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• Decision Making (Hypothesis Testing - Detection) 

• Parameter Estimation

Goal: Consider the two well known problems under 
          a pure data-driven setup

Two - Part Presentation
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Decision Making:  Outline
• Hypothesis Testing 

• Mathematical Formulation 
• Data Driven Approach 
• The Consistency Property

• Detection in Time Series 
• I.i.d. processes 
• Markov processes

• Designing Consistent Test 
• Optimization Problems with Consistent Solutions 
• Data Driven Implementation
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Hypothesis Testing

For a random vector X we assume the following two hypotheses

Plethora of applications in diverse scientific fields!!!

Mathematical Formulation
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Bayesian Approach

Minimize decision error probability

For !(r) strictly increasing
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Neyman-Pearson Approach

For !(r) strictly increasing
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Data Driven Approach
Sampled from f0

Sampled from f1

Design border to separate the two datasets

What is the best border ?
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Instead of a “border”, design a decision like function v(X)
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Designing a function v(X) when information is in the form of data is challenging. 
We replace v(X) with a neural network	u(X, µ) and select parameters µ

Cybenko 1989 (universal approximation)
For sufficiently large neural network	u(X, µ) we can find suitable parameters µ 
such that we can approximate arbitrarily close any function v(X)

X u(X, µ)

g(x)

go(x)
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Select a neural network configuration u(X, µ) and optimize network 
parameters µ by defining the distance

and solving the optimization problem

We use the resulting function u(X, µo) to make a decision for any new data X 
as follows:
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Works “well”!!  Why??

Understanding using Asymptotic Analysis
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minimize for each fixed X

Consistency (with respect to the Bayes test)

Equivalence in the limit
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Consistent tests eventually prevail over inconsistent tests

Develop data driven methods for estimation of  !(r(X)) for other !(r)
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Designing Consistent Test

For function !(r) can we define cost

so that                                                          ?
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THEOREM:   Select strictly increasing function !(r) and  
                       strictly negative function ½(z)  . Define

satisfies

Same optimal solution !(r(X)) for all functions ½(z) < 0 

then the solution of the optimization problem
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minimize for each fixed X
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Proof (highlights):  Apply change of measures in the second part

therefore
Convex

Non-convex
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Examples of functions

Mean  
Square

Exponential

Cross 
Entropy
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Data Driven Implementation
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Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9 

Neural network 784 X 300 X 1 

Mean square   go(x)=max{x,0}, u1(X, µ1) 

Exponential     go(x)= x,  u2(X, µ2)

Cross entropy  go(x)= sigmoid,  u3(X, µ3)

# of parameters 
235801

go(x)

g(x)=max{x,0}

78
4

30
0

Gray scale images 28 X 28 = 784 pixels. Design classifier using training 
data. Examine performance using testing data. 
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Training set: 5500 “4” and 5500 “9”. Testing set: 982 “4” and 1009 “9”
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Detection in Time Series
More practically interesting case: Testing of time series { X1 , X2 ,..., Xn }  
The whole set of measurements under H0 or H1

For testing we need likelihood ratio

When i.i.d. under each hypothesis

Test to be used
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(Cross Entropy)
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Example: Testing i.i.d. sequences
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We will employ
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Testing Markovian processes
Consider Markovian processes with “memory” m

Can we estimate likelihood ratio of conditional densities?

a) Through data dynamics (classical)

b) Directly (proposed)
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Classical Approach

Most common model, Autoregressive
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Not purely data driven 
Gaussian assumption arbitrary, not necessarily suitable for all data!
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Proposed Approach
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Example: Testing Markov sequences
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Parameter Estimation:  Outline

30

• Probability density vs Generative model 
• Inverse problems
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Probability Density vs Generative Model

31

Points in N-D space can be random and lie on a
lower dimensional surface (manifold)

Example red points on sphere (2-D in 3-D space)
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Generative model: Data are representable as Y =	G(Z),	Z ~h(Z). Many 
datasets satisfy

To design G(Z) we assume existence of training set {Y1,...,Yn}

Approximate Generator with neural network G(Z, µ)  
Define second neural network the Discriminator D(X, #) 

Generator G(Z, µo) when applied to realizations of Z yields samples 
following closely the density of {Y1,...,Yn}

Generative 
Adversarial 
Network
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Example

HD-CelebA (30 000 high definition images 1024 X 1024 of celebrities)

Extremely hard to control convergence of the adversarial problem 
NVIDIA used progressive growing of GANs (4X4), (8X8),...,(1024X1024) 

Design of Y=G(Z, µ) where Z  is Gaussian vector of length 500
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Inpainting Colorization Super-Res De-Noising De-Quantization

X = T(Y)+W

Instead of estimating Y from X , since Y=G(Z), we first estimate Z 
and then recover Y from Y=G(Z)

Instead of estimating 3X106 variables from X , we only estimate 500 
(vector Z)

X

Y
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Y: Follows generative model G(Z)  
Z: Input is Gaussian with mean 0 and covariance identity 
X: Measurement is vector of length N

We can estimate input Z  by solving the optimization problem

Optimization problem is an outcome of rigorous analysis based on Statistical 
estimation theory where probability densities are replaced by generative 
models
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Blurring	with	3	X	3	mask Colorization	(green	channel)
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De-Quantization
3 levels per RGB channel, 27 colors


