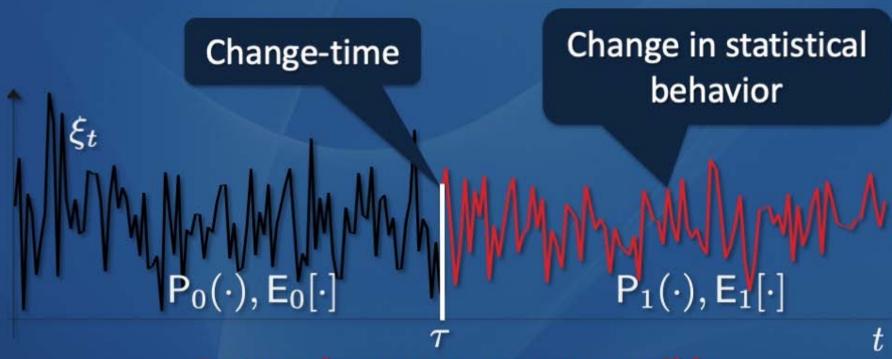
Quickest Detection of Changes Classical and Modern Formulations

George V. Moustakides
University of Patras, Greece
& Rutgers University, USA

Outline

- Problem definition
- Model for change mechanism
- Performance metrics
- Optimum detectors
- Decentralized formulations
- Data driven version

Problem definition



Detect change as soon as possible

Data become available sequentially: at each time t obtain new sample ξ_t

Detector: Every instant t consult available data ξ_1, \ldots, ξ_t decide if a change took place or not

- Was there a change? NO
- ξ_1, ξ_2 Was there a change? NO

Take more data (continue sampling)

Stop (sampling)

 $\xi_1, \xi_2, \dots, \xi_T$ Was there a change? YES

Equivalently

$$\xi_1, \xi_2, \ldots, \xi_t$$

Continue or **Stop** sampling

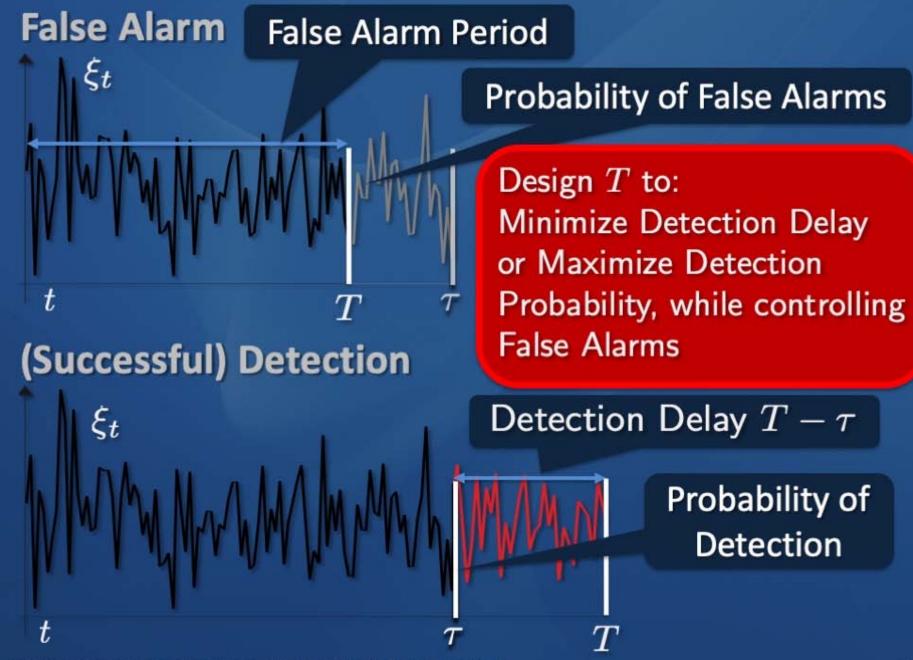
Stopping rule

$$G_t(\xi_1,\ldots,\xi_t)$$

Stop ν Continue

Stopping time

$$T = \inf_{t} \{G_t(\xi_1, \dots, \xi_t) \ge \nu\}$$



Quality monitoring of manufacturing process

Production Continuous Quality
line Measurements Assessment

Medical Applications

Epidemic Detection

Disease rate measurements

Increase in rate?

