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From Statistical Estimation

and Generative Modeling
to Inverse Problems

LECTURE 3: STATISTICAL ESTIMATION



Prologue

In our three lectures we focus on the following subjects:

« Statistical Estimation methods (Parameter Estimation)
Measure X but would like to know (estimate) Z

« Random data are described by probability densities
Not convenient for modern datasets: Usually multi-dimensional but
recide on low dimensional surfaces (manifolds)

Alternative description with Generative Models

 Modification of Statistical Estimation methods to accept
generative models in place of probability densities

Application to inverse problems (mostly from Computer Vision)
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Colorization
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De-noising

Image Separation

De-quantization
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Statistical Estimation

 Problem Definition

e Bayesian Estimation
e Optimum solution for general cost function
e Solution for the MSE, MAE, AP

 Non-Bayesian Estimation
 The ML estimator
* Asymptotic optimality



Problem Definition

We are given vector X (measurements) but interested in vector 2!
Can we estimate Z from X ?

Z and X must be related otherwise impossible

The relationship can be “soft” (not deterministic) and
expressed with a joint probability density f(X,2)

So Z and X are random and have a random relationship
captured by f(X,2)

The density f(X,2) also expresses prior knowledge about each
individual random quantity Z and X



Prior knowledge about individual X and Z is captured by the marginal
densities g(X) and h(Z) where

g(X) = / f(X,2)dZ, h(Z)= / f(X,7)dX

When measurements X become available, knowledge about Z
changes to

f(X, Z) f(X, Z)

f21X) = g(X)  [f(X,2)dZ

If X and Z independent then f(X,Z2)=g(X)h(Z) and W REE

information about Z




What is an estimator ?

A

Given f(X, Z) and measurements X suppose we select “estimate” Z

If measurements X do not change no reason to change 7

Estimate Z = Z(X) is any deterministic function of X

There are “good” estimators and there are “bad” estimators

Statistical Estimation theory identifies the “best”



Bayesian Estimation
There is cost function C(-, -) such that if
true value is Z and estimate Z then cost is C(Z, Z)

Interested in average cost
€(Z)=Exz[C(Z / / (X, Z)dX dZ

Depends on the estimator function Z

We like to minimize it

min (2 // )f(X, Z)dX dZ

Z



Prior knowledge about X and Z

g(X) = / f(X,2)dZ, h(Z)= / f(X,Z)dX

After we take measurements X our knowledge about Z becomes

f(X, Z) f(X, Z)

F21X) = g(X)  [f(X,2)dZ

and we can write f(X,Z) =f(Z|X)g(X)

Posterior probability
density

C(Z) = / ( / C(Z(X),2)f(Z|X) dZ) g(X)dX

call G(Z(X), X)




G(U,X) = /C(U, Z){(Z|X)dZ

C(Z) = / G(Z(X),X)g(X)dX

G(U,X)

» O — n w Ea n Lo ~) x
¥ d { A A L ! N |

For each X perform minimization

mUin G(U,X)=o(X)

A

Zo(X) = arg mUin G(U, X)

G(Zo(X), X) = min G(U, X) = &(X)
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minG(U, X) = #(X) = G(?7.X) > &(X) = G(Z(X),X) > &(X)

C(Z) = / G(Z(X),X)g(X)dX > / d(X)g(X)dX Lower bound

If estimator attains lower bound then optimum

Consider Z,(X) = arg min G(U, X)

C(Z,) = / G(Zo(X), X)g(X)dX = /
_ng(X

Zo(X) = arg mUin G(U, X) is optimum



Examples

Minimum Mean Square Error (MMSE): C(Z,Z) = ||Z — Z||2

G(U,X) = /C(U, 2)f(Z|X) dZ:/HU—ZHQf(Z\X) dZ

Must compute mUi_n G(U, X)

VoG(U, X) =0 = /VUHU — Z|*#(Z|X)dZ =0

/2(U _f(ZIX)dZ =0 = U = /Zf(zyX) iz

[ Z8(X,Z)dzZ
[f(X,Z)dz

Zwse(X) = B[Z|X] = [ 2f(2)x)az -



Minimum Mean Absolute Error (MMAE): C(Z.Z) = |31 — 21| + -+ + |21 — 21,

Z=[2-2]T, Z=ln-z]

