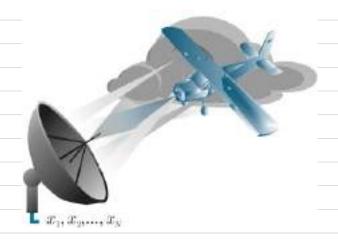
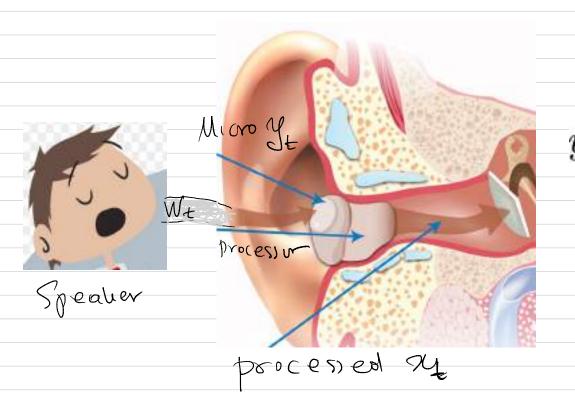
Data-Driven Bayesian and Non-Bayesian Parameter Estimation



After detecting an airplane we would like to estimate its position and speed using the radar data $\{x_1, \ldots, x_N\}$



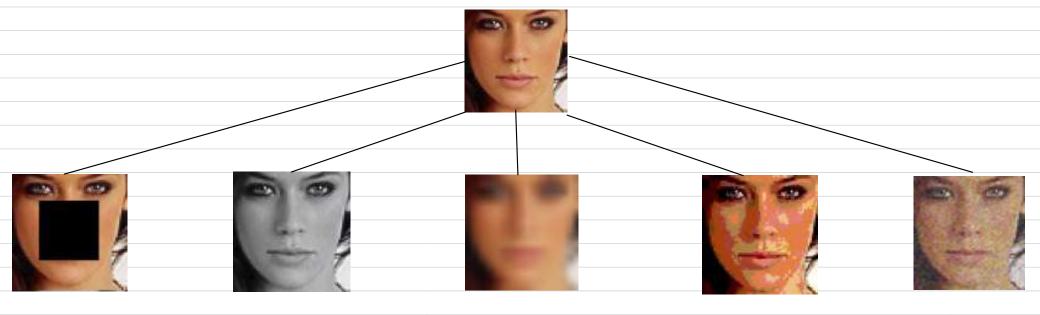
$$y_t = w_t + h_1 x_{t-\tau_1} + \dots + h_k x_{t-\tau_k}$$

$$echo conceletion.$$
(reword)

In many problems we would like to measure X but instead we measure Y. Can we recover (estimate) X by processing Y?

X plays the role of "parameters"

Image Restoration (inverse problems)



Inpainting

Colorization

Super-Resolution De-Quantization

De-Noising

Classical Parameter Estimation

Bayesian Approach

Data measurements $X = \{x_1, \ldots, x_N\}$

X is realization of random vector \mathfrak{X} with probability density $f(X|\theta)$ which known up to parameter vector θ

What of θ ?

 θ is a realization of a random vector ϑ with density $\mathbf{p}(\theta)$. It expresses the prior knowledge about the parameters from observations made in past

Random vectors \mathfrak{X}, ϑ are statistically related and relationship captured by the joint density

$$f(X, \theta) = f(X|\theta)p(\theta)$$

4

Problem of Interest

"Nature" selects a realization θ of ϑ that follows density $p(\theta)$

For the given θ "Nature" generates a realization X of X that follows $f(X|\theta)$

From the measurements X and the prior information $f(X|\theta)$, $p(\theta)$ Estimate the θ that gave rise to the measurements

What is an "Estimator"??

Assume $\{x_1, \ldots, x_N\}$ realizations of a random variable χ with mean μ . We want to estimate μ

$$\hat{\mu}_1 = \frac{x_1 + \dots + x_N}{N} \qquad \hat{\mu}_2 = \frac{e^{x_1} + \dots + e^{x_N}}{N^2}$$

ANY function of the measurements can play the role of an estimator!!

