Neural Network Estimation of Likelihood Ratios for Testing and Detection

George V. Moustakides University of Patras, Greece Rutgers University, USA Kalliopi Basioti Rutgers University, USA

Outline

- Problem definition
- Optimization problems with pre-specified solutions
- Examples
- Data-driven version
- Applications

Hypothesis testing and classification
Generalized likelihood ratio test
CUSUM (sequential change detection)

In Hypothesis Testing and Detection, every time a data vector X is acquired, we like to decide between

 $H_0: \quad X \sim f_0(X)$ $H_1: \quad X \sim f_1(X)$

The optimum test is the Likelihood Ratio Test which can come under different forms

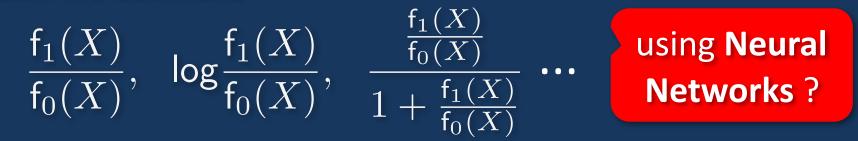
 $\frac{f_1(X)}{f_0(X)} \stackrel{H_1}{\underset{H_0}{\overset{H_1}{\underset{H_0}{\overset{H_1}{\overset{H_1}{\underset{H_0}{\overset{H_1}{\underset{H_1}{\overset{H_1}{\underset{H_1}{\underset{H_1}{\overset{H_1}{\underset{H_1}{\underset{H_1}{\overset{H_1}{\underset{H_1}{\underset{H_1}{\overset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\overset{H_1}{\underset{H_1}}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1}{\underset{H_1$

 $\begin{array}{ll} \mathsf{H}_0: & X\sim \mathsf{f}_0(X) \\ \mathsf{H}_1: & X\sim \mathsf{f}_1(X) \end{array} & \begin{array}{ll} \mathsf{Knowledge of} \\ \mathsf{f}_0(X), \mathsf{f}_1(X) \end{array}$

Can we replace the need for knowing the two densities with the requirement to have available data sampled from the two densities ?

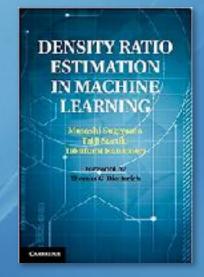
 $\begin{array}{lll} \mathsf{H}_{0}: & \overline{X} \sim \mathsf{f_{0}}(\mathbf{X}) & \{X_{1}^{0}, X_{2}^{0}, \dots, X_{n_{0}}^{0}\} \\ \mathsf{H}_{1}: & X \sim \mathsf{f_{1}}(\mathbf{X}) & \{X_{1}^{1}, X_{2}^{1}, \dots, X_{n_{1}}^{1}\} \end{array}$

Can we estimate



M. Sugiyama, T. Suzuki, T. Kanamori, Density ratio estimation: A comprehensive review'', *RIMS Kokyuroku*, vol. 1703, pp. 10-31, 2010.

M. Sugiyama, T. Suzuki, T. Kanamori, *Density Ratio Estimation in Machine Learning*, Cambridge, 2013.



- Focus only on density ratio estimation (likelihood ratio function) with SVM
- No estimates of nonlinear transformations, like log-likelihood ratio or posterior probability
- Difficult to include positivity condition

We are interested in estimates with Neural Networks Training of Neural Networks: **Optimization Problems**

General Optimization Problem Let X random and follows $f_0(X)$. Consider the cost $\mathcal{J}(\mathsf{u}) = \mathsf{E}_0 \left[\phi(\mathsf{u}(X)) + \mathsf{r}(X)\psi(\mathsf{u}(X)) \right]$ u(X), r(X) scalar functions of X. $\phi(z), \psi(z)$ scalar functions of scalar z. $\omega(\mathbf{r})$ scalar functions of scalar r. Interested in $\min_{\mathbf{u}(X)} \mathcal{J}(\mathbf{u}) = \min_{\mathbf{u}(X)} \mathsf{E}_0 \left[\phi \left(\mathbf{u}(X) \right) + \mathsf{r}(X) \psi \left(\mathbf{u}(X) \right) \right]$

