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= Focus on N density ratio estimatio (likelihood ratio
function) /M g

= No estimates of nc mear:g ansformations, like
log-likelihood ratio or posterior proba’Blllty

= Difficult to include positivity condltlon

We are interested in estimates with Neural Networks
Training of Neural Networks:
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r Tunctions or X

Interested in

J (u)

Design ¢(2),1(z), s.t. up(X) = w(r(X))
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has a single extremum which is eual to
Uo(X) = w(r(X))

and this extremum is a
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Case w(r) =r>0

Most popular case: a = 0. Criterifn is Mean Square Error

T(w) = 5Eo[(u(X) ~r(X))*] + C
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Case w(r) = logr

u,(X) = log(r(X))
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Lross-entropy Ioss

Criterion known as Hinge loss

p(z) =1 = ¢(2) =2, ¥(z)=—2, z€[-1,1]
Linear loss
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Limit u(X) to a Neural Networ
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Depending on the selected ¢(z), ©(2) the neural network
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without any knowledge of the two densities
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Activation
function

Output
layer

“max{w, 0}, mean square

w, exponential
) 1

== Cross-entropy

tanhw, linear

w, hinge

layer
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Gradient In every
(0,

iteration all data

—T
2

If n, = n, then Stochastic Gradient Descent

8 = 0i—1 — p{ Voo (u(XP,0:-1)) + Vo (u(X},6:-1)))

In every iteration

one pair of data
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Hypothesis testing

Hidden

Input 4
Configuration : 10 x 20 x 1 " Output

ng = n1 = 100 training data
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Classification

MNIST datafﬁse céntains handwritten numbers
,,\ st

Isolate “4” and “9”. Handwritten versions resemble

28 x 28 gray scale
Transformed into
vector of length 728

Build a classifier that distinguishes between the two

Training data: 5500 for “4” and 5500 for “9”
Neural network: 728 x300x 1
Testing data: 982 for “4” and 1009 for “9”
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“9” mistaken
for “4”

“4” mistaken
for “9”

-
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Generalized likelihood ratio test

H(): 1, 2,...
Hy : No data

Use the two sets to estimate log-likelihood ratio of a
single X. Then form log-likelihood ratio of all testing data

[ St}ng Data (i.i.d.
| 1X,X,5,....X }
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Log-likelihood ratio for Markov processes

Can d [ > 'te log-likelir
For examg

log
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Cumulative Sum (CUSUM) tes

entially

Up+ 17
T = inf { >N

Interested in

Eo[T] versus E1 T

Period (large) EO[T] VErsus El[ﬂ Delay (small)
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