Data Driven Detection Methods

GEORGE V. MOUSTAKIDES UNIVERSITY OF PATRAS, GREECE

Outline

- Hypothesis Testing
 - Mathematical Formulation
 - Data Driven Approach
 - The Consistency Property
- Likelihood Ratio Estimation
 - Optimization Problems with Consistent Solutions
 - Data Driven Implementation
- Detection in Time Series
 - I.i.d. processes
 - Markov processes
- What is Missing from the Analysis ?

Hypothesis Testing

Mathematical Formulation

For a random vector \boldsymbol{X} we assume the following two hypotheses

- $\mathsf{H}_0: \quad X \sim \mathsf{f}_0(X), \ \mathbb{P}(\mathsf{H}_0)$
- $\mathsf{H}_1: \quad X \sim \mathsf{f}_1(X), \ \mathbb{P}(\mathsf{H}_1)$

For every X need to decide if it comes from ${\rm H}_0$ or ${\rm H}_1$

Decide using a Decision Function $D(X) \in \{0, 1\}$

Would like to optimize D(X)

Plethora of applications in diverse scientific fields!!!

Bayesian Approach

Minimize decision error probability

$$\begin{split} \min_{\mathsf{D}} \left\{ \mathbb{P}(\mathsf{D} = 1 | \mathsf{H}_0) \mathbb{P}(\mathsf{H}_0) + \mathbb{P}(\mathsf{D} = 0 | \mathsf{H}_1) \mathbb{P}(\mathsf{H}_1) \right\} \\ \frac{f_1(X)}{\mathsf{f}_0(X)} \stackrel{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\overset{\mathsf{P}}{=}}} \frac{\mathbb{P}(\mathsf{H}_0)}{\mathbb{P}(\mathsf{H}_1)} \ \equiv \ \frac{f_1(X) \mathbb{P}(\mathsf{H}_1)}{\mathsf{f}_0(X) \mathbb{P}(\mathsf{H}_0)} \stackrel{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\overset{\mathsf{H}_1}{=}}} 1 \end{split}$$

For $\omega(\mathbf{r})$ strictly increasing

Neyman-Pearson Approach

 $\begin{aligned} \mathsf{H}_0 : \quad X \sim \mathsf{f}_0(X), \quad \mathbb{P}(\mathsf{H}_0) \\ \mathsf{H}_1 : \quad X \sim \mathsf{f}_1(X), \quad \mathbb{P}(\mathsf{H}_1) \end{aligned}$

Maximize detection probability $\mathbb{P}(\mathsf{D}=1|\mathsf{H}_1)$

subject to false alarm probability constraint $\mathbb{P}(\mathsf{D}=1|\mathsf{H}_0) \leq \alpha$

For $\omega(\mathbf{r})$ strictly increasing

$$\omega(\mathbf{r}(X)) \stackrel{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\overset{\geq}{\approx}}} \eta, \quad \mathbb{P}\Big(\omega(\mathbf{r}(X)) \ge \eta \big| \mathsf{H}_0\Big) = \alpha, \qquad \mathbf{r}(X) = \frac{\mathsf{f}_1(X)}{\mathsf{f}_0(X)}$$

Data Driven Approach

$$\begin{aligned} \mathsf{H}_0 : \quad X \sim \mathsf{f}_0(X), \quad \mathbb{P}(\mathsf{H}_0) \\ \mathsf{H}_1 : \quad X \sim \mathsf{f}_1(X), \quad \mathbb{P}(\mathsf{H}_1) \end{aligned}$$

Design border to separate the two datasets

What is the best border ?

$$\mathsf{AII} X: \ \frac{\mathsf{f}_1(X)\mathbb{P}(\mathsf{H}_1)}{\mathsf{f}_0(X)\mathbb{P}(\mathsf{H}_0)} = 1$$

