

Two-part presentation

- Decision making
- Parameter estimation

Decision making - Outline

- Mathematical Formulation
- Data Driven Approach
- Extensions
- Examples

Single dataset: $\{x_1, \ldots, x_n\}$ corresponding to two different scenarios (hypotheses)

 $H_0: x_n \sim \text{pure noise}$

 $H_1: x_n \sim \text{noise} + \text{reflection}$

Presence of airplane

Interested in distinguishing between handwritten numerals "4" and "9"

Single image \Rightarrow Two scenarios

Distinguish between "4" and "9"

Labeled as "9"

Labeled as "4"

Hypothesis Testing - Decision Making - Classification Same Mathematical Problem Interested in Optimal Solution

Mathematical Formulation

For a random vector X we assume the following two hypotheses

 $\mathsf{H}_0: X \sim \mathsf{f}_0(X), \ \mathbb{P}(\mathsf{H}_0)$

 $\mathsf{H}_1: \ X \sim \mathsf{f}_1(X), \ \mathbb{P}(\mathsf{H}_1)$

For every X need to decide if it comes from H_0 or H_1

Decide using a Decision Function $D(X) \in \{0,1\}$

Would like to optimize D(X)

Plethora of applications in diverse scientific fields!!!

Bayesian Approach

Minimize decision error probability

For $\omega(\mathbf{r})$ strictly increasing

Data Driven Approach

Design a decision like function
$$v(X) = \begin{cases} -1 & \text{when } X \text{ from } H_0 \\ 1 & \text{when } X \text{ from } H_1. \end{cases}$$

Cybenko 1989 (universal approximation)

For sufficiently large neural network $\mathsf{u}(X,\theta)$ we can find suitable parameters θ such that we can approximate arbitrarily close any function $\mathsf{v}(X)$

$$|\mathsf{v}(X) - \mathsf{u}(X,\theta)| \leq \epsilon$$

Use neural network $\mathsf{u}(X,\theta)$ and optimize θ solving

$$\begin{split} \mathsf{J}(\theta) &= \frac{1}{n_0 + n_1} \left\{ \sum_{i=1}^{n_0} \left(-1 - \mathsf{u}(X_i^0, \theta) \right)^2 + \sum_{j=1}^{n_1} \left(1 - \mathsf{u}(X_j^1, \theta) \right)^2 \right\} \\ & \qquad \qquad \min_{\mathbf{0}} \mathsf{J}(\theta) \ \Rightarrow \ \theta_{\mathbf{0}} \ \Rightarrow \ \mathsf{u}(X, \theta_{\mathbf{0}}) \end{split}$$

For every X to test decide as follows: $u(X, \theta_0) \stackrel{H_1}{\underset{H_0}{\gtrless}} \mathbf{0}$

Works "well"!! Why??

<u>Understanding using Asymptotic Analysis</u>

$$n_0, n_1 \to \infty, \qquad \mathsf{u}(X, \theta) \to \mathsf{v}(X)$$

$$\begin{split} \mathsf{J}(\theta) &= \underbrace{\frac{n_0}{n_0 + n_1}} \underbrace{\frac{1}{n_0} \sum_{i=1}^{n_0}} \Big(1 + \mathsf{u}(X_i^0, \theta) \Big)^2 + \frac{n_1}{n_0 + n_1} \, \frac{1}{n_1} \sum_{j=1}^{n_1} \Big(1 - \mathsf{u}(X_j^1, \theta) \Big)^2 \\ \mathsf{J}(\mathsf{v}) &= \mathbb{P}(\mathsf{H}_0) \mathbb{E}_0 \left[\Big(1 + \mathsf{v}(X) \Big)^2 \right] + \mathbb{P}(\mathsf{H}_1) \mathbb{E}_1 \left[\Big(1 - \mathsf{v}(X) \Big)^2 \right] \\ \underbrace{\min_{\theta} \mathsf{J}(\theta)}_{\mathsf{v}} \to \underbrace{\min_{\mathbf{v}} \mathsf{J}(\mathbf{v})}_{\mathsf{v}} \\ \theta_0 \Rightarrow \mathsf{u}(X, \theta_0) \; \approx \; \mathsf{v_0}(X) \end{split}$$