Design $\phi(z), \psi(z), \text{ s.t. } u_o(X) = \omega(\mathbf{r}(X))$

Theorem If $\omega(\mathbf{r})$ known scalar function of r, for the minimizer to satisfy $u_{o}(X) = \omega(r(X))$, necessary condition: $\phi'(\omega(\mathbf{r})) + \mathbf{r}\psi'(\omega(\mathbf{r})) = 0, \quad \forall \mathbf{r} \in \mathbf{I}_{\mathbf{r}}$ where I_r the range of r(X)No $f_0(X)$ and r(X)If $\omega(\mathbf{r})$ strictly increasing, then equivalently $\phi'(z) + \omega^{-1}(z)\overline{\psi}'(z) = 0, \quad \forall z \in \omega(\mathsf{I}_{\mathsf{r}})$ where $\omega^{-1}(z)$ the inverse function of $\omega(r)$, and $\omega(I_r)$ the image of I_r under $\omega(\mathbf{r})$.

Theorem (cont.)

If $\rho(z) < 0$ and we define $\forall z \in \omega(I_r)$ $\phi'(z) = -\omega^{-1}(z)\rho(z)$ Nok $\psi'(z) = \rho(z),$

No knowledge of $f_0(X)$ or r(X) required !!!

then

 $\mathcal{J}(\mathsf{u}) = \mathsf{E}_0 \big[\phi \big(\mathsf{u}(X) \big) + \mathsf{r}(X) \psi \big(\mathsf{u}(X) \big) \big]$

has a single extremum which is equal to $\mathbf{u}_o(X) = \omega\big(\mathbf{r}(X)\big)$

and this extremum is a minimum.

Case $\omega(\mathbf{r}) = \mathbf{r} > 0$

$$\rho(z) = -z^{\alpha} \implies \begin{cases} \phi(z) = \frac{z^{2+\alpha}}{2+\alpha} \\ \psi(z) = -\frac{z^{1+\alpha}}{1+\alpha}, \ z \in (0,\infty) \end{cases}$$

$\min_{\mathbf{u}(X)} \mathcal{J}(\mathbf{u}) = \min_{\mathbf{u}(X)} \mathsf{E}_0 \left[\phi(\mathbf{u}(X)) + \mathbf{r}(X) \psi(\mathbf{u}(X)) \right]$ \downarrow $\mathbf{u}_o(X) = \mathbf{r}(X)$

Most popular case: $\alpha = 0$. Criterion is Mean Square Error $\mathcal{J}(u) = \frac{1}{2} \mathsf{E}_0 [(\mathsf{u}(X) - \mathsf{r}(X))^2] + C$

Case $\omega(\mathbf{r}) = \log \mathbf{r}$

$$\rho(z) = -e^{-\alpha z} \Rightarrow \begin{cases} \phi(z) = \frac{e^{(1-\alpha)z}}{\frac{1-\alpha}{\alpha}}, \ z \in \mathbb{R} \\ \psi(z) = \frac{e^{-\alpha z}}{\alpha} \end{cases}$$

Exponential loss: $lpha=0.5,\;\phi(z)=e^{0.5z},\;\psi(z)=e^{-0.5z}$

$\min_{\mathbf{u}(X)} \mathcal{J}(\mathbf{u}) = \min_{\mathbf{u}(X)} \mathsf{E}_0 \big[\phi \big(\mathbf{u}(X) \big) + \mathsf{r}(X) \psi \big(\mathbf{u}(X) \big) \big]$ \downarrow $\mathbf{u}_o(X) = \log \big(\mathsf{r}(X) \big)$

Case
$$\omega(\mathbf{r}) = \frac{1}{1+\mathbf{r}}$$

 $\rho(z) = -\frac{1}{z} \Rightarrow \begin{cases} \phi(z) = -\log(1-z) \\ \psi(z) = -\log z \end{cases}, \ z \in (0,1)$

