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After detecting an airplane we would
like to estimate its position and speed
using the radar data {x1,...,xn}
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In many problems we would like to measure X but
instead we measure Y. Can we recover (estimate)
X by processing Y7

X plays the role of “parameters”

Image Restoration (inverse problems)

Inpainting Colorization Super-Resolution De-Quantization = De-Noising



Classical Parameter Estimation

Bayesian Approach
Data measurements X = {z1,...,zn}

X is realization of random vector X with probability densn:y
f(X|0) which known up to parameter vector 6

What of 67

f is a realization of a random vector ¥ with density p(@).
It expresses the prior knowledge about the parameters
from observations made in past

Random vectors X, ¢} are statistically related and relationship
captured by the joint density

f(X,0) = f(X]0)p(0)



Problem of Interest @
“Nature” selects a realization € of ¥ that follows
density p(6)

For the given 6 “Nature” generates a realization X of X
that follows f(X|0)

From the measurements X and the prior information f(X|6), p(0)
Estimate the 6 that gave rise to the measurements

What is an “Estimator”??

Assume {z1,...,2z N} realizations of a random variable xy with mean .
We want to estimate u
P (G g X e¥l 4 ... 4 TN

ANY function of the measurements can play the role of
an estimator!!




Performance Computation

Define a cost function C(8, )
Compute Average Cost

~ ~

C(6) = Ex,5[C(A(X), )]

Minimize Average Cost with respect to function 6(X)
[ C(U,0)f(X|0)p(68)dd
J f(X10)p(0)do

G(U.X) = / C(U, 0)f(6X)d6 =

0,(X) = argml}n G(U, X)




Examples

C(U,6) = |U - 6> MMSE
: — _ [ 6F(X10)p(8)do
bunvs(X) = E[9IX] = [ 66(61X)d8 = R

CU,0)=|[U—0|z, =|Us =i+ +|Uc— 0] MAE

for scalar U, 6

U
Ovas(X) = arg {U : /_ f(0|X)do = %}

| 1 when ||U-26| >4,
CilaR] = { 0 when |U — 0| <6,

0—=0 MAP

Ovap (X) = arg max f(6]X) = arg max f(X0)p(6)
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Basic Tools

Neural Netwoks

Special class of parametric functions u(X, a) where
a the network parameters

Any function v(X) can be approximated arbitrarily
close by a neural network of sufficiently high order

Searching over « in a neural network u(X, ) corresponds
to searching over any function v(X) when the size
of the network becomes arbitrarily large



Law of Large Numbers (LLN)
X random and {X;, Xo,..., Xy} realizations

Let G(X) be a deterministic function, then

Jim Z G(X;) = Ex[G(X)] / G(X)f(X)dX

Gradient Descent
Deterministic function J(#) and interested in min J(6)

)
We can apply: |60; = 6,1 — uVpJ(6;—1)

Stochastic Gradient Descent
J(0) = Ex|G(X,0)]
Instead of f(X) we have {X;,...,Xn} then
0 = 01 — pVoG(X4,0i-1), p>0




Data - Driven Version

Classical estimation assumes availability of f(X|0), p(6)
Equivalent to joint density f(X,0)

f(X,0) expresses the random relationship between X and 9

If f(X,68) to be replaced by data then we need pairs
{(Xla 61)) (X2) 92)7 s ooy (XN’ HN)}

The general estimator function §(X) is replaced by u(X, )
a neural network with parameters «

The optimization becomes

&1% Ex,s[C(6(X),9)] = minEx [C(u(X, @), V)]



Apply Stochastic Gradient Descent
ar = ai—1 — p[Jau(Xs, ar—1)] Vo C(u(Xt, at—1), 0:)

Alternatively replace expectation using LLN

mm Z C(u(X;, ), 6;)
Solve using Gradient Descent with respect to a

If limit is «, then we expect

u( X, a,) =~ 9O(X)