Performance Computation

Define a cost function $C(\hat{\theta}, \theta)$

Compute Average Cost

$$\mathcal{C}(\hat{ heta}) = \mathbb{E}_{\mathfrak{X}, artheta} igl[\mathsf{C} igl(\hat{ heta}(\mathfrak{X}), artheta igr) igr]$$

Minimize Average Cost with respect to function $\hat{\theta}(X)$

$$G(U,X) = \int \mathsf{C}(U,\theta)\mathsf{f}(\theta|X)d\theta = \frac{\int \mathsf{C}(U,\theta)\mathsf{f}(X|\theta)\mathsf{p}(\theta)d\theta}{\int \mathsf{f}(X|\theta)\mathsf{p}(\theta)d\theta}$$

$$\hat{\theta}_o(X) = \arg\min_{U} G(U, X)$$

Examples

$$C(U, \theta) = ||U - \theta||^2$$
 MMSE

$$\hat{\theta}_{\text{MMSE}}(X) = \mathbb{E}[\vartheta|X] = \int \theta f(\theta|X) d\theta = \frac{\int \theta f(X|\theta) p(\theta) d\theta}{\int f(X|\theta) p(\theta) d\theta}$$

Minimum Meen Square Error

$$C(U, \theta) = ||U - \theta||_{L_1} = |U_1 - \theta_1| + \dots + |U_k - \theta_k|$$
 MAE

for scalar U, θ

$$\hat{\theta}_{\mathrm{MAE}}(X) = \mathrm{arg} \left\{ U : \int_{-\infty}^{U} \mathsf{f}(\theta|X) d\theta = \frac{1}{2} \right\}$$

Minimum Mean Absolute

Errar

$$\mathsf{C}(U, \theta) = \left\{ egin{array}{ll} 1 & \mathrm{when} \ \|U - \theta\| \geq \delta, \\ 0 & \mathrm{when} \ \|U - \theta\| < \delta, \end{array}
ight. \delta
ightarrow 0 & \mathrm{MAP} \end{array}$$

$$\hat{\theta}_{\mathrm{MAP}}(X) = \arg\max_{\theta} \mathsf{f}(\theta|X) = \arg\max_{\theta} \mathsf{f}(X|\theta)\mathsf{p}(\theta)$$

Maximum Aposteriori Probability

Basic Tools

Neural Netwoks

Special class of parametric functions $u(X, \alpha)$ where α the network parameters

Any function v(X) can be approximated arbitrarily close by a neural network of sufficiently high order

Searching over α in a neural network $u(X, \alpha)$ corresponds to searching over any function v(X) when the size of the network becomes arbitrarily large

(8)

Law of Large Numbers (LLN)

 \mathfrak{X} random and $\{X_1, X_2, \ldots, X_N\}$ realizations

Let G(X) be a deterministic function, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} G(X_i) = \mathbb{E}_{\mathcal{X}} \big[G(\mathcal{X}) \big] = \int G(X) \mathsf{f}(X) dX$$

Gradient Descent

Deterministic function $J(\theta)$ and interested in $\min_{\theta} J(\theta)$

We can apply:
$$\theta_t = \theta_{t-1} - \mu \nabla_{\theta} J(\theta_{t-1})$$

Stochastic Gradient Descent

$$J(\theta) = \mathbb{E}_{\mathcal{X}}[G(\mathcal{X}, \theta)]$$

Instead of f(X) we have $\{X_1, \ldots, X_N\}$ then

$$\theta_t = \theta_{t-1} - \mu \nabla_{\theta} G(X_t, \theta_{t-1}), \quad \mu > 0$$

Data - Driven Version

Classical estimation assumes availability of $f(X|\theta)$, $p(\theta)$ Equivalent to joint density $f(X,\theta)$

 $f(X,\theta)$ expresses the random relationship between X and θ

If $f(X, \theta)$ to be replaced by data then we need pairs

$$\{(X_1,\theta_1),(X_2,\theta_2),\ldots,(X_N,\theta_N)\}$$

The general estimator function $\hat{\theta}(X)$ is replaced by $u(X, \alpha)$ a neural network with parameters α

The optimization becomes

$$\min_{\hat{\theta}(X)} \mathbb{E}_{\mathcal{X},\vartheta} \left[\mathsf{C} \big(\hat{\theta}(\mathcal{X}), \vartheta \big) \right] \Rightarrow \min_{\alpha} \mathbb{E}_{\mathcal{X},\vartheta} \left[\mathsf{C} \big(u(\mathcal{X}, \alpha), \vartheta \big) \right]$$

Apply Stochastic Gradient Descent

$$\alpha_t = \alpha_{t-1} - \mu \left[\mathbb{J}_{\alpha} u(X_t, \alpha_{t-1}) \right]^{\mathsf{T}} \nabla_U \mathsf{C} \left(u(X_t, \alpha_{t-1}), \theta_t \right)$$