Epidemic outbreak?

Early Detection of Epilepsy Episode

EEG Wearables

Divergence from normal

Episode?

Financial Applications

- Structural Change-detection in Exchange Rates
- Portfolio Monitoring

Electronic Communications Seismology Speech & Image Processing (segmentation) Vibration monitoring (Structural health monitoring) Security monitoring (fraud detection) Spectrum monitoring Scene monitoring Network monitoring (router failures, attack detection)

Model for change mechanism

Dependent $\{X_t\}$, $\{\xi_t\}$

 X_t : Vibrations at points of the structure

 $\xi_t = AX_t + W_t$: Low dimensional noisy observations

If $||X_t||^2 \ge \nu$, then crack (change in structure)

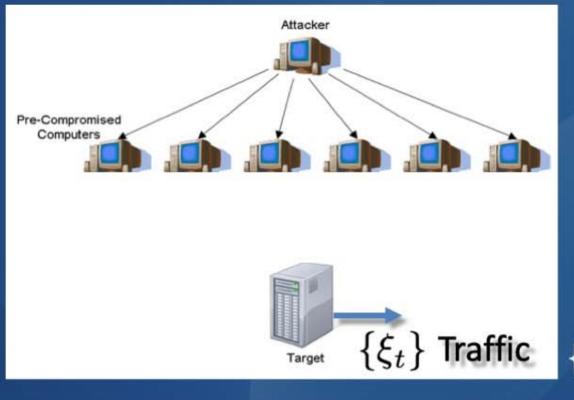
Mechanism consults X_1, \ldots, X_t and decides to apply change (**stop** nominal behavior) or not

Independent $\{X_t\}$, $\{\xi_t\}$

 X_t : Coordinates of ball

 ξ_t : Noisy sensor observations

If X_t inside the volume under the goal, "apply" change



At some point in time: Attack!!!

Attacker no access to observations...

 $\{\xi_t\}$ Traffic $\{X_t\}, \{\xi_t\}$ independent

Change mechanism

Consults $\{X_t\}$ and controls stopping time au

Scientist

Consults $\{\xi_t\}$ and controls stopping time T

Design T to detect au asap

Performance metrics

Delayed Detection

$$\mathcal{J}(T) = \mathsf{E}_1[T - \tau | T > \tau]$$

Hard Limited Delay

$$\mathcal{P}(T) = \mathsf{P}_1(T \le \tau + M|T > \tau)$$

If stopping rule used by change mechanism unknown computation of $\mathcal{J}(T), \mathcal{P}(T)$ is not possible

We follow a worst-case analysis

Delayed Detection

$$\mathcal{J}(T) = \sup_{ au} \mathsf{E}_1[T - au|T > au]$$

Lorden (1971)

$$= \sup_{t>0} \sup_{\xi_1,\ldots,\xi_t} \mathsf{E}_1[T-t|T>t,\xi_1,\ldots,\xi_t]$$

$$=\sup_{t>0}\mathsf{E}_1[T-t|T>t]$$
 if $\{X_t\},\{\xi_t\}$ independent

Pollak (1985)

Hard Limited Delay

$$\mathcal{P}(T) = \inf_{\tau} \mathsf{P}_1(T \le \tau + M | T > \tau)$$

$$= \inf_{t>0} \inf_{\xi_1,...,\xi_t} \mathsf{P}_1(T \le t + M | T > t, \xi_1,...,\xi_t)$$

$$=\inf_{t>0} \mathsf{P}_1(T\leq t+M|T>t)$$
 if $\{X_t\},\{\xi_t\}$ independent

Delayed Detection

$$\inf_T \mathcal{J}(T) =$$

$$\inf_T \sup_{t>0} \sup_{\xi_1,\dots,\xi_t} \mathsf{E}_1[T-t|T>t,\xi_1,\dots,\xi_t]$$
 subject to : $\mathsf{E}_0[T] \geq \gamma > 1$

