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Two - Part Presentation

* Decision Making (Hypothesis Testing - Detection)

e Parameter Estimation

Goal: Consider the two well known problems under
a pure data-driven setup



Decision Making: Outline

* Hypothesis Testing

 Mathematical Formulation
» Data Driven Approach
 The Consistency Property

e Designing Consistent Test

« Optimization Problems with Consistent Solutions
e Data Driven Implementation

 Detection in Time Series

* |.i.d. processes
 Markov processes



Hypothesis Testing

Mathematical Formulation

For a random vector X we assume the following two hypotheses

HQZ XN]C()(X>, ]P(Ho)
Hi: X ~f(X), P(Hy)

For every X need to decide if it comes from Hy or H;
Decide using a Decision Function D(X) € {0, 1}

Would like to optimize D(X)

Plethora of applications in diverse scientific fields!!!



Bayesian Approach

Minimize decision error probability

min{B(D = 1[Ho)P(Ho) + P(D = 0[Hy)P(H) }

f(X) 2 B(H) _ ACOP(H) 2
fo(X) 5 P(H) — fo(X)P(Ho) 5
For w(r) strictly increasing
W1 = s - G
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Neyman-Pearson Approach

Ho: X ~ fo(X), 0)
Hi: X~ fl(X)v )
Maximize detection probability P(D = 1|H)
subject to false alarm probability constraint P(D = 1|Hg) < «

(5 o)

For w(r) strictly increasing

w(r(X)) Eln, P(w(r(X)) 2 nlHo) = r(X) = Eg;
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Data Driven Approach
X0 x0 ... Xgo/[

Sampled from f, J

HQZ X ~ y
1 v1 1
Hi: X ~t , Xy Xg ... Xm\( Sampledfromfll
N
PHZ ~ :
ty (H:) ——

Design border to separate the two datasets

What is the best border ?
® oo O
f1(X)P(Hq)

AL O OB(HY)
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Instead of a “border”, design a decision like function v(X)

| =1 when X from Hyg
v(X) = { 1 when X from H;.

Designing a function v(X) when information is in the form of data is challenging.
We replace v(X) with a neural network u(X,0) and select parameters 6

Cybenko 1989 (universal approximation)
For sufficiently large neural network u(X,0) we can find suitable parameters 6
such that we can approximate arbitrarily close any function v(X)

‘V(X) - U(X7 ‘9)‘ <e€




Select a neural network configuration u(X,0) and optimize network
parameters 6 by defining the distance

/
no

0= (5 ) 551

X 1=1

and solving the optimization problem

mginJ(H) = 0, = u(X,0,)

We use the resulting function u(X,0_) to make a decision for any new data X

as follows: H,

u(X,0) = 0
Ho



Works “well”!! Why??
Understanding using Asymptotic Analysis

No, N1 — 00,

1+ g (1—uX.,9)
Rno_hh. Mo+ M nlizzl 2.0

P(Ho) IEO + P(H,)E; [(1 _ V(X))2]

mgln J(O) — mvln J(v)

By = u(X,0,) ~ vo(X)
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J(v) = P(Ho)Eq [(1 (X)) 40 (1w X)ﬂ] (x) = FLEP(HY

minimize for each fixed X

r(X)—1 r—1 . .
X) = — X where = strictly increasin
VO( ) F(X) _|_ 1 w(r( ))7 w(r) r_l_ 1 y g
H, H>1
Test equivalent to Bayes: v, (X) = w(r(X)) % w(l) =0 =_u(X,0,) =0
H H
O[Equivalence im ’

Consistency (with respect to the Bayes test)
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memJ(H) _m|n{Z(1+ (X7 9))2+i(1—u(X1 6’))2}

= u(X,0,) "
mVinJ( V) = m| { (Ho)Eo [(1 + (X))2] + P(H1)E; [(1 —v(X))Ql}
= vo(X) = w(r(X))
Expect: u(X, 6,) ~ w(r(X))
Optimum Test: w (r(X)) Héw(l), Close to Optimum: u(X, 6,) Hé w(1)

Develop data driven methods for estimation of w(r(X)) for other w(r)

Consistent tests eventually prevail over inconsistent tests



Designing Consistent Test

Hq Hq Hq
(X) 21 = wi(r(X)) Zwi(l) = wa(r(X)) = wa(1)
Ho Ho Ho
H1 Hq H1
U(X,00) 21 # ui(X,01) Z wi(l) # ua(X,02) = wa(1)
Ho Ho Ho

For function w(r) can we define cost

3(4) = P(HO)Eo [{51)1) H(b Tt (1) ()

sothat  minJ(v) = vo(X) = w(r(X)) ?



