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From Statistical Estimation
and Generative Modeling

to Inverse Problems
LECTURE 5: INVERSE PROBLEMS



Inverse Problems

Problem Definition

Early Efforts

Solutions Based on GANs
 Add-Hoc
e Applying Statistical Estimation

« Examples



Problem Definition

We are given vector X (measurements) and interested in estimating vector Y

We assume X =T(Y)+W where T(Y) general (mostly) known transformation

Basic characteristic:  dim(X) < dim(Y)

Inpainting  Colorization  Super-Res De-Noising De-Quantization Image Separation
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Early Efforts

Inpainting
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Diffusion based inpainting

No prior information, training data not very useful
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Solutions Based on GANs

Available training data {X},...,.X }

Design generator G(Z) so that when applied to Z with Z ~ h(Z)
then Y = G(Z) has same density as training data

Generate {Zl, ,Z }with density h(Z)

Zcb (X, Zw( G(Z:,6),9))

Discriminator Generator
mein mﬁaxJ(@, V)

Assume known Generative Model {G(Z),h(Z)}, also Discriminator D(X)



General Problem

Given vector X (measurements) we are interested in estimating vector Y
with X =T(Y)+W and T(Y) known transformation

Y follows Generative Model

There exists Z following density h(Z) such that Y=G(2)
Instead of estimating Y from X we estimate input to generative model 2

Measurements X =T(Y) + W

A

Y

2 4 Compute estimate Y
. © g Je G I
T(Y)

X

Measurements X = T(G(Z)) + W
Compute estimate 7
andletY = G(2)

LECTURE 5: Inverse Problems, Aalto University, May 2022 7




Since dim(Z) < dim(Y)

Significant computational gain and more stable processing
Select Z so that measurements X and T(G(Z)) are “close”

. L 9 - _ . . 9
min || X — T(G(2)) > = Z = arg min||X - T(G(2))]
Well defined optimization, computationally stable
Doesn’t Work!!
Y = G(Z) does not have the correct characteristics
Recall that generative model is the pair {G(Z),h(Z2)}

Even if T(G(Z)) “close” to X, if likelihood h(Z) < 1
then Y = G(Z) is “bad” result
Must take into account input density h(Z)



Ad-Hoc Solutions

Yeh et al. (2017), (2018)

Assumes generative model trained with cross entropy method
¢(z) = log(1 — 2), ¥(z) = log(z), z € (0,1) =
Design G(Z) generator, D(Z) discriminator, when Z ~ h(Z)

Regularizer

I(2) =X = T(G(2))]z,
2 {10g (1-D(G(2))) — log (D(G(2)) ) + log (h(2)) |

Parameter
needs tuning

A A

Z = arg mZin I2Z), Y =G(2)



With Regularizer

Without
Regularizer

To tune parameter X\ need ideal images {Y,...,Y } apply transformation X .=T(Y)

For various values of A for each {X,...,X } compute

200 Zad) = ViV, o) A= argmin [V = V()]
1
A\ = ﬁ{)\l + -+ A} Requires exact knowledge of T(Y)
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Asim et al. (2019)

7 = arg min {HX —T(G(2))]I> — Alog (h(Z))}

~arametor nasda i
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[Requires exact knowledge of T(Y)}
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Siavelis et al. (2020)
Z = arg min {HX T(G(Z)) 1, — )\(1 _ D(G(Z)))}

Parameter needs tuning

Requires exact knowledge of T(Y)
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Applying Statistical Estimation

Given densities f(X'| Z) and prior h(Z), for measurement X estimate Z
MAP estimator is of the form

7 = arg mZaxf(Z|X) = arg mZaxf(X, Z) = arg mZaxf(X|Z)h(Z)

Let Z={Z,,Z,} where there is prior for Z, but not for Z,
Treat non-existing prior as degenerate uniform

arg max f(Zl, ZQ‘X) — arg max f(X Zl, ZQ)

Zl ZQ Zl ZQ
— argénazx f(X|Zla Q)h(Zla Z2)
= arg max f(X|Z1, Z2)h1(Z1]22)h2(Z2)
hy(Z2) degenerate uniform = arg max f(X |21, Z2)h1(Z1|Z2)

Zl,ZQ



If interested in estimating Z; and Z5 are nuisance parameters then

Zl — arg mZax {mZaxf(X|Zl,Z2)h1(Zl\Zg)}

where h,(Z,| Z,) prior of Z, given Z,

If Z, does not depend on Z, then h,(Z,|Z,)=h,(Z,) and

7, = arg max {mZaxf(X]Zl,Zg)hl(Zl)}



We are given vector X (measurements) and interested in estimating vector Y

We assume X =T(Y,a) + W=T(G(Z),a) + W

T(Y, a): transformation of known mathematical form possibly containing
unknown parameters . Can be different per measurement X

