


Example 1

SINGLE DATASET L1yL2yeeey LN
TWO SCENARIOS (Hypotheses)

Ho: =, ~ pure noise |

H,: =z, ~ noise+ reflection
W

Presence of airplane

Using the measured data decide which
hypothesis is the most likely to have
generated the measurements.



Example 2

Interested in distinguishing between
handwritten numerals “4” and “9”

q Data is an image

Single image = Two scenarios

Distinguish (classify) between “4” and “9” '
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Hypothesis Testing — Decision Making — Classification
SAME MATHEMATICAL PROBLEM

CAN WE FIND OPTIMUM SOLUTION???



Mathematical Formulation

Need to find a proper way to formulate
our problem

Denote X = {x1,...,zx} the measured data.
We assume that X is a realization of a random
vector X. *

Random vectors, exactly like random variables,
are described by probability densities

To be able to distinguish the hypotheses
X must have a different random behavior

per hypothesis

Ho: X ~fo(X), P(Ho)
Hli fol(X), P(Hl)

P(Hp),P(H;) is our prior knowledge regarding
frequency of occurrence of each hypothesis



The Optimum Bayes Test

Every decision mechanism equivalent to a
Decision Function D(X) € {0, 1}

| 0 when for X we decide Hg
D(X) = { 1 when for X we decide H;

Can we optimize D(X) ?

In what sense 7777
M

We do not like making errors in our decisions!!!!
= MINIMIZE THE ERROR PROBABILITY

Pr = P(D(X) = 1|H0)IP(H0)+
P(D(X) = 0|H;)P(H,)

With very simple Math we can show that the
optimum decision function has the following
form

f1(X)
1 when f(l)(X) - B(H,)

f1(X |
0 when f1§x§ < BHy)

Do(X) = {




Optimum decision needs ONLY the Likelihood
Ratio Function

and can be written as

> P(Ho)
o P(H1)

L(X) <— [L(X)

We can replace the vector X with the scalar

L(X) without loosing anything from optimality.

L(X) is a Sufficient Statistic for the Hypothesis
testing problem.

If w(r), » > 0 is strictly increasing
then

« (o) S

o
Ho
IS ALSO OPTIMUM!!




Common w(r) functions:

w(r) =logr = log-likelihood ratio function
wir) = e = posterior probability function

T —
Multiple Hypotheses

We can easily extend to more than two hypotheses

Ho: X ~ fo(X),P(Ho) \
Hy @ X~ f1(X),P(H;) +

Hk—1: X ~fg_1(X),P(Hk-1)

Decision function D(X) € {0,1,..., K — 1}
Optimum Decision function:

D,(X) = arg max {fi(X)P(H;)}



&
Ho: X~ f()(X),]P)(H()) T ) < PCR)

Hl x N fl(X),IP(Hl) - T\DCHQ:—L
Hy: X ~ f2(X), P(Ha)
- fl(X)P(Hy) - fa(X)P(Hy)
= R@pr) 2 T HXB(H)
T__,u\"
H,
1
H H,
1 L,(X "
e == ~—— —

What if densities are UNKNOWN?7?7??

Can we come up with DATA-DRIVEN
version of the optimum test???



Basic Tools

Neural Netwoks

A class of special parametric functions

u(X,0), 0: network parameters

FACT: If v(X) any function then we can
approximate it ARBITRARILY CLOSE
by a neural network of sufficiently high
order

Searching over f to define a neural network
u(X,0), when the size of the network tends
to infinity |

IS EQUIVALENT TO SEARCH OVER A
GENERAL FUNCTION v(X)



S
Law of Large Numbers (LLN)

X random and {X;, X5,..., Xy} realizations

Let G(X) be a deterministic function, then

N
lim > G(X) = Ex[G(X)

= / G(X)f(X)dX

"

Gradient Descent
Deterministic function J(@). Interested in

mein J(6)

We can use
0; = 01 — ,LLVQJ(Ht_l), >0

/\_/_\/_/_\/\—/_\/
Stochastic Gradient Descent

J(0) = Ex|G(X,0)]
Instead of f(X) we have {X1,...,Xn} then
0p = 0i_1 — ,LLVOG_(Xt, 9t_—_1)a p>0



Problem of Interest

Two different datasets (e.g. cats/dogs, “4”/“9”)
Ho: X7,X3,...,Xy, (dogsor “4”s)

Hy: Xi,X3,..., XN, (catsor “9”s)

e
Assumptions

There exist probability densities fo(X), f1(X)
for Hp, H; that are considered unknown and
where dataset {X1,..., X}, } is sampled
from f;(X)

There exist prior probabilities P(Hg), P(Hy)
for Hy, H; that are considered unknown with
the number of samples being consistent with
the priors in the sense

N.
- %]P’Hz
N, P

For every new realization X I would like
to decide whether it is from Hg or H;



Classical Solution

Design a function which takes the value

-1 when X from Hy and the value 1 when
X from Hl

Let the function we are looking for be represented
as a neural network u(X,#). Then we find the

optimum @ by solving the following optimization

i=1 j=1

No N,
{8 1wt s S0 -wo'|

Gradient Descent = 6, = u(X,6,)

How do I classify?

