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Two-part presentation

* Decision making

e Parameter estimation



Decision making - Outline

* Mathematical Formulation
* Data Driven Approach
 Extensions

* Examples



Single dataset: {z1,...,z,}
corresponding to two different scenarios (hypotheses)

Ho: =, ~ pure noise

H,: =z, ~ noise + reflection
W

Presence of airplane
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Interested in distinguishing between handwritten
numerals “4” and “9”

Single image = Two scenarios
’ Distinguish between “4” and “9”

Labeled as “9” , Labeled as “4~

Hypothesis Testing - Decision Making - Classification
Same Mathematical Problem
Interested in Optimal Solution
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Mathematical Formulation

For a random vector X we assume the following two hypotheses

H() X~ f()(X), IP)(H())
Hl X~ fl(X), P(Hl)

For every X need to decide if it comes from Hy or H;
Decide using a Decision Function D(X) € {0, 1}

Would like to optimize D(X)

Plethora of applications in diverse scientific fields!!!
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Bayesian Approach

Minimize decision error probability

min{P(D = 1[H)B(Ho) + B(D = 0H;)P(H,) ]

K 4 f1(X)P(Hy)
nX)=1 = w(rX)) =w(l), r(X)=
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Data Driven Approach

Ho: X ~ , XY X3 ... Xg% Sampled from f, } P(H,) n;

| S | —1 when X from Hy
Design a decision like function v(X) =14 [ | o H,

Cybenko 1989 (universal approximation)

For sufficiently large neural network u(X,0) we can find suitable parameters 6
such that we can approximate arbitrarily close any function v(X)

X V(X) = u(X,0)] < e

g(z)
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Use neural network u(X,0) and optimize 6 solving

1
Nog + N1

J(0) =

For every X to test decide as follows: u(X, 6,)

Works “well”!l Why??

N\

.

\

no

Z(—l—uXO ) —|—Z(1—u

1=1

mginJ(@) = 60, = u(X,6,)

0

IAIIVE
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Understanding using Asymptotic Analysis

no, N1 — 00, u(X,0) — v(X)
Al 9
1 +|u (1 — u( X]L )
no—l—nl no+n1 0
2
P(Ho) IEO 1+v +IP>(H1)IE1 [(1 —V(X)> ]

meln J(0) — mvln J(v)

0o = u(X,0,) ~ vo(X)
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S R

_ 2 : _ Fi(X)P(H,)
J(v) = P(Ho)E, [(1 +V(X)) + r(X)(l _ V(X))] ) = £ Py
minimize for each X
Vo(X) = :Ei; J_r 1 = w(r(X)), where w(r) = :J_r 1 strictly increasing
Test equivalent to Bayes: vo(X) = w(r(X)) Hé w(1l)=0 =_u(X,0,) Hé 0
Ho

Ho _ . ..
[ Equivalence in the limit

Develop data driven methods for estimation of w(r(X)) for other w(r)
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Extensions to other functions

For strictly increasing function w(r) can we define cost

J(v) =P(Ho)Eo [¢(v(X))] + P(H1)Eq [¢(v(X))]
so that mvinJ( V) = Vo(X) =w(r(X))?

THEOREM: Select strictly increasing function w(r) and strictly negative
function p(z). Define

then Vvo(X) = arg min J(v) = w(r(X))
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Examples of functions

A: =recR likelihood ratio
wir) =r - ( 9 ) Mean

pz) = 1,220 = ¢(z) = =, $(z) =~z Square

B: w(r) =1log(r) € R  (log-likelihood ratio)

Exponential
,O(Z> — _6—0.52 — (b(Z) — 260'527 w(z) _ 26_0'52 P
I
C: w(r) = c 10,1 osterior probabilit
" o O ® P Y Cross
Entropy

p(z)= .z €[0,1] = 6(z) = —log(1 — =), w(z) = —log(2)



Data Driven Implementation

J(v) = P(Ho)Eq [¢(v(X))] + P(H1)E; [1(v(X))]
Vo(X) = arg mvin J(v) = w(r(X))

X9 x9 .. ng Sampled from fO} X X5 ... X,,llﬁ Sampled from fl}

1) =~ 4 > 6(u(x2.0) +Zw(u<x;,e>)}
| i=1 j=1
. _(R(X)P(Hy)
mng(@) = 6, = u(X,0,) u()i,eo) W (fo(X)P(Ho))
Close to optimum Bayes test: u(X, 6,) % w(1)
Ho
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Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9

g4 44 Q5777

Gray scale images 28 X 28 = 784 pixels. Design classifier using training

data. Examine performance using testing data.
Neural network 784 X 300 X 1

-0 : Mean square g_(z)=max{z,0}, u,(X,0,)
—>@ o E

<t o -

© i o 8> Exponential g,(x)=x, uy(X,0,)
@4 Cross entropy g.(x)= sigmoid, u,(X,0s)