Treat each coordinate separately

Minimize with respectto u : G(u, X) = / lu — z|f(2|X) dz

D) _g = [M = elx)a: = [ signu - 2) i) dz =0

= / (2| X) dz—/ f(z| X)dz = 2/ f(z| X)dz =1

ZMAE 1
/ f(z| X)dz = o Conditional Median

— OO




Maximum Aposteriory Probability (MAP):

o — 0

C(2.7) = 1 when||Z—Z| >
71 0 when||Z-Z||<$

G(U, X) = / (U, 2)f(2Z|X) dZ

- / f(Z|X)dZ
|U—z||>

=1— [iy_y1<sf(Z1X)dZ~ 1 - Ball(§)f(U|X)

m(}n GU,X)~1-— Ball(d)mt?xf(U|X)

[ZAMAP(X) = EliEmehe f(Z’X)}
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Non-Bayesian Estimation

Measurements X and desired Z assumed to be “weakly” related through
joint probability density f(X,Z) considered known

From f(X, Z) computed posterior probability density

B f(X, Z) B f(X, Z)
WX =%y = Tx,2)dz

In many applications no access to Z translates in no availability of f(X,2)
and f(Z] X)

It is possible in some applications to know the conditional density f(X | Z)



X=Z+W

Conditional density f(X| Z) requires only g, (W)
f(X|Z) =guw(X — 2)

Joint density f(X,Z) requires g (W) and h(Z)
f(X, Z) = f(X[Z)h(Z) = gu(X — Z)h(Z)

Knowing noise density g, (W) possible. Knowing h(Z) difficult !
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Maximum Likelihood Estimator (MLE):

probability density (likelihood)

XL

most likely highly likely values
Density f(X| Z) is likelihood of X (given Z).

For measurements X what is Z that makes X most likely ?
We must solve max f(X|Z2)

ZMLE — arg mZax f(X‘Z)



f(X,Z)
g(X)

Zvap = arg mZaxf(Z|X) — arg max — arg mZaxf(X, Z)

= arg mZaxf(X\Z)h(Z)
if h(Z) constant (degenerate uniform)
Zyie = arg max f(X|Z)

Optimality of MLE

Unbiased Estimator Ex[Z(X)|Z] =Z

Interested in Error covariance matrix: Ex [(Z(X) ~72)(Z(X) - Z)T\Z}
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Cramer-Rao Lower Bound (CRLB)

From unbiased property

0=Ex {ZA(X)—Z\Z} :/(Z(X)—Z)f(X\Z)dX

Derivative (Jacobian) with respect to Z

0— / {—16x12)+ (2(x) - 2) (sz(X|Z))T} dX

I— / {(2(x)-2) (V]CZ(E(()‘(Z’)Z))T}f(X]Z) X

(o) (Y e




Define
EX)=2(X)-2Z, AX)= VJ?(E((TZ\)Z )

Compute covariance matrix

E(X) . T | Ex[E(X)ET(X)[Z2]  Ex[E(X)AT(X)|Z]
ex || Ao | 70 A0012) = [ X000 02 Ealatnar (02
" Ex[E(X)ET(X)]Z] I
I Ex[A(X)AT(X)|Z]

Ex[E(X)ET(X)|Z] > (FI)~

Fisher Information matrix
Fl = Ex[A(X)AT(X)|Z] = Ex [(

) G )

g



Estimation error covariance matrix of any unbiased estimator is lower
bounded by inverse of Fisher Information matrix

CRLB = (FI)-!
Estimation error power of any estimator cannot go below a certain level

Call n the size of measurement data X
Theorem: Under general conditions we have

im Ex {(Z“MLE(X) — Z) (Zwie(X) — Z)T|Z} “ Fl =1

n—oo

Asymptotic optimality (for large data size)



Summary

Minimum Mean Square Error: Zywse(X) = E[Z| X

A ( u 1
Minimum Mean Absolute Error: Zywae(X) = arg q u : / f(z|X)dz = 5}

Maximum Aposteriori Probability: Zuae(X) = arg max f(Z|X)

Optimum for any measurement datasize.

Maximum Likelihood Estimator: Zy.e(X) = arg mZaxf(X|Z)

Asymptotically optimum, “large” measurement datasize.



Special Case

Let Z={Z,,Z,} and there is prior for Z, but not for Z,

Treat non-existing priors as degenerate uniforms starting with MAP estimator

arg max f(Z1, Z5|X) = arg max f(X, Z1, Zs)

Z1,7 ARYA:

— arg max f X|Zl, /9 h(Zl, ZQ)

21,242

— arg max f

Z17Z2

hy(Z2) degenerate uniform = arg max f(X

Z1,22

Zl) ZQ

ZlazZ hl(

Z2)ho(Z5)

Z5)

If Z, and Z, independent and interested only in estimating £,
Zl — arg max { (mZax f(X‘Zl, ZQ)) hl(Zl)}

A