For every new realization X we observe

u(X,0,) # £1. We therefore use

ukX. 0. = 0

IAIVE



@)

Is this a “good” decision strategy?

Does it approximate the optimum test?

If we have an infinite number of data do
we recover the optimum? ( CONSISTENCY )

If a strategy is not consistent then for sufficiently
large data size an alternative consistent strategy

will outperform it!

Asymptotic Analysis

We let Ny, N1 — oo. Also we let the size of
the neural network u(X, @) tend to co. The
latter suggests that u(X,#) can become any
function v(X).



- - D
mm{z - 1-u(X?,0 )2+Z (1 —u(X},H))z}

JV]

. 1 ‘ ' 0 2 1 ' 1 2
min < NeE N ;Xl +u(X;,0))" + No+ N, Z (lamu(X;,0)) }
\

i=1

AN

¢ 3 N
: \’H () iN] 1 — | 1 2
m()ln No + N1 N 4 Z 1 ® u X f\r() 4+ N; N, Z (1¢ U(Xj '0))

\ . j=1

Consider Ny, N1 — oo, u(X, ) — v(X),

min — min
0 v(X)

Asymptotically, optimization is equivalent

min {P(Ho)Eo [(1+v(X))?] + B(H)EA[(1 - v(X))*] }
- -

/ P(Ho) (1 + v(X))*fo(X)dX + / P(Hy)(1 — v(X))*f(X)dX

f1(X)
fo(X)

[ {BeH0) (1 +0(3))” + B(H) (1 - 0(X)) L0 Ho(X)iX

fl(X) —

fo(X) = L(X)fo(X)



mvin {P(Ho)(1 4+ v)* + P(Hy)(1 — v)*L}

The optimum solution is

P(H1)
(X = L(X)]P(HD) 1 _ (L(X)P(Hl))

P(Hy) |
L(X) 5irg) +1

r—1

, strictly increasing

is equivalent to the optimum test!!!!

f\
We do not have v,(X). Instead we have a

neural network u(X,6,), an approximation

of v,(X).
Our test MUST HAVE THE FORM
Hq
>
u(X,0,) =0

Ho



®

General Class of Optimization Problems

min {B(H0)Eo (1 +0(X))?] + B(HUE: [(1 - (X)) ]

Propose the following cost function

G(v) = P(Ho)Eo [¢(v(X))] + P(H1)E; [¢(v(X))]

The two functions ¢(z),(2) depend on scalar 2

Select ¢(2),1(z), so that
min G(v)

v(X)

—

has as solution v,(X) = w (L(X)ig:;;)

for a pre-specified strictly increasing

w(r),r >0



THEOREM

Select your favorite strictly increasing w(r).
Select 1(z) so that 9'(z) < 0.
Define ¢'(z) = —w™1(2)¥’(z), then

arg min {P(Ho)Eo [¢(v(X))] + P(H1)E1 [ (v(X))] }

v(X)
= 0 = (L)
The test
H,
vo(X) = w (L(X)5HY ) Z w(1)
Ho

1s optimum



Data-Driven Version
v(X) = u(X,0)

min = min
v(X) 0

u(X,0,) approximates v,(X)

The test we apply 1is

H
u(X,0,) = w(l)
Ho

which is CONSISTENT

i)




Examples
wir)=r, w(l) =1
¥(z) = -1

Y(z) = —2, ¢(2)= %zz, Mean Square

w(r) =logr, w(l) =0
IP,(Z) - _6—0.5:52

Y(z) = 052" od(z) = e*5%°  Exponential

r
w(r) = 1 w(1l) =0.5

W(z) = —

2
Y(z) = —logz, ¢(z) =—log(l—2), Cross Entropy

Each optimization problem produces a different
function u(X,6,) and therefore classifier

REMARK:

Not all consistent classifiers perform the

samel!!!!



Decide Between “4” and “9” (MNIST)
No = N; = 5500 (Training data)
X 1s image 28 X 28 — 784 x 1

u(X,#) Full neural network 784 x 300 x 1 with
236,584 parameters (elu

Use gradient descent to compute 6,

At each iteration we have 6; and u(X,6;)

We apply it to testing data (983 “4” ad 1009 “9”)
Observe evolution of error percentage with
iterations

Mean square

005 e ot . =
Exponental Cross-Entropy
0
)

100 200 a0 420 500 00 00 800 200 1000
Number of Reralions

Mean Square, significantly worse, because

Average classiication ermor

dynamic range of L(X) is larger than the

the range of log L(X) or L(L )(())21
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Examples of decision (classification) error
for Exponential Method

Lo eled oo A LV ld o i
Decded on o Decided oy 9
MAJOR CHALLENGES

Be able to decide which optimization is
appropriate

Extension to the multi-hypothesis case

Relate network size to optimization problem
and data size