THEOREM: Select strictly increasing function w(r) and
strictly negative function p(z). Define

V(2) = p(2), ¢'(2) = —w (2)p(2)

then the solution of the optimization problem

min J(v) = min {P(HO)EO [P (V(X))] +P(H)E; [¢(v(X))] }
satisfies  vo(X) = arg min J(v) = w(r(X))

Same optimal solution w(r(X)) for all functions p(z) < 0

Moustakides: Machine Learning Methods for Statistical Decision Making, Nov 2022, Matrix, Australia

14



Proof (highlights): Apply change of measures in the second part
J(v) = P(Ho)Eq |o(v(X))] + P(H1)E: [¢(v(X))
= P(Ho)Eo [¢(v(X)) + r(X)¥(v(X))]

therefore

mvin J(v)

= minP(Ho)Eo [¢(v(X)) + r(X)w(V(X))ﬂ

minimize for each fixed X

w(r)
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Examples of functions

A: r)=reR likelihood ratio
w(r) " ( 5 ) Mean

o(z)=-1,2>0 = oéz)= % b(2) = —2 Square

B: w(r) =log(r) e R (log-likelihood ratio)

Exponential
,O(Z) _ —6_0'5Z — ¢(Z) _ 260'5Z, w(z) _ 26_0'52 P
r
C: w(r) = c 10,1 osterior probabilit
" £ O P P Y Cross
Entropy

p(2) = —1.2€[0.1] = oz) = —log(1 — 2), %(z) = —log(2)



Data Driven Implementation

J(v) = P(Ho)Eo [¢(v(X))] + P(H1)E; [ (v(X))]

) = {qu(u(X?,e)) ¥ Zw(ch;,e))}

1=1

u(X,6,) %w(
360) = = > H(u(X0)) + - > w(u(x].0)
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Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9

g4 44 QI 77

Gray scale images 28 X 28 = 784 pixels. Design classifier using training
data. Examine performance using testing data.

Neural network 784 X 300 X 1

Mean square g,(z)=max{z,0}, u;(X,0;) 4 of parameters

Exponential g (z)= =z, uy(X,0,) 235801

Cross entropy g (x)= sigmoid, u;(X,6;)
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Training set: 5500 “4” and 5500 “9”. Testing set: 982 “4” and 1009 “9”

1 1 1
u (X, 01) % 1, ua(X,6s) % 0, us(X,03) % —
Ho

0.25

Ho Ho

0.2

] &g

0.15

0.1

Average classification error

oan square * ' | ~ 9 mistaken
| for 4

0.05 |-

Exponential Cross-Entropy

0

1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Number of iterations
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Detection in Time Series

More practically interesting case: Testing of time series { X, X, ,...,

X, }
The whole set of measurements under H, or H,
For testing we need likelihood ratio
fl(Xn, “ o ,Xl) _ fl(Xn‘Xn—la “ e ,Xl) fl(Xn—l‘Xn—Qa “ .. ,Xl) . fl(Xl)
fo(Xn,. ..., X1) fo(Xn|Xn_1,...,X1) fo(X,—

f1(X,,..., X f1(X,, f(X
When i.i.d. under each hypothesis 1 ) _ fil&) (X

fl(X;)) 2
Test to be used Z log ( 1 )> % 7
. ™



Interested in estimating w(r(X)) = w <

n)

{X7,..., X, } following Hg

We are given training data: _
{X{],..., X, } following H;

For each w(r) of interest, minimize corresponding J(6)
1 1
) = - ) o(u(X7.0) + - D v (u(X].0))
i=1 j=1

u(X, 6) w(
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log(r), us(X,602) ~ log (fl(X)) , use us(X,0) (Exponential)

fo(X)
f1(X)
r fo(X) uz (X, 03)
, uz(X,03) = , use Iog(
r+1 %4—1 1 —u3(X,03)

(Cross Entropy)
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Example: Testing i.i.d. sequences

Assume {X;} are vectors of length 10
We would like to test 20 consecutive samples { X1, ..., Xo}

H(): f() NN(O,I)
Hi: fi ~ N ([0 - 1), 1.21)

Neural Network 10x20x 1
Training data ng = n; =100

Produce U1<X, (91), UQ(X, 92), U3<X, 93)

We will employ  log(u1(X,01)), ua(X,0s), |0g<1iglfi}?3;3)>



—

Mean Square

o
©

Exponential

Testing for n =20 samples

5220 log(uy (Xi,61))

Cross-Entropy

o
™

Optimum

o
N

20 H>1 §0.6
Zi:l UQ(Xiv ‘92) 2 n §05 ROC
220 |Og UB(Xi793) HO 20.4
1=1 1—U3(X7;,93) =

©
w

We generate 100000 20 realizations  **|
from fo and from f; or]

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False Alarm Probability
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Testing Markovian processes

Consider Markovian processes with “memory” m

fl(Xn’Xn—la oo 7X1) _ fl(Xn|Xn—17 c e 7Xn—m)
fO<Xn|Xn—1a---aX1> fO(Xn|Xn—17---aXn—m)

