots, X_1, \xi_1)$ 

$$\sup_T \mathsf{P}_\infty(T=\tau|T\geq\tau)$$
 subject to : 
$$\mathsf{P}_\infty(T<\tau)\leq\alpha$$

Define 
$$\varpi_t = \mathsf{P}_{\infty}(\tau = t | \xi_1, \dots, \xi_t)$$

For i.i.d. pair process  $\{(X_t, \xi_t)\}$ 

$$\varpi_t = \pi_t \prod_{k=0}^{t-1} (1 - \pi_k), \quad \text{where } \pi_t = \mathsf{P}_{\infty}(X_t \in \mathcal{A}|\xi_t)$$

Optimum stopping time

$$T_o = \inf\{t > 0 : \pi_t \ge \nu\}, \quad \nu \in (0, 1)$$

Threshold selected to satisfy constraint with equality.

For a state-space Gaussian linear model

$$X_t = \mathbf{A} X_{t-1} + W_t$$
 Assume change rare  $\xi_t = B' X_t + v_t$   $\varpi_t \approx \pi_t = \mathsf{P}(X_t \in \mathcal{A} | \xi_1, \dots, \xi_t)$   $T_o = \inf\{t > 0, \pi_t \geq \nu\}$ 

Kalman Filter

## Hard Limited Delay: $P(T \le \tau + M|T > \tau)$

Only for 
$$M=1$$
:  $P(T=\tau+1|T>\tau)$ 

Detection with the first sample under alternative regime

$$\mathcal{P}_{\mathsf{S}}(T) = \mathsf{P}(T = \tau + 1 | T > \tau)$$
 Shiryaev like

$$\mathcal{P}_{\mathsf{P}}(T) = \inf_{t>0} \mathsf{P}_t(T=t+1|T>t)$$
 Pollak like

 $\{X_t\}$ ,  $\{\xi_t\}$  independent

$$\mathcal{P}_{\mathsf{L}}(T) = \inf_{t>0} \operatorname{ess\,inf} \mathsf{P}_t(T=t+1|T>t,\xi_1,\ldots,\xi_t)$$

$$\{X_t = \xi_t\}$$
 Lorden like

$$\sup_{T} \mathcal{P}_{\mathsf{S}}(T)$$
 s.t.  $\mathsf{P}_{\infty}(T \leq \tau) \leq \alpha$ 

$$\sup_{T} \mathcal{P}_{\mathsf{P}(\mathsf{L})}(T)$$
 s.t.  $\mathsf{E}_{\infty}[T] \geq \gamma$ 

$$T_{\mathsf{Sh}} = \inf \left\{ t > 0 : \frac{f_0(\xi_t)}{f_\infty(\xi_t)} \ge \nu \right\}$$
 Shewhart test (1931)

Optimality: Bojdecki (1979): Shiryaev like

Pollak and Krieger (2013): Pollak like

Moustakides (2014): Lorden like

Pollak and Krieger (2013): Multiple post-change possibilities.

Moustakides (2014): Post change time variation

#### Markovian observations

$$\mathcal{P}_\mathsf{L}(T) = \inf_{t>0} \operatorname{ess\,inf} \mathsf{P}_t(T=t+1|T>t,\xi_1,\ldots,\xi_t)$$

$$\sup_T \mathcal{P}_{\mathsf{L}}(T), \ \ \text{subject to} : \mathsf{E}_{\infty}[T] \geq \gamma$$

Markovian pre- and post-change observations  $\{\xi_t\}$ 

$$T_{\mathsf{Sh}} = \inf \left\{ t > 0 : c(\xi_{t-1}) \frac{f_0(\xi_t | \xi_{t-1})}{f_\infty(\xi_t | \xi_{t-1})} \ge \nu(\xi_t) \right\}$$

Applies only to the Lorden-like measure

Denote conditional LR : L
$$(\xi_1, \xi_0) = \frac{f_0(\xi_1|\xi_0)}{f_\infty(\xi_1|\xi_0)}$$

Define  $c(\xi) > 0$ ,  $\nu(\xi) > 1$ , through equations :

$$P_0(c(\xi_0)L(\xi_1,\xi_0) \ge \nu(\xi_1)|\xi_0) = \beta \in (0,1), \ \forall \xi_0$$

 $c(\xi), \nu(\xi)$  depend on  $\beta$  Forces test to be equalizer

$$\nu(\xi_0) = 1 + \mathsf{E}_{\infty} \left[ \nu(\xi_1) \mathbb{1}_{\{c(\xi_0) \mathsf{L}(\xi_1, \xi_0) < \nu(\xi_1)\}} | \xi_0 \right]$$

$$\nu(\xi_0) = \mathsf{E}_{\infty} [T_{\mathsf{Sh}} | \xi_0]$$

If  $\xi_0$  pre-change with pdf  $g_{\infty}(\xi)$  enforce FA equality:

$$\begin{aligned} \mathsf{E}_{\infty}[T_{\mathsf{Sh}}] &= \mathsf{E}_{\infty} \big[ \mathsf{E}_{\infty}[T_{\mathsf{Sh}}|\xi_0] \big] \\ &= \int \nu(\xi_0) g_{\infty}(\xi_0) \, d\xi_0 = \gamma. \end{aligned}$$

Functions  $c(\xi), \nu(\xi)$  and detection probability  $\beta$  can be computed numerically

$$P_{\infty}: \quad \xi_t = w_t, \qquad w_t \sim \mathcal{N}(0,1) \text{ i.i.d.}$$

$$P_0: \xi_t = 0.5\xi_{t-1} + w_t$$

False alarm constraint :  $\gamma = 100$ 

Optimum (after taking the logarithm):

$$T_{\mathsf{Sh}} = \inf\{t > 0 : \tilde{c}(\xi_{t-1}) + 0.5\xi_{t-1}\xi_t \ge \tilde{\nu}(\xi_t)\}\$$
$$\tilde{c}(\xi) = \log c(\xi) - 0.125\xi^2, \quad \tilde{\nu}(\xi) = \log \nu(\xi)$$

Naïve - Compare conditional LR to constant threshold:

$$\mathcal{T} = \inf\{t > 0 : \frac{-0.125\xi_{t-1}^2}{-0.125\xi_{t-1}^2} + 0.5\xi_{t-1}\xi_t \ge \tilde{\nu}\}$$



# Optimum: worst-case performance: 0.022

Holy Grail: Solve Lorden's formulation

Naïve: worst-case performance: 0.0

$$-0.125\xi_{t-1}^2 + 0.5\xi_{t-1}\xi_t \ge \tilde{\nu}$$

ess inf for  $\xi_{t-1} = 0$ :  $0 \not\geq \tilde{\nu}$ 



#### Acknowledgements

NSF: CIF-1513373 through Rutgers University Collaboration program with UIUC



Also partially supported by the project FEDER (XterM, University of Rouen, France



# Thank you for your attention!