Instead of a "border", design a decision like function v(X)

$$\mathsf{v}(X) = \begin{cases} -1 & \text{when } X \text{ from } \mathsf{H}_0\\ 1 & \text{when } X \text{ from } \mathsf{H}_1. \end{cases}$$

Use parametric family of functions $u(X,\theta)$ and optimize θ solving

$$\begin{split} \mathsf{J}(\theta) &= \frac{1}{n_0 + n_1} \left\{ \sum_{i=1}^{n_0} \left(-1 - \mathsf{u}(X_i^0, \theta) \right)^2 + \sum_{j=1}^{n_1} \left(1 - \mathsf{u}(X_j^1, \theta) \right)^2 \right\} \\ &\qquad \min_{\theta} \mathsf{J}(\theta) \ \Rightarrow \ \theta_{\mathsf{o}} \ \Rightarrow \ \mathsf{u}(X, \theta_{\mathsf{o}}) \end{split}$$

For every *X* to test decide as follows:
$$\mathsf{u}(X, \theta_{\mathsf{o}}) \overset{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\overset{\mathsf{O}}{=}} \mathsf{O}$$

Works "well"!! Why??

<u>Understanding using Asymptotic Analysis</u>

$$\begin{split} n_0, n_1 \to \infty, \qquad \mathsf{u}(X, \theta) \to \mathsf{v}(X) \\ \mathsf{J}(\theta) &= \underbrace{\frac{n_0}{n_0 + n_1}}_{\mathsf{N}_0 + n_1} \underbrace{\frac{1}{n_0} \sum_{i=1}^{n_0} \left(1 + \mathsf{u}(X_i^0, \theta)\right)^2 + \frac{n_1}{n_0 + n_1} \frac{1}{n_1} \sum_{j=1}^{n_1} \left(1 - \mathsf{u}(X_j^1, \theta)\right)^2 \\ \mathsf{J}(\mathsf{v}) &= \mathbb{P}(\mathsf{H}_0) \mathbb{E}_0 \left[\left(1 + \mathsf{v}(X)\right)^2 \right] + \mathbb{P}(\mathsf{H}_1) \mathbb{E}_1 \left[\left(1 - \mathsf{v}(X)\right)^2 \right] \\ & \underbrace{\min_{\theta} \mathsf{J}(\theta)}_{\mathsf{v}} \to \underbrace{\min_{\mathsf{v}} \mathsf{J}(\mathsf{v})}_{\mathsf{v}} \\ \theta_0 &\Rightarrow \mathsf{u}(X, \theta_0) \approx \mathsf{v}_0(X) \end{split}$$

$$\mathbb{E}_1\left[\left(1-\mathsf{v}(X)\right)^2\right] = \mathbb{E}_0\left[\left(1-\mathsf{v}(X)\right)^2\frac{\mathsf{f}_1(X)}{\mathsf{f}_0(X)}\right]$$

$$\mathsf{J}(\mathsf{v}) = \mathbb{P}(\mathsf{H}_0)\mathbb{E}_0\left[\left(1+\mathsf{v}(X)\right)^2 + \mathsf{r}(X)\left(1-\mathsf{v}(X)\right)^2\right] \qquad \mathsf{r}(X) = \frac{\mathsf{f}_1(X)\mathbb{P}(\mathsf{H}_1)}{\mathsf{f}_0(X)\mathbb{P}(\mathsf{H}_0)}$$

minimize for each X

$$v_{o}(X) = \frac{r(X) - 1}{r(X) + 1} = \omega(r(X)), \text{ where } \omega(r) = \frac{r - 1}{r + 1} \text{ strictly increasing}$$

Consistency (with respect to the Bayes test)

Develop data driven methods for estimation of $\omega(\mathbf{r}(X))$ for other $\omega(\mathbf{r})$

Consistent tests eventually prevail over inconsistent tests

Likelihood Ratio Estimation

$$\mathbf{r}(X) \stackrel{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\overset{\mathsf{H}_{1}}{\underset{\mathsf{H}_{0}}{\underset{0}}{\underset{\mathsf{H}_{0}}{\underset{$$