Alternatively replace expectation using LLN

$$\min_{\alpha} \sum_{i=1}^{N} \mathsf{C}\big(u(X_i, \alpha), \theta_i\big)$$

Solve using Gradient Descent with respect to α

If limit is α_o then we expect

$$u(X, \alpha_o) \approx \hat{\theta}_o(X)$$

Non-Bayesian Estimation

"Nature" selects θ and generates measurements X that follow $f(X|\theta)$

We know $f(X|\theta)$ up to a set of parameters θ

Parameters θ are deterministic and unknown

Problem: Given measurement vector X estimate θ

$$\hat{\theta}_{\mathrm{MLE}}(X) = \arg \max_{\theta} \mathsf{f}(X|\theta)$$

Optimality? (Asymptotic)

$$\mathbb{E}[\|\hat{\theta}(X) - \theta\|^2] \ge \text{CRLB} \qquad \frac{\mathbb{E}[\|\hat{\theta}_{\text{MLE}}(X) - \theta\|^2]}{\text{CRLB}} \to 1$$

$$(\text{CRAMER-RAO Cover}) \qquad |X| \longrightarrow \infty$$

Data - Driven Version

In the classical setup, parameter estimation makes sense only if there is parametric density function $f(X|\theta)$

We will sacrifice generality in order to define a meaningful parameter estimation problem that can be formulated under a data-driven setup

We will define $f(X|\theta)$ indirectly!!

We start with random vector $\mathbb{Z} \sim g(Z)$

We consider a deterministic transformation $\mathsf{T}(Z,\theta)$ which is known up the some parameter vector θ

We define the random vector $\mathfrak{X} = \mathsf{T}(\mathfrak{Z}, \theta)$ which has density $\mathfrak{X} \sim \mathsf{f}(X|\theta)$

Assume instead of g(Z) we have dataset $\{Z_1, \ldots, Z_m\}$ with independent realizations of \mathcal{Z}

Assume that we are given a dataset $\{X_1, \ldots, X_n\}$ with independent realizations of \mathfrak{X} all following $f(X|\theta)$ with the same θ .

Problem:

Using $\{Z_1,\ldots,Z_m\}$ as a representative of the density $\mathbf{g}(Z)$

Assuming knowledge of the transformation $\mathsf{T}(Z,\theta)$ up to the unknown parameters θ

For every collection of data $\{X_1, \ldots, X_n\}$ estimate the θ that has generated them.

IF for the data we had $X_i = \mathsf{T}(Z_i, \theta)$ the problem would have been simple.

We could form some distance between the Xs and the $\mathsf{T}(Z,\theta)$ s and minimize over θ

BUT the two datasets $\{Z_1, \ldots, Z_m\}$ and $\{X_1, \ldots, X_n\}$ are independent and unrelated.

Moment Matching

If
$$\mathfrak{X} = \mathsf{T}(\mathfrak{Z}, \theta)$$
 then

$$\mathbb{E}\left[\mathfrak{X}^{\cdot p}\right] = \mathbb{E}\left[\left(\mathsf{T}(\mathfrak{Z}, \theta)\right)^{\cdot p}\right]$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i)^{p} = \frac{1}{m} \sum_{j=1}^{m} (\mathsf{T}(Z_j, \theta))^{p}$$

Sufficient # of equations to solve for #. Many different choices for moments

Moment estimates are Notoriously NON-ROBUST

Density Matching

We would like to find θ so that \mathfrak{X} and $\mathsf{T}(\mathfrak{Z}, \theta)$ exhibit the same statistical behavior

We would like to find θ so that $\{X_1, \ldots, X_n\}$ and $\{\mathsf{T}(Z_1, \theta), \ldots, \mathsf{T}(Z_m, \theta) \text{ exhibit the same statistical behavior}$

There exists an interesting methodology developed for Generative Modeling and our problem constitutes a special case.