$$\mathbb{E}_1\left[\left(1-\mathsf{v}(X)\right)^2\right] = \mathbb{E}_0\left[\left(1-\mathsf{v}(X)\right)^2\frac{\mathsf{f}_1(X)}{\mathsf{f}_0(X)}\right]$$

$$\mathsf{J}(\mathsf{v}) = \mathbb{P}(\mathsf{H}_0)\mathbb{E}_0\left[\underbrace{\left(1+\mathsf{v}(X)\right)^2+\mathsf{r}(X)\Big(1-\mathsf{v}(X)\Big)^2}_{\text{minimize for each }X}\right] \qquad \mathsf{r}(X) = \frac{\mathsf{f}_1(X)\mathbb{P}(\mathsf{H}_1)}{\mathsf{f}_0(X)\mathbb{P}(\mathsf{H}_0)}$$

$$\mathsf{v_o}(X) = \frac{\mathsf{r}(X) - 1}{\mathsf{r}(X) + 1} = \omega \big(\mathsf{r}(X)\big), \ \ \text{where} \ \omega(\mathsf{r}) = \frac{\mathsf{r} - 1}{\mathsf{r} + 1} \ \ \text{strictly increasing}$$

Test equivalent to Bayes:
$$\mathbf{v_o}(X) = \omega \big(\mathbf{r}(X) \big) \overset{\mathsf{H_1}}{\underset{\mathsf{H_0}}{\geq}} \omega(1) = 0 \quad \Rightarrow \mathbf{u}(X, \theta_{\mathsf{o}}) \overset{\mathsf{H_1}}{\underset{\mathsf{volume}}{\geq}} 0$$
 Equivalence in the limit

Develop data driven methods for estimation of $\omega(r(X))$ for other $\omega(r)$

Extensions to other functions

For strictly increasing function $\omega(\mathbf{r})$ can we define cost

$$\mathsf{J}(\mathsf{v}) = \mathbb{P}(\mathsf{H}_0)\mathbb{E}_0\left[\phi\big(\mathsf{v}(X)\big)\right] + \mathbb{P}(\mathsf{H}_1)\mathbb{E}_1\left[\psi\big(\mathsf{v}(X)\big)\right]$$

so that
$$\min_{\mathbf{v}} \mathsf{J}(\mathbf{v}) \Rightarrow \mathsf{v}_{\mathsf{o}}(X) = \omega(\mathsf{r}(X))$$
 ?

THEOREM: Select strictly increasing function $\omega(\mathbf{r})$ and strictly negative function $\rho(z)$. Define

$$\psi'(z) = \rho(z), \quad \phi'(z) = -\omega^{-1}(z)\rho(z)$$

then
$$v_o(X) = \arg\min_{v} J(v) = \omega(r(X))$$

Examples of functions

A:
$$\omega(\mathbf{r}) = \mathbf{r} \in \mathbb{R}_+$$
 (likelihood ratio)

$$\rho(z) = -1, z \ge 0 \quad \Rightarrow \quad \phi(z) = \frac{z^2}{2}, \quad \psi(z) = -z$$

Mean Square

B:
$$\omega(r) = \log(r) \in \mathbb{R}$$
 (log-likelihood ratio)

$$\rho(z) = -e^{-0.5z} \implies \phi(z) = 2e^{0.5z}, \ \psi(z) = 2e^{-0.5z}$$

Exponential

C:
$$\omega(\mathbf{r}) = \frac{\mathbf{r}}{\mathbf{r} + 1} \in [0, 1]$$
 (posterior probability)

$$\rho(z) = -\frac{1}{z}, z \in [0,1] \quad \Rightarrow \quad \phi(z) = -\log(1-z), \quad \psi(z) = -\log(z)$$