Criterion known as Cross-Entropy loss

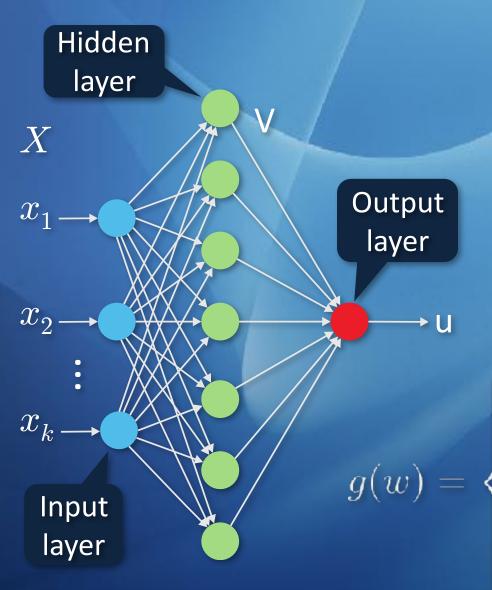
Case $\omega(\mathbf{r}) = \operatorname{sign}(\log \mathbf{r})$ $\therefore(z) = - \Box_{\{z \le -1\}}$ $\phi(z) = \max\{1 + z, 0\}, z \in \mathbb{R}$ $(z) = \max\{1 - z, 0\}, z \in \mathbb{R}$ Criterion known as Hinge loss $\rho(z) = -1 \Rightarrow \phi(z) = z, \quad \psi(z) = -z, \quad z \in [-1, 1]$ Linear loss

$$\begin{split} \min_{\mathbf{u}(X)} \mathcal{J}(\mathbf{u}) &\approx \min_{\theta} \hat{\mathcal{J}}(\theta) \\ &= \min_{\theta} \left\{ \frac{1}{n_0} \sum_{i=1}^{n_0} \phi \big(\mathbf{u}(X_i^0, \theta) \big) + \frac{1}{n_1} \sum_{i=1}^{n_1} \psi \big(\mathbf{u}(X_i^1, \theta) \big) \right\} \\ & \longrightarrow \theta_o \longrightarrow \mathbf{u}(X, \theta_o) \approx \mathbf{u}_o(X) \end{split}$$

Depending on the selected $\phi(z)$, $\psi(z)$ the neural network $u(X, \theta_o)$ can approximate

 $\frac{f_1(X)}{f_1(X)}, \ \log \frac{f_1(X)}{f_1(X)}, \ \frac{f_1(X)}{f_1(X) + f_0(X)}, \ \operatorname{sign}\left(\log \frac{f_1(X)}{f_1(X)}\right)$

without any knowledge of the two densities



U = AX + aReLU $\mathsf{V} = \mathsf{max}\{U, 0\}$ $w = B^{\mathsf{T}}V + b$ Activation $\mathsf{u} = g(w)$ function $\theta = \{A, a, B, b\}$ $\max\{w, 0\}$, mean square w, exponential $\frac{1}{1+e^{-w}}$, cross-entropy tanhw, linear w, hinge

$\min_{\theta} \left\{ \frac{1}{n_0} \sum_{i=1}^{n_0} \phi \left(\mathsf{u}(X_i^0, \theta) \right) + \frac{1}{n_1} \sum_{i=1}^{n_1} \psi \left(\mathsf{u}(X_i^1, \theta) \right) \right\}$