Hard Limited Delay

$$\begin{split} \sup_T \mathcal{P}(T) = \\ \sup_T \inf_{t>0} \inf_{\xi_1,\dots,\xi_t} \mathsf{P}_1(T \leq t + M|T>t,\xi_1,\dots,\xi_t) \\ \sup_T \inf_{t>0} \sup_{\xi_1,\dots,\xi_t} \mathsf{P}_1(T \leq t + M|T>t,\xi_1,\dots,\xi_t) \end{split}$$

Optimum detectors

Shiryaev 1963

 $\{\xi_t\}$ are i.i.d. before and after the change with corresponding pdfs $f_0(\xi)$, $f_1(\xi)$

au is independent from $\{\xi_t\}$ and follows a geometric distribution $\mathsf{P}(\tau=t)=p(1-p)^t, t=0,1,\dots$

$$S_t = (1 + S_{t-1}) \frac{\mathsf{f}_1(\xi_t)}{(1 - p)\mathsf{f}_0(\xi_t)}$$

$$T_{\mathbf{S}} = \inf_{t>0} \{ S_t \ge \nu \}$$

Threshold to satisfy false alarm constraint with equality

Lorden 1971

 $\{\xi_t\}$ are i.i.d. before and after the change with corresponding pdfs $f_0(\xi)$, $f_1(\xi)$

 τ and $\{\xi_t\}$ are dependent

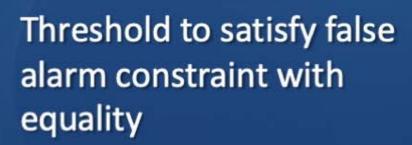
$$\inf_T \mathcal{J}(T) =$$

$$\inf_{T} \sup_{t>0} \sup_{\xi_1,\dots,\xi_t} \mathsf{E}_1[T-t|T>t,\xi_1,\dots,\xi_t]$$

subject to : $E_0[T] \ge \gamma > 1$

$$S_t = \max\{S_{t-1}, 0\} + \log\frac{\mathsf{f}_1(\xi_t)}{\mathsf{f}_0(\xi_t)} \quad \text{Threshold to satisfy false alarm constraint with}$$

$$T_{\mathbf{C}} = \inf_{t>0} \{ S_t \ge \nu \}$$



CUSUM test

CUSUM test

$$S_t = \max\{S_{t-1}, 0\} + \log \frac{\mathsf{f}_1(\xi_t)}{\mathsf{f}_0(\xi_t)}$$

Known since 1954 as the Page test

Asymptotic optimality ($\gamma \to \infty$) 1971 Exact optimality 1986

$$\mathsf{E}_0\left[\mathsf{log}\frac{\mathsf{f}_1(\xi_t)}{\mathsf{f}_0(\xi_t)}\right] < 0 < \mathsf{E}_1\left[\mathsf{log}\frac{\mathsf{f}_1(\xi_t)}{\mathsf{f}_0(\xi_t)}\right]$$

Prototype for any other data model

$$S_t = \max\{S_{t-1}, 0\} + \log \frac{\mathsf{f}_1(\xi_t | \xi_{t-1}, \ldots)}{\mathsf{f}_0(\xi_t | \xi_{t-1}, \ldots)}$$

T

2019: $\{\xi_t\}$ are Markov before and after the change with corresponding pdfs $f_0(\xi_t|\xi_{t-1})$, $f_1(\xi_t|\xi_{t-1})$

$$S_t = \max\{S_{t-1}, \phi(\xi_{t-1})\} + \log \frac{\mathsf{f}_1(\xi_t|\xi_{t-1})}{\mathsf{f}_0(\xi_t|\xi_{t-1})}$$
 $T_{\mathrm{C}} = \inf_t \{S_t \ge \nu(\xi_t)\}$

Functions $\phi(\xi), \nu(\xi)$ are solution to a system of integral equations. Computed either numerically or asymptotically $\gamma \to \infty$