—> g(x)= max{z,0}
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# of parameters

235801
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Training set: 5500 “4” and 5500 “9”. Testing set: 982 “4” and 1009 “9”

I
|_s

u1(X,6;) =

E/\n

0.25

uz (X, 92)

0.2

0.15

0.1

Average classification error

Mean square

0.05 -

Exponential Cross-Entropy

=

0 1 | | 1 | 1
0 100 200 300 400 500 600 700 800

Number of iterations
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IAIIVT

1149

4 mistaken
for 9

4451

9 mistaken
for 4
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Parameter Estimation - Outline

 Data driven non-Bayesian estimation
A class of parameter estimation problems
* Density matching

« Example
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We would like to estimate speed
and position

Yt = Wy

Echo, must be removed
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Data driven non-Bayesian estimation

Non-Bayesian estimation monopolized by Maximum Likelihood Estimator (MLE)

For parametric density f(X|6) we are given X,,...,X, generated by same 6

Ouie(X) = arg max log f( X |0
mLe (X)) g ¢ ; g f(X;|0)
Asymptotically optimum: Approaches CRLBas n — oo
Estimate obtained by combining data and conditional density!

Cannot replace density with data

For a data-driven version we propose an indirect definition of f( X|6)



Start with Z ~ h(Z)

Consider deterministic parametric transformation T(Z,0)

Apply transformation on Z to generate X =T(Z,0) then X ~ f(X]0)

T(Z,0) : Known functional form, unknown parameters 6
h(Z) : Unknown, instead Z1,...,7Z,,
f(X1]0) : Unknown, instead X1,...,X,, forthe same 6

Goal: Estimate transformation parameters 6 from available data

We do not have correspondence X, =T(Z.,0)

The two datasets {£,,...,Z,}, {X;,...,X } are sampled independently



T(Z,0) =7 + 6
T(Z,0) =0z

(Z,60) can be nonlinear

"(Z) can be completely unknown. In this case we approximate with
neural network T(Z) =~ T(Z, 0)

Problem: Transform set {Z,...,Z _}into {Y},....,Y } with Y. =T(Z.,0). Compute

parameters 6 so that {Y},...,Y, } exhibits same statistical behavior as {X},...,X }

Moment Matching

n

_Z ZZ,H iZ(Xj)S’ S = 81,52,...

71=1
Notoriously non-robust
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Density Matching

Problem: Compute parameters 6 so that {Y;,...,Y } with Y. = T(Z.,0) have the
same density as {X},...,X,}

Maximal Correlation  If K(X,Y) positive definite kernel then

max (Ef’h [K(XDG(Z))DQ = Y =G(Z) ~f(+)
G(2) Enpn |K(G(Z1),G(Z?))] -

where Z1, Z# independent following both h(Z)
Here G(Z) + T(Z,0)
2
(S S KX T(z5.0)
max 0

™m m :>
0 Zj:l Zj/:lK(T(Zjv ‘9)7 T<Zj’7 ‘9))
J#3’




Example

Let ho(z) zero mean. Define h(z) = ho(z — p), f(x|0) = h(x — 6)
ho(2), i, @ unknown. We are given {z1,..., 2z, } ~ h(z) and
{x1,...,x,} ~ f(x|0). Estimate 6

w2, w| < ¢

Moment matching: = %"  z; — = Z;"’:l 2 pw) = { 2c|lw| — 2, |w| > ¢

Huber estimator: argmin > " | ¢(x; —v) —argmin) 0 o(z; — p)
v I
Maximal correlation: K(z,y) = e~ #l*=l

MLE: argmax} ., logho(z; — v) —argmax} 7, logho(z; — p1)
v v



Estimation error power for n =m =100andf =u =1

CRLB

MLE

Moment Matching
Huber Estimator
Maximal Correlation

Gaussian

0.020
0.020
0.020
0.021
0.022

Laplace

0.020
0.023
0.040
0.029
0.025

Cauchy

0.040
0.041
00
0.073
0.045

95% of Gaussian

Data-driven /

Data-driven
Data-driven

h = 2median{|z, |}