Cross Entropy

Data Driven Implementation

$$\begin{split} \mathsf{J}(\mathsf{v}) &= \mathbb{P}(\mathsf{H}_0)\mathbb{E}_0\left[\phi\big(\mathsf{v}(X)\big)\right] + \mathbb{P}(\mathsf{H}_1)\mathbb{E}_1\left[\psi\big(\mathsf{v}(X)\big)\right] \\ \mathsf{v}_\mathsf{o}(X) &= \arg\min_\mathsf{v} \mathsf{J}(\mathsf{v}) = \omega\big(\mathsf{r}(X)\big) \end{split}$$

$$X_1^0$$
 X_2^0 \dots $X_{n_0}^0$ Sampled from $\mathbf{f_0}$ X_1^1 X_2^1 \dots $X_{n_1}^1$ Sampled from $\mathbf{f_1}$

$$\mathsf{J}(\theta) = \frac{1}{n_0 + n_1} \left\{ \sum_{i=1}^{n_0} \phi \big(\mathsf{u}(X_i^0, \theta) \big) + \sum_{j=1}^{n_1} \psi \big(\mathsf{u}(X_j^1, \theta) \big) \right\}$$

$$\min_{\boldsymbol{\theta}} \mathsf{J}(\boldsymbol{\theta}) \ \Rightarrow \ \mathsf{\theta_o} \ \Rightarrow \ \mathsf{u}(X,\boldsymbol{\theta_o}) \qquad \mathsf{u}(X,\boldsymbol{\theta_o}) \approx \omega \left(\frac{\mathsf{f}_1(X)\mathbb{P}(\mathsf{H}_1)}{\mathsf{f}_0(X)\mathbb{P}(\mathsf{H}_0)}\right)$$

Close to optimum Bayes test:
$$\mathbf{u}(X, \theta_{\mathbf{0}}) \overset{\mathbf{H}_{1}}{\underset{\mathbf{H}_{0}}{\gtrless}} \omega(1)$$

Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9

Gray scale images $28 \times 28 = 784$ pixels. Design classifier using training data. Examine performance using testing data.

Neural network 784 X 300 X 1

Training set: 5500 "4" and 5500 "9". Testing set: 982 "4" and 1009 "9"

Parameter Estimation - Outline

- Data driven non-Bayesian estimation
- A class of parameter estimation problems
- Density matching
- Example

We would like to estimate speed and position

$$y_t = w_t + h_1 x_{t-\tau_1} + \dots + h_k x_{t-\tau_k}$$

Echo, must be removed

Data driven non-Bayesian estimation

Non-Bayesian estimation monopolized by Maximum Likelihood Estimator (MLE)

For parametric density $f(X | \theta)$ we are given $X_1,...,X_n$ generated by same θ

$$\hat{\theta}_{\mathsf{MLE}}(X) = \arg\max_{\theta} \sum_{i=1}^{n} \log \mathsf{f}(X_i|\theta)$$

Asymptotically optimum: Approaches CRLB as $n \to \infty$ Estimate obtained by combining data and conditional density!

Cannot replace density with data

For a data-driven version we propose an indirect definition of $f(X | \theta)$

Start with $Z \sim h(Z)$

Consider deterministic parametric transformation $\mathsf{T}(Z,\theta)$

Apply transformation on Z to generate $X = T(Z,\theta)$ then $X \sim f(X \mid \theta)$

 $\mathsf{T}(Z,\theta)$: Known functional form, unknown parameters θ

h(Z): Unknown, instead Z_1, \ldots, Z_m

 $f(X|\theta)$: Unknown, instead X_1,\ldots,X_n for the same θ

Goal: Estimate transformation parameters θ from available data

We do not have correspondence $X_i = T(Z_i, \theta)$

The two datasets $\{Z_1,...,Z_m\}$, $\{X_1,...,X_n\}$ are sampled independently

$$\mathsf{T}(Z,\theta) = Z + \theta$$

$$\mathsf{T}(Z,\Theta) = \Theta Z$$

 $\mathsf{T}(Z,\theta)$ can be nonlinear

 $\mathsf{T}(Z)$ can be completely unknown. In this case we approximate with neural network $\mathsf{T}(Z) \approx \mathsf{T}(Z,\theta)$