W: additive noise with density g (W, 3) possibly containing unknown
parameters 3. Can be different per measurement X
7 follows density h(Z) from generative model {G(Z), h(Z)}

Z.=7, Z={a,B) f(X|Z,7%)=f(X|Z,a,p) :gw(X—T(G(Z),oz),B)

Z = arg mZax{ rQ%xf(X|Z,a,5)h(Z)}

= arg mZax{ max g, (X — T(G(Z),a),ﬂ)h(Z)}
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Z = arg mZax{ max max gy, (X — T(G(Z),a),ﬁ)h(Z)}

W additive noise is Gaussian mean O and covariance (321

o~ IX—T(G(2),0)2/28°
mMax g, (X — T(G(Z),a),ﬁ) = max

B B (\/2762%)N

N: length of measurement vector X

B C
X =T(G(Z), )V

. Ch(Z)
Z = arg mZax{m X — T(G(Z),Oé)HN}
— arg max 7)
(

Z (ming [| X — T(G(Z), a)||2)N/?



Z: If input of generative model is Gaussian with mean O and covariance
identity

. C’ o 11Z1%/2
~ 8 M ing [ X — T(G(2), ) |2)V/2

A

- | N L L
Z = arg min {Iog(moln | X —T(G(Z), a)| ) T NHZH }

& min {Iog (I1X = T(6(2), a)|) + %IIZH?}

Z,x



If transformation satisfies
TY,a)=a1T1(Y)+ -+ a,Tn(Y)
then T(G(Z),a) =a1T1(G(Z)) 4+ 4+ anTm(G(2)) = 5(2)A
oy

where G(Z) = [Tl (G(2)) ---Tm(G(Z))}, A=

min||X — $(2)A|* = | X|P - XTS(2)(37(2)5(2)) " '97(2)X

7 = arg mZin {Iog (HXH2 — XTS(Z)(9T(Z)9(Z))_19T(Z)X) + %HZHZ}



Examples

Blurring with 3 X 3 kernel Colorization (green channel)
Mthl Mth2 Known Unknown Mth1l Mth2 Known Unknown
- - 4 ~ ) = [ " . -~ 2 K

No parameters to tune
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De-Quantization

2 levels per RGB channel, 8 colors
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De-Quantization
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De-Quantization

5 levels per RGB channel, 125 colors




De-Quantization and Colorization

RGB - Gray > BW (2 levels)

IG\
| &
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Data Mixtures

We assume two independent data vectors Y, Y, that are combined as
X=aY +aY,+W

From mixture X recover original Y, Y,

Y,: generative model {G,(Z,),h,(Z,)]
Y,: generative model {G,(Z,),h,(Z,)}
W: additive noise with density g, (W,3) containing unknown parameters g

If W Gaussian, mean O, covariance (21
If inputs of both generative models Gaussian, mean O, covariance identity

{Zla Zz} — known

| 1
arg Z"?'QQ {|0g (HX —a1G1(Z71) — 042G2(Z2)H2) + N(HZlHZ + HZ2||2)}



{217 22} — unknown

1
arg min {Iog( min | X — a1G1(Z1) — a2Ga(Za) %) +

—(1Z11I7 + || Z5 |2
Z1,2> 1,002 N(H 1” —|_H 2” )}

—1
—arg min { log (.XI” — X75(21, 22)(S7(21. 22)9(21, Z2))  §7(Z1, Z2)X )

1
~ (22 2 2}
+N(|| 17+ 11 22])%)

where G(Z1,725) = [G1(Z1) Gz(Zz)}



Known coefs Uknown coefs
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‘Known coefs Uknown coefs
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Nonlinear Data Mixtures

We assume two independent data vectors Y, Y, that are combined as
X=TY,,Y,,a)+ W
Y;: generative model {G,(Z,),h,(Z,)}

Y,: generative model {G,(Z,),h,(Z,)]
W: additive noise with density g, (W,3) containing unknown parameters 3

{Zla ZA2} —

1
arg. min {'Og(min IX = T(61(21).G2(Z2), ) [*) + 1 (1 Z0]* + ||Zz||2)}

1
> min {108 (1X = T(G1(20).Go(Za).0) ) + 5 (1:F + 12217) |