Non-Bayesian Estimation

“Nature” selects 6 and generates measurements X that
follow f(X|6)

We know f(X|0) up to a set of parameters

Parameters @ are deterministic and unknown

Problem: Given measurement vector X estimate ¢

éMLE(X) IRk E f(X10)

Optimality? (Asymptotic)

" 1 - 2
CRLB
(é@amewﬂmb Co Y O s
R o o o



Data - Driven Version

In the classical setup, parameter estimation makes
sense only if there is parametric density function f(X|0)

We will sacrifice generality in order to define a meaningful
parameter estimation problem that can be formulated under
a data-driven setup

We will define f(X|0) indirectly!!

We start with random vector Z ~ g(Z)

We consider a deterministic transformation T(Z, #) which is
known up the some parameter vector 6

We define the random vector X = T(Z,#) which has density
X ~ f(X|0)



Assume instead of g(Z) we have dataset {Z1,...,Z,}
with independent realizations of Z |

Assume that we are given a dataset {X;,..., X, } with
independent realizations of X all following f(X|0) with
the same 6.

Problem:
Using {Z1,...,Z,} as a representative of the density g(Z2)

Assuming knowledge of the transformation T(Z,6) up to
the unknown parameters 6

For every collection of data {X3,...,X,} estimate the 6
that has generated them.



[F' for the data we had X; = T(Z;,0) the problem

would have been simple.

We could form some distance between the Xs and
the T(Z,#)s and minimize over 6

BUT the two datasets {Z1,...,Zn} and {X;,..., X, }
are independent and unrelated.

Moment Matching

If X = T(Z,6) then W ;‘I Fiofer = ’Q
U \C(Q,ul& _ﬂ? O

E[xX?] = E[(T(2,0))”] s 1

§9/QJ~& Q@r ﬁ

%Z(Xz')'p = %Z (T(2;,0))"

j=1




Many different choices for moments

Moment estimates are Notoriously NON-ROBUST

Density Matching
We would like to find € so that X and T(Z, 0)

exhibit the same statistical behavior

We would like to find 0 so that {Xy,...,X,}
and {T(Z1,0),...,T(Z,,0) exhibit the same
statistical behavior

There exists an interesting methodology developed for
Generative Modeling and our problem constitutes a
special case.



@

The random vector X follows f(X) and the random vector Z
follows g(Z)

We would like to find a transformation (generator) G(Z) such
that Y = G(Z) follows f(X)

Generative Adversarial Networks (GANS)

To solve the problem we are going to design a second function
D(X) (discriminator) by considering the adversarial problem

min max J(D, G
G(Z) D(X)

)
where M@Qﬁw <k “L

J(D,G) = Ex [log D(X)] + Exz [log (1~ D(G(2)) )
Cl) wbotd K-GOy ~ £




G(Z) D(X)

Extensions ,
J(D,G) = Ex[¢(D(X))] +Ez|¢(D(6(2)) ) \‘O’Ufg _
min max J(D, G) B -0 ) “\’,(%D

designs the correct “generator”

Data-Driven Setup

Under a data-driven setup G(Z) — G(Z,6) and
D(X) — D(X,9) with the generator and
discriminator becoming parametric transformations

This is exactly the same with our problem where
the “generator” is T(Z,0).



-
1
J(6,9) = Zd’ (D(X;,9)) 7—n2:: (D(6(25,6),9))

min max J (6, 9)
6 9 ,

Optimum 6, = G(Z,0,)

If Z realization of Z following g(Z) then G(Z,6,) realization
of X following f(X). »
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Assume a random vector X is described by a Generative Model:
g(Z),G(Z) instead of a density f(X)

Advantage: If we can easily generate realizations of g(Z) then
we transform them and generate realizations of f(X)

Inverse Problems
For X we have generative model g(Z), G(Z)

If X, a realization of X, undergoes a transformation ¥ = F(X)

then X can be recovered from Y by first recovering the Z that
generates X as X = G(Z2).







