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Outline
▪	Problem	definition	

▪	Optimization	problems	with	pre-specified	solutions	

▪	Examples	

▪	Data-driven	version	
▪	Applications	
▪	Hypothesis	testing	and	classification	
▪	Generalized	likelihood	ratio	test	
▪	CUSUM	(sequential	change	detection)	
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In	Hypothesis	Testing	and	Detection,	every	time	a	data	
vector	X	is	acquired,	we	like	to	decide	between

The	optimum	test	is	the	Likelihood	Ratio	Test	which	can	
come	under	different	forms

Posterior	probability

Bayesian
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Knowledge	of	
f0(X),	f1(X)

Can	we	replace	the	need	for	knowing	the	two	densities	
with	the	requirement	to	have	available	data	sampled	
from	the	two	densities	?

Can	we	estimate

using	Neural	
Networks	?

...
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M.	Sugiyama,	T.	Suzuki,	T.	Kanamori,	Density	
ratio	estimation:	A	comprehensive	review'',	
RIMS	Kokyuroku,	vol.	1703,	pp.	10-31,	2010.
.....

M.	Sugiyama,	T.	Suzuki,	T.	Kanamori,	Density	
Ratio	Estimation	in	Machine	Learning,	
Cambridge,	2013.
▪ Focus	only	on	density	ratio	estimation	(likelihood	ratio	

function)	with	SVM	

▪ No	estimates	of	nonlinear	transformations,	like	 
log-likelihood	ratio	or	posterior	probability	

▪ Difficult	to	include	positivity	condition

We	are	interested	in	estimates	with	Neural	Networks	
	Training	of	Neural	Networks:	Optimization	Problems
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General	Optimization	Problem
Let	X	random	and	follows		f0(X).	Consider	the	cost

u(X),	r(X)	scalar	functions	of	X.	
Á(z),	Ã(z)	scalar	functions	of	scalar	z.  
!(r)	scalar	functions	of	scalar	r.	

Interested	in
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No	f0(X)	and	r(X)

Theorem
If	!(r)	known	scalar	function	of	r,	for	the	minimizer	to	
satisfy	uo(X) =  !(r(X)),	necessary	condition:

where	Ir	the	range	of		r(X)

If	!(r)	strictly	increasing,	then	equivalently

where	! 
-1(z)	the	inverse	function	of	!(r),	and	!(Ir)	the	

image	of	Ir	under	!(r).
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then

has	a	single	extremum	which	is	equal	to

and	this	extremum	is	a	minimum.

No	knowledge	of	
f0(X)		or		r(X)		
required	!!!

Theorem	(cont.)
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Case		!(r) = r	>	0	

Most	popular	case:	®	= 0.	Criterion	is	Mean	Square	Error
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Case		!(r) = log	r

Exponential	loss:	®	= 0.5,		Á(z) = e0.5z,		Ã(z) = e-0.5z
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Case		!(r) = 
r

1 + r

Criterion	known	as	Cross-Entropy	loss

Case		!(r) =	sign(log r)

Criterion	known	as	Hinge	loss

Linear	loss
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Data
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Depending	on	the	selected	Á(z),	Ã(z)	the	neural	network	
u(X, µo)	can	approximate

without	any	knowledge	of	the	two	densities
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u

x1

x2

xk

...

X

Hidden	
layer

Input	
layer

Output	
layer

V

ReLU

Activation	
function
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Gradient	Descent

If		n0 = n1	then	Stochastic	Gradient	Descent

In	every	iteration	
one	pair	of	data

In	every	
iteration	all	data
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Hypothesis	testing

Input Hidden

Output
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Classification

MNIST	database	contains	handwritten	numbers

Isolate	“4”	and	“9”.	Handwritten	versions	resemble

Build	a	classifier	that	distinguishes	between	the	two	

Training	data:	5500	for	“4”	and	5500	for	“9”

Testing	data:	982	for	“4”	and	1009	for	“9”

28	 	28	gray	scale	
Transformed	into	
vector	of	length	728

×

Neural	network:	728	 	300	 	1× ×
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“4”	mistaken	
for	“9”

“9”	mistaken	
for	“4”
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Generalized	likelihood	ratio	test

Data-Driven

Testing	Data	(i.i.d.)							
{X1,X2,...,Xn}

Use	the	two	sets	to	estimate	log-likelihood	ratio	of	a	
single	X.	Then	form	log-likelihood	ratio	of	all	testing	data

Testing	Data	(i.i.d.)							
{X1,X2,...,Xn}
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Data	(i.i.d.)							
{x1,x2,...,xn}

Estimates	61	parameters.	Piece-
wise	linear	approximation	of	
log-likelihood

Estimates	2	means	and	2	
variances.	Exact	knowledge	of	
log-likelihood	parabolic	form
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Log-likelihood	ratio	for	Markov	processes
Can	we	approximate	log-likelihood	ratios	of	non-i.i.d.?	
For	example	Markov	processes?

uk+1(xt,..., xt-k, µk+1) uk(xt-1,..., xt-k, µk)
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Cumulative	Sum	(CUSUM)	test	(Change-detection)

Interested	in

Detection  
Delay	(small)

False	Alarm 
Period	(large)

{xt}	acquired	sequentially
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