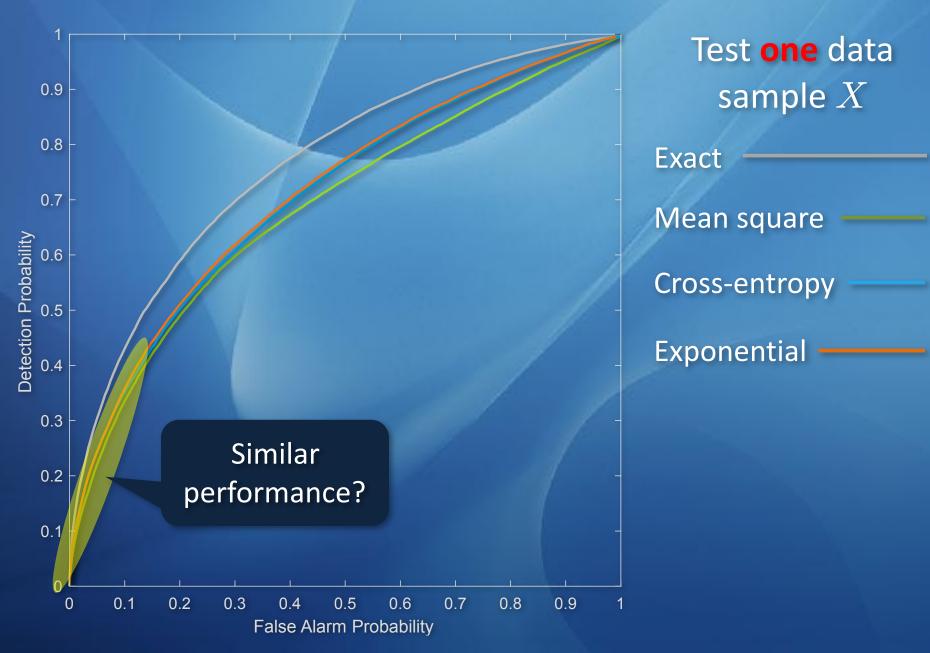
 $\begin{array}{l} \text{Gradient Descent} \\ \theta_t = \theta_{t-1} - \\ \mu \left\{ \frac{1}{n_0} \sum_{i=1}^{n_0} \nabla_{\!\theta} \phi \big(\mathsf{u}(X_i^0, \theta_{t-1}) \big) + \frac{1}{n_1} \sum_{i=1}^{n_1} \nabla_{\!\theta} \psi \big(\mathsf{u}(X_i^1, \theta_{t-1}) \big) \right\} \end{array}$

If $n_0 = n_1$ then Stochastic Gradient Descent $\theta_t = \theta_{t-1} - \mu \left\{ \nabla_{\theta} \phi \left(u(X_t^0, \theta_{t-1}) \right) + \nabla_{\theta} \psi \left(u(X_t^1, \theta_{t-1}) \right) \right\}$ In every iteration one pair of data

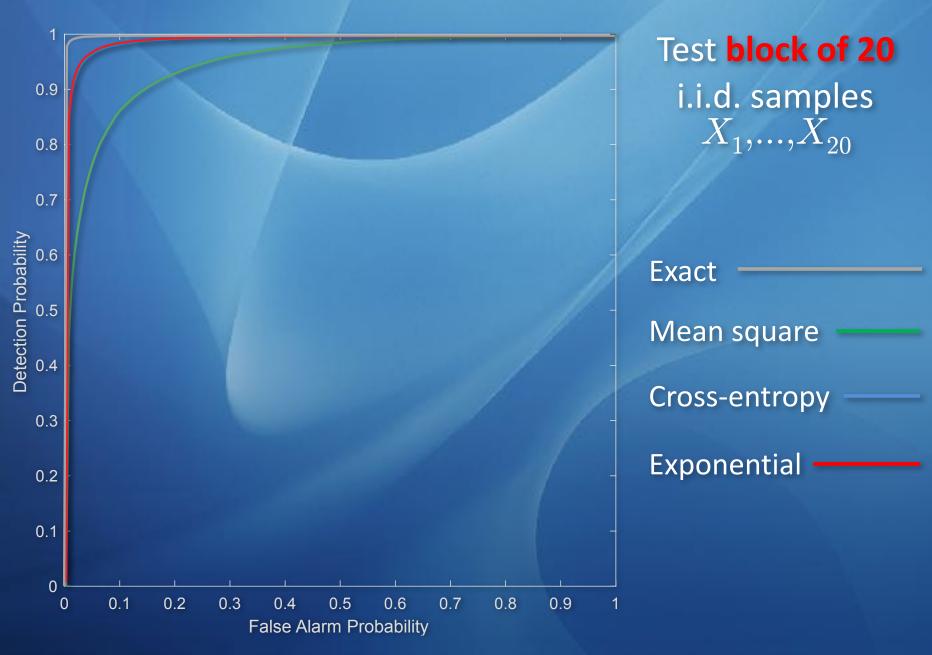
Hypothesis testing

 $f_0(X) = \mathcal{N}(\mu_0, \Sigma_0) \qquad f_1(X) = \mathcal{N}(\mu_1, \Sigma_1)$ $\mu_0 = 0, \Sigma_0 = \mathbf{I} \qquad \mu_1 = \frac{[1 \cdots 1]^{\mathsf{T}}}{\sqrt{10}}, \Sigma_1 = 1.2\mathbf{I}$ Input Hidden Configuration : $10 \times 20 \times 1$ Output