Generative Adversarial Networks (GANs)

The random vector \mathfrak{X} follows $\mathsf{f}(X)$ and the random vector \mathfrak{Z} follows $\mathsf{g}(Z)$

We would like to find a transformation (generator) G(Z) such that $\mathcal{Y} = G(\mathcal{Z})$ follows f(X)

To solve the problem we are going to design a second function D(X) (discriminator) by considering the adversarial problem

where
$$2014 \text{ Good fellow et al.}$$

$$J(D,G) = \mathbb{E}_{\mathcal{X}} \big[\log D(\mathcal{X}) \big] + \mathbb{E}_{\mathcal{Z}} \Big[\log \Big(1 - D(G(\mathcal{Z})) \Big) \Big]$$

$$\mathcal{F}(\mathcal{X}) \text{ such that } \mathcal{Y} = \mathcal{F}(\mathcal{Y}) \sim \mathcal{F}(\mathcal{X})$$

Extensions

$$J(\mathsf{D},\mathsf{G}) = \mathbb{E}_{\mathcal{X}} \big[\phi \big(\mathsf{D}(\mathcal{X}) \big) \big] + \mathbb{E}_{\mathcal{Z}} \big[\psi \Big(\mathsf{D} \big(\mathsf{G}(\mathcal{Z}) \big) \Big) \big] \qquad \psi'(\mathcal{X}) < \emptyset$$

$$\min_{\mathsf{G}(\mathcal{Z})} \max_{\mathsf{D}(\mathcal{X})} J(\mathsf{D},\mathsf{G}) \qquad \qquad \psi'(\mathcal{X}) = -\omega'(\mathcal{X}) \psi'(\mathcal{X})$$

designs the correct "generator"

Data-Driven Setup

Under a data-driven setup $G(Z) \to G(Z, \theta)$ and $D(X) \to D(X, \vartheta)$ with the generator and discriminator becoming parametric transformations. This is exactly the same with our problem where the "generator" is $T(Z, \theta)$.

$$J(\theta, \vartheta) = \frac{1}{n} \sum_{i=1}^n \phi \big(\mathsf{D}(X_i, \vartheta) \big) + \frac{1}{m} \sum_{j=1}^m \psi \Big(\mathsf{D} \big(\mathsf{G}(Z_j, \theta), \vartheta \big) \Big)$$

 $\min_{\theta} \max_{\vartheta} J(\theta, \vartheta)$

Optimum $\theta_o \Rightarrow \mathsf{G}(Z, \theta_o)$

If Z realization of \mathcal{Z} following g(Z) then $G(Z, \theta_o)$ realization of \mathcal{X} following f(X).

EXAMPLE

If [X1, X2,..., Xm] (many) human faces and Et1, tr,..., try) (many) Gaussian random vectors

Con design function G(Z, Do) such that when Z Goussian rector G(Z, Do) is A HUMAN FACE

DATASET CELIBA (X1, X2, ---)

True Jees

Generate 21, 22, -- Goussian rectors G(21, 30) G(21, 30) - - -

Synthetic faces

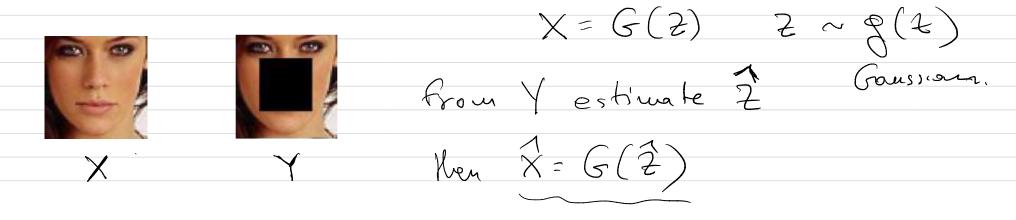
Assume a random vector \mathfrak{X} is described by a Generative Model: $\mathsf{g}(Z), \mathsf{G}(Z)$ instead of a density $\mathsf{f}(X)$

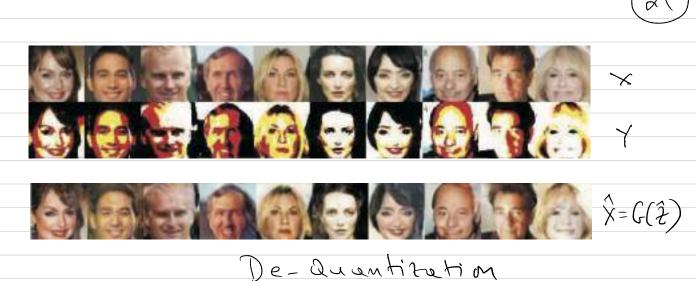
Advantage: If we can easily generate realizations of g(Z) then we transform them and generate realizations of f(X)

Inverse Problems

For \mathfrak{X} we have generative model g(Z), G(Z)

If X, a realization of \mathfrak{X} , undergoes a transformation $Y = \mathsf{F}(X)$ then X can be recovered from Y by first recovering the Z that generates X as $X = \mathsf{G}(Z)$.





X1 = G(2) X2 = G2(22)

luege Seperation