As
$$\gamma \to \infty$$
 we have $\phi(\xi) \to 0$ and $\nu(\xi) \to \nu$

Pollak 1985

 $\{\xi_t\}$ are i.i.d. before and after the change with corresponding pdfs $f_0(\xi)$, $f_1(\xi)$

au and $\{\xi_t\}$ are independent

$$\inf_T \mathcal{J}(T) = \inf_T \sup_{t>0} \mathsf{E}_1[T-t|T>t]$$

subject to : $E_0[T] \ge \gamma > 1$

Shiryaev-Roberts-Pollak test

Mei 2006

$$S_t = (S_{t-1} + 1) \frac{f_1(\xi_t)}{f_0(\xi_t)} T_{SRP} = \inf_t \{ S_t \ge \nu \}$$

If S_0 specially designed $T_{\rm SRP}$ asymptotically $(\gamma \to \infty)$ optimum. Tartakovsky 2010

Exact optimality? 1997-2006

Quickest detection of changes. ISIT, July 2019, Paris, FRANCE.

Tartakovsky 2019

 τ and $\{\xi_t\}$ are independent

$$\inf_T \mathcal{J}(T) = \inf_T \sup_{t>0} \mathsf{E}_1[T-t|T>t]$$

subject to :
$$E_0[T] \ge \gamma > 1$$

Multiple post-change possibilities. Data after change i.i.d. with pdf $f_1(\xi), \ldots, f_k(\xi)$

$$S_t^i = (S_{t-1}^i + 1) \frac{\mathsf{f}_i(\xi_t)}{\mathsf{f}_0(\xi_t)}, \ i = 1, \dots, k$$

$$T_{\rm T} = \inf_{t>0} \{ S_t^1 + \dots + S_t^k \ge \nu \}$$

 T_{T} asymptotically $(\gamma
ightarrow \infty)$ optimum

Hard Limited Delay

au and $\{\xi_t\}$ are dependent

$$\begin{split} \sup_T \mathcal{P}(T) &= \sup_T \inf_{t>0} \inf_{\xi_1,\dots,\xi_t} \mathsf{P}_1(T \leq t + M | T > t, \xi_1,\dots,\xi_t) \\ &\quad \text{subject to}: \ \mathsf{E}_0[T] \geq \gamma > 1 \end{split}$$

au and $\{\xi_t\}$ are independent

$$\sup_T \mathcal{P}(T) = \sup_T \inf_{t>0} \mathsf{P}_1(T \leq t + M|T>t)$$
 subject to : $\mathsf{E}_0[T] \geq \gamma > 1$

If $\{\xi_t\}$ are i.i.d. before and after the change with pdfs $f_0(\xi)$, $f_1(\xi)$, and interested in M=1 (detect immediately)

$$T_{\mathrm{Sh}} = \inf_{t>0} \left\{ \frac{\mathsf{f}_1(\xi_t)}{\mathsf{f}_0(\xi_t)} \ge \nu \right\}$$
 Shewhart test (1931)

Markovian pre- and post-change pdfs for observations

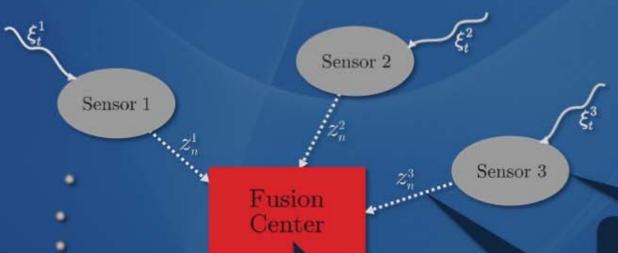
$$\begin{split} \sup_T \mathcal{P}(T) &= \sup_T \inf_{t>0} \inf_{\xi_1,\dots,\xi_t} \mathsf{P}_1(T=t+1|T>t,\xi_1,\dots,\xi_t) \\ &\quad \text{subject to}: \ \mathsf{E}_0[T] \geq \gamma > 1 \end{split}$$

$$T_{\mathrm{Sh}} = \inf_{t>0} \left\{ \mathbf{c}(\boldsymbol{\xi}_{t-1}) \frac{\mathsf{f}_1(\boldsymbol{\xi}_t | \boldsymbol{\xi}_{t-1})}{\mathsf{f}_0(\boldsymbol{\xi}_t | \boldsymbol{\xi}_{t-1})} \ge \nu(\boldsymbol{\xi}_t) \right\}$$