 $n_0 = n_1 = 100$ training data



Neural Network Estimation of Likelihood Ratios for Testing and Detection, ISyE, GaTech, Nov. 2019



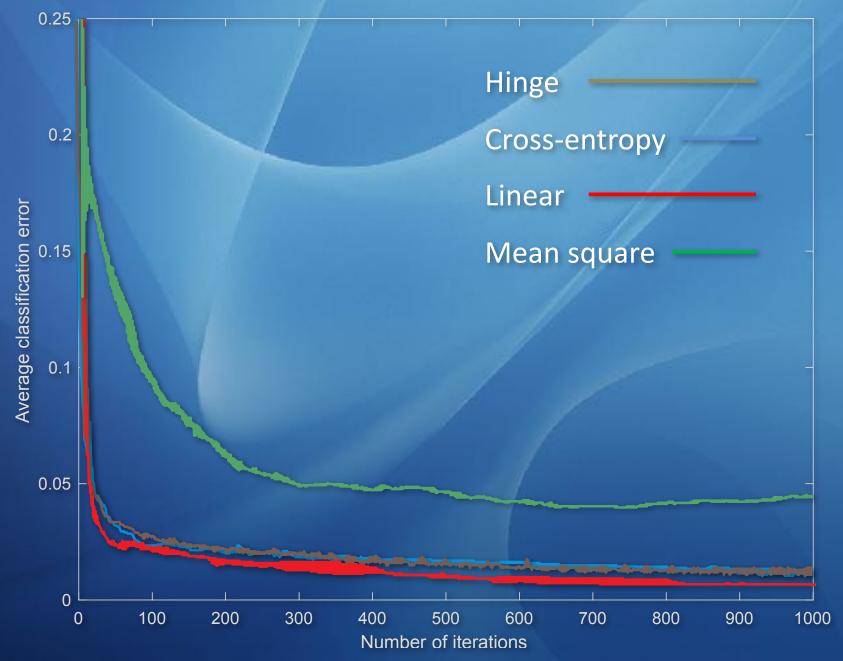
Neural Network Estimation of Likelihood Ratios for Testing and Detection, ISyE, GaTech, Nov. 2019

Classification

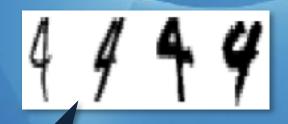
MNIST database contains handwritten numbers Isolate "4" and "9". Handwritten versions resemble

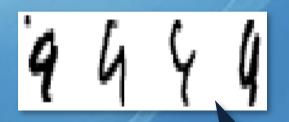
28 × 28 gray scale Transformed into vector of length 728

Build a **classifier** that distinguishes between the two Training data: 5500 for "4" and 5500 for "9" Neural network: 728×300×1 Testing data: 982 for "4" and 1009 for "9"



Neural Network Estimation of Likelihood Ratios for Testing and Detection, ISyE, GaTech, Nov. 2019





"4" mistaken for "9" "9" mistaken for "4"