(X X1) Xl Xt X)) (X[ X, X))
fo(Xn, - X1)  Fol( X Xn—ts s X)) Fo(Xng1| Xms - - - X1)

y fl(Xm, .. ,Xl)
| . | - - fo(Xom, ..., X1)
Can we estimate likelihood ratio of conditional densities?
a) Through data dynamics (classical)
b) Directly (proposed)
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Classical Approach

Most common model, Autoregressive
X, =A'X, 14+ A X+ W, i=0,1
Xt — Gi(Xt—la K 7Xt—m7 (9@) + Wt

Use training data {X7,..., X)) }and {Xj,..., X }tosolve

U2

: . 2 ,
min Y (X{ = Gi(X{_y,. X0 00)) = 6
- o
Wti :XZL; — Gy 5—17-- X maez) 2 = n_ZWtZ( ti)T
b =1

Assume {W}/} i.i.d. Gaussian N (0, ;)
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X; given {X;_1,...,X:_m} under hypothesis H;

Gaussian with mean G;(X;_1,..., X:_,,0) and covariance X;

Totest{X1,...,X,}
ti — Xt — Gi(Xt—lv I 7Xt—m7 Hé)

fl (Xt‘Xt—la I 7Xt—m) 6_%(Wt1)T21_1Wt1 ‘ZO‘

fo(Xe| X1, s Xiem) e sWOTSg WP\ |3

Not purely data driven
Gaussian assumption arbitrary, not necessarily suitable for all data!
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Proposed Approach

f1(Xe, Xe—1,.-, Xt —m)

log (fl (Xt|Xt—1, e ,Xt—m)> — log fi(Xe—1,-Xt—m)
fO(Xt|Xt_1, co 7Xt—m)

fo( X, Xe—1,e s Xt—m)

fo(Xe—1yeees Xt—m)

) (R

+Xeen))

.. 7Xt—m7 9m—|—1) Um(Xta R 7Xt—m—|—17 Hm)

Um—l—l(Xta S 7Xt—ma (gm—l—l)_ Um(Xt—la . .
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Example: Testing Markov sequences

Scalar observations {z1,...,z,}

wy ~ N(0,1), i.i.d.
Ho : 2 = wy
Hi:xp = sign(zi_1 )/ |ze—1| + wy |
us (s, xe_1,02) : 2 x 20 x 1

ui(xs, 601): 1 x10 x 1 (Exponential)
Training data ng = ny = 100, 200, 500

0.9

0.8

o
o
1

Detection Probability
o
(8]

o
n

03}
Testing n = 20, I.e. {512'1, Ce ,5620} H, ool
20 19 =
+—9 UZ(xtaxt—h@Z) — 2 t=2 Ul(xtael) = T o1}
Ho
100000 x 20 samples from HO and H; % 01 02 03 04 05 06 07 08 09 1

False Alarm Probability
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Parameter Estimation: Outline

* Probability density vs Generative model
* |nverse problems



Probability Density vs Generative Model

Points in N-D space can be random and lie on a
lower dimensional surface (manifold)

Example red points on sphere (2-D in 3-D space)

P e Points are random with coordinates [y, 2, ys3] related
o through a deterministic equation

To lie on a sphere of radius 7 :  y7 + y3 + y3 = r°

" f(y1,92,93) = 0(yi +v5 + 35 —7°) h(y1,92)

A5
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Generative model: Data are representable as Y = G(Z), Z~h(Z). Many
datasets satisfy
dim(Y) > dim(Z)

To design G(Z) we assume existence of training set {Y7,...,Y }

Approximate Generator with neural network G(Z,0)
Define second neural network the Discriminator D(X,1)

Generative

. 1 (Y;, 9 ( G(Z ) .
meln mgjx \ Z qb £ Z (% ¢, 0 ) } Adversarial
) /

Network

= 0, = G(Z, 0s)

Generator G(Z,6,) when applied to realizations of Z yields samples
following closely the density of {Y,...,Y }



Example
HD-CelebA (30 000 high definition images 1024 X 1024 of celebrities)

Extremely hard to control convergence of the adversarial problem
NVIDIA used progressive growing of GANs (4X4), (8X8),...,(1024X1024)

Design of Y=G(Z,0) where Z is Gaussian vector of length 500

\J
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Inpainting  Colorization Super-Res De-Noising De-Quantization

X : |

Y

Instead of estimating Y from X, since Y=G(Z4), we first estimate Z
and then recover Y from Y=G(Z2)

Instead of estimating 3X10¢ variables from X, we only estimate 500
(vector 2)
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Y: Follows generative model G(Z)
7. Input is Gaussian with mean O and covariance identity

X: Measurement is vector of length NV

We can estimate input Z by solving the optimization problem

min {Iog (HX — T(G(Z))H2) + %HZHZ}

Z
= 7=Y =G(2)

Optimization problem is an outcome of rigorous analysis based on Statistical
estimation theory where probability densities are replaced by generative
models



Blurring with 3 X 3 mask Colorization (green channel)
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De-Quantization

3 levels per RGB channel, 27 colors

. e &
- X‘?i,\
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