2015: Functions $c(\xi), \nu(\xi)$ satisfy system of integral equation. Can be computed numerically or asymptotically $(\gamma \to \infty)$. Simple solution for conditionally Gaussian: $\xi_t = \alpha(\xi_{t-1}) + w_t$ where $\{w_t\}$ i.i.d. $\mathcal{N}(0,1)$

Decentralized formulations

Veeravalli 2001



Simultaneous change in all sensors

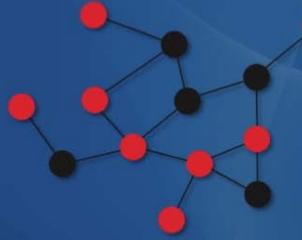
Apply CUSUM with quantized data

Each sensor must send limited information to fusion center (i.e. 1 bit)

Veeravalli 2001: Apply optimum quantization on each likelihood ratio $\frac{f_1^i(\xi_t)}{f_0^i(\xi_t)}$

Sensor K

Mei 2011 - Fellouris 2016



There is a change in statistical behavior of a subgraph.

$$S_t^i = \max\{S_{t-1}^i, 0\} + \log\frac{\mathsf{f}_1^i(\xi_t)}{\mathsf{f}_0^i(\xi_t)}$$

$$T = \inf_{t>0}\{\max_i S^i_t \geq \nu\}$$

$$T = \inf_{t>0} \{ S_t^1 + \dots + S_t^K \ge \nu \}$$

$$T = \inf_{t>0} \left\{ \sum_{i=1}^{K} \log \left(1 - \pi + \pi e^{S_t^i}\right) \ge \nu \right\}$$

Data driven version (ongoing)

What if $f_0(\xi), f_1(\xi)$ **NOT** known

$$\{\xi_1^0,\ldots,\xi_N^0\}$$
 pre-change (training) data

 $\{\xi_1^1,\ldots,\xi_N^1\}$ post-change (training) data

estimate f₀(),f₁()

Density

Use data to

Density estimation, not very efficient

$$S_t = \max\{S_{t-1}, 0\} + \log \frac{\mathsf{f}_1(\xi_t)}{\mathsf{f}_0(\xi_t)}$$

Can we train a NN to estimate the $\log \frac{f_1(\xi_t)}{f_0(\xi_t)}$ using the training data ?

Need proper optimization problem!!!

Consider scalar functions $\phi(z), \psi(z)$ and scalar function $u(\xi)$. Define average cost:

$$\mathcal{J}(u) = \mathsf{E}_0 \big[\phi \big(u(\xi) \big) \big] + \mathsf{E}_1 \big[\psi \big(u(\xi) \big) \big]$$

If we want $\min_{u} \mathcal{J}(u)$ to yield

$$u(\xi) = \log rac{\mathsf{f}_1(\xi)}{\mathsf{f}_0(\xi)}$$

it is necessary and sufficient

$$\psi'(u) = -e^{-u}\phi'(u)$$

$$\mathcal{J}(u) = \mathsf{E}_0 \big[\phi \big(u(\xi) \big) \big] + \mathsf{E}_1 \big[\psi \big(u(\xi) \big) \big]$$

Let $u(\xi, \theta)$ be the output of a NN with input ξ then

$$\hat{\mathcal{J}}(\theta) = \frac{1}{N} \sum_{l=1}^{N} \phi\left(u(\xi_l^0, \theta)\right) + \frac{1}{N} \sum_{l=1}^{N} \psi\left(u(\xi_l^1, \theta)\right)$$

Optimize over θ (training)

$$\log \frac{\mathsf{f}_1(\xi_t | \xi_{t-1})}{\mathsf{f}_0(\xi_t | \xi_{t-1})} \ ???$$

$$\theta_{t} = \theta_{t-1} - \mu \left\{ \nabla_{\theta} \phi \left(u(\xi_{t}^{0}, \theta_{t-1}) \right) + \nabla_{\theta} \psi \left(u(\xi_{t}^{1}, \theta_{t-1}) \right) \right\} \to \theta_{*}$$

$$S_t = \max\{S_{t-1}, 0\} + u(\xi_t, \theta_*)$$
 $T_C = \inf_{t>0} \{S_t \ge \nu\}$