For function $\omega(\mathbf{r})$ can we define cost

 $\mathsf{J}(\mathsf{v}) = \mathbb{P}(\mathsf{H}_0)\mathbb{E}_0\left[\phi(\mathsf{v}(X))\right] + \mathbb{P}(\mathsf{H}_1)\mathbb{E}_1\left[\psi(\mathsf{v}(X))\right]$

so that $\min_{\mathbf{v}} \mathsf{J}(\mathbf{v}) \Rightarrow \mathsf{v}_{\mathsf{o}}(X) = \omega(\mathsf{r}(X))$?

THEOREM: <u>Select strictly increasing function</u> $\omega(\mathbf{r})$ and strictly negative function $\rho(z)$. Define

$$\psi'(z) = \rho(z), \quad \phi'(z) = -\omega^{-1}(z)\rho(z)$$

then the solution of the optimization problem

$$\min_{\mathbf{v}} \mathsf{J}(\mathbf{v}) = \min_{\mathbf{v}} \left\{ \mathbb{P}(\mathsf{H}_0) \mathbb{E}_0 \left[\phi(\mathbf{v}(X)) \right] + \mathbb{P}(\mathsf{H}_1) \mathbb{E}_1 \left[\psi(\mathbf{v}(X)) \right] \right\}$$

satisfies $\mathsf{v}_0(X) = \arg\min_{\mathbf{v}} \mathsf{J}(\mathbf{v}) = \omega(\mathsf{r}(X))$

Same optimal solution $\omega(\mathbf{r}(X))$ for all functions $\rho(z) < 0$

Examples of functions

A:
$$\omega(\mathbf{r}) = \mathbf{r} \in \mathbb{R}_+$$
 (likelihood ratio)
 $\rho(z) = -1, z \ge 0 \Rightarrow \phi(z) = \frac{z^2}{2}, \ \psi(z) = -z$

Mean Square

Exponential

Cross

Entropy

B:
$$\omega(\mathbf{r}) = \log(\mathbf{r}) \in \mathbb{R}$$
 (log-likelihood ratio)
 $\rho(z) = -e^{-0.5z} \Rightarrow \phi(z) = 2e^{0.5z}, \ \psi(z) = 2e^{-0.5z}$

2:
$$\omega(\mathbf{r}) = \frac{\mathbf{r}}{\mathbf{r}+1} \in [0,1]$$
 (posterior probability)
 $\phi(z) = -\frac{1}{z}, z \in [0,1] \Rightarrow \phi(z) = -\log(1-z), \quad \psi(z) = -\log(z)$

Data Driven Implementation

$$J(\mathbf{v}) = \mathbb{P}(\mathsf{H}_0)\mathbb{E}_0\left[\phi(\mathbf{v}(X))\right] + \mathbb{P}(\mathsf{H}_1)\mathbb{E}_1\left[\psi(\mathbf{v}(X))\right]$$
$$J(\theta) = \frac{1}{n_0 + n_1}\left\{\sum_{i=1}^{n_0} \phi\left(\mathsf{u}(X_i^0, \theta)\right) + \sum_{j=1}^{n_1} \psi\left(\mathsf{u}(X_j^1, \theta)\right)\right\}$$
$$\mathsf{u}(X, \theta_0) \approx \omega\left(\frac{\mathsf{f}_1(X)\mathbb{P}(\mathsf{H}_1)}{\mathsf{f}_0(X)\mathbb{P}(\mathsf{H}_0)}\right)$$

$$\mathsf{J}(\theta) = \frac{1}{n_0} \sum_{i=1}^{n_0} \phi\bigl(\mathsf{u}(X_i^0, \theta)\bigr) + \frac{1}{n_1} \sum_{j=1}^{n_1} \psi\bigl(\mathsf{u}(X_j^1, \theta)\bigr) \\ \mathsf{u}(X