Problem: Transform set $\{Z_1,...,Z_m\}$ into $\{Y_1,...,Y_m\}$ with $Y_i=\mathsf{T}(Z_i,\theta)$. Compute parameters θ so that $\{Y_1,...,Y_m\}$ exhibits same statistical behavior as $\{X_1,...,X_n\}$

Moment Matching

$$\frac{1}{m} \sum_{i=1}^{m} (\mathsf{T}(Z_i, \theta))^s \approx \frac{1}{n} \sum_{j=1}^{n} (X_j)^s, \ s = s_1, s_2, \dots$$

Notoriously non-robust

Density Matching

Problem: Compute parameters θ so that $\{Y_1,...,Y_m\}$ with $Y_i = \mathsf{T}(Z_i,\theta)$ have the same density as $\{X_1,...,X_n\}$

$$\frac{\text{Maximal Correlation}}{\max\limits_{\mathsf{G}(Z)} \frac{\left(\mathbb{E}_{\mathsf{f},\mathsf{h}}\big[\mathsf{K}\big(X,\mathsf{G}(Z)\big)\big]\right)^2}{\mathbb{E}_{\mathsf{h},\mathsf{h}}\big[\mathsf{K}\big(\mathsf{G}(Z^1),\mathsf{G}(Z^2)\big)\big]}} \,\Rightarrow\, Y = \mathsf{G}(Z) \sim \mathsf{f}(\cdot)$$

where Z^1, Z^2 independent following both h(Z)

Here $G(Z) \leftarrow T(Z, \theta)$

$$\max_{\theta} \frac{\left(\sum_{i=1}^{n} \sum_{j=1}^{m} \left[\mathsf{K} \left(X_{i}, \mathsf{T} (Z_{j}, \theta) \right) \right)^{2}}{\sum_{j=1}^{m} \sum_{j'=1}^{m} \mathsf{K} \left(\mathsf{T} (Z_{j}, \theta), \mathsf{T} (Z_{j'}, \theta) \right)} \right. \Rightarrow \hat{\theta}$$

Example

Let $h_0(z)$ zero mean. Define $h(z) = h_0(z - \mu)$, $f(x|\theta) = h(x - \theta)$ $h_0(z), \mu, \theta$ unknown. We are given $\{z_1, \ldots, z_m\} \sim h(z)$ and $\{x_1, \ldots, x_n\} \sim f(x|\theta)$. Estimate θ

Moment matching: $\frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{m} \sum_{j=1}^{m} z_j$

$$\varphi(w) = \begin{cases} w^2, & |w| \le c \\ 2c|w| - c^2, & |w| \ge c \end{cases}$$

Huber estimator: $\underset{v}{\arg\min} \; \sum_{i=1}^{n} \varphi(x_i - v) - \arg\min_{\mu} \sum_{j=1}^{m} \varphi(z_j - \mu)$

Maximal correlation: $K(x,y) = e^{-\frac{1}{h}|x-y|}$

MLE:
$$\underset{v}{\operatorname{arg\,max}} \sum_{i=1}^{n} \log \mathsf{h}_0(x_i - v) - \underset{\mu}{\operatorname{arg\,max}} \sum_{j=1}^{m} \log \mathsf{h}_0(z_j - \mu)$$

Estimation error power for $\,n=m=100$ and $\,\theta=\mu=1$

	Gaussian	Laplace	Cauchy	
CRLB	0.020	0.020	0.040	95% of Gaussian
MLE	0.020	0.023	0.041	
Moment Matching	0.020	0.040	∞	Data-driven
Huber Estimator	0.021	0.029	0.073	Data-driven
Maximal Correlation	0.022	0.025	0.045	Data-driven-
				$h = 2 \mathrm{median}\{ x_i \}$