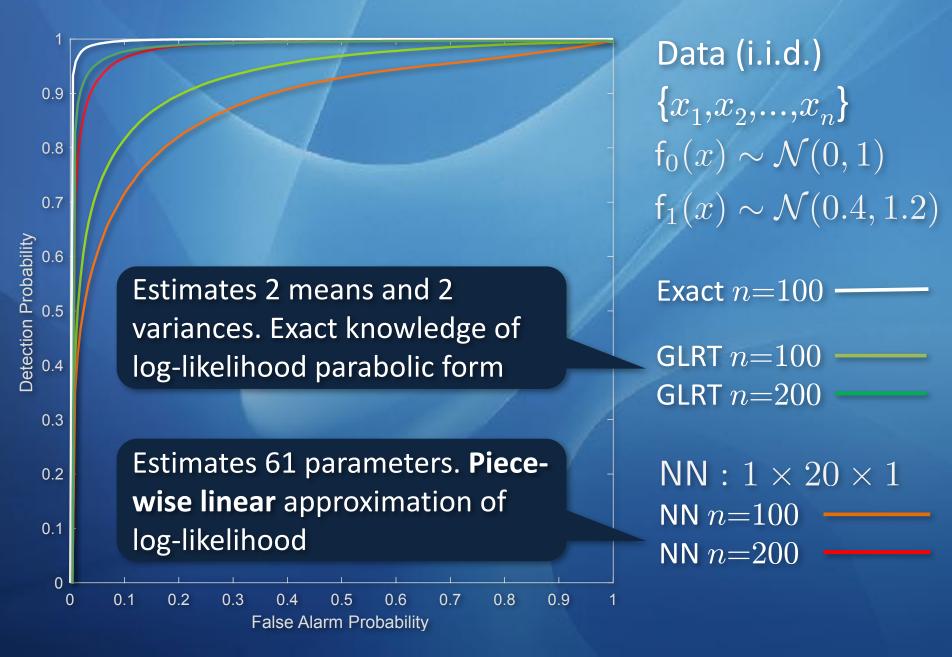
Generalized likelihood ratio test

 $\begin{array}{ll} \mathsf{H}_0: & X \sim \mathsf{f}_0(X) & & \text{Testing Data (i.i.d.)} \\ \mathsf{H}_1: & X \sim \mathsf{f}_1(X, \vartheta) & & \{X_1, X_2, \dots, X_n\} \end{array}$

$$\max_{\vartheta} \sum_{i=1}^{n} \log \frac{\mathsf{f}_1(X_i, \vartheta)}{\mathsf{f}_0(X_i)} \gtrless \nu$$

Data-Driven $H_0: \{X_1^0, X_2^0, \dots, X_{n_0}^0\}$ Testing Data (i.i.d.) $H_1:$ No data $\{X_1, X_2, \dots, X_n\}$

Use the two sets to estimate log-likelihood ratio of a single X. Then form log-likelihood ratio of all testing data



Log-likelihood ratio for Markov processes Can we approximate log-likelihood ratios of non-i.i.d.? For example Markov processes? $\mathsf{f}(x_t,\ldots,x_1) =$ $f(x_t|x_{t-1}\ldots,x_{t-k})\cdots f(x_{k+1}|x_k\ldots,x_1)f(x_k\ldots,x_1)$ $f(x_t | x_{t-1} \dots, x_{t-k}) = \frac{f(x_t, x_{t-1} \dots, x_{t-k})}{f(x_{t-1} \dots, x_{t-k})}$ $\log \frac{f_1(x_t | x_{t-1} \dots, x_{t-k})}{f_0(x_t | x_{t-1} \dots, x_{t-k})} =$ $\log \frac{f_1(x_t, \dots, x_{t-k})}{f_0(x_t, \dots, x_{t-k})} - \log \frac{f_1(x_{t-1}, \dots, x_{t-k})}{f_0(x_{t-1}, \dots, x_{t-k})}$ $\mathsf{u}_{k}(x_{t-1},...,x_{t-k},\theta_{k})$ $[\mathsf{u}_{k+1}(x_t,...,x_{t-k},\theta_{k+1})]$

Cumulative Sum (CUSUM) test (Change-detection) $\{x_{t}\}$ acquired sequentially $S_t = \max\{S_{t-1}, 0\} + \log \frac{f_1(x_t | x_{t-1} \dots, x_{t-k})}{f_0(x_t | x_{t-1} \dots, x_{t-k})}$ $\hat{S}_t = \max{\{\hat{S}_{t-1}, 0\}} +$ $u_{k+1}(x_t, \ldots, x_{t-k}, \theta_{k+1}) - u_k(x_{t-1}, \ldots, x_{t-k}, \theta_k)$ $T = \inf \{t > 0 : S_t \ge \nu\} \qquad \hat{T} = \inf \{t > 0 : \hat{S}_t \ge \nu\}$ Interested in $E_0[T]$ versus $E_1[T]$ **False Alarm** Detection Period (large) Delay (small) $E_0[\hat{T}]$ versus $E_1[\hat{T}]$

$f_0(x_t|x_{t-1}) \sim \mathcal{N}(0,1) \ f_1(x_t|x_{t-1}) \sim \mathcal{N}(sgn(x_{t-1})\sqrt{|x_{t-1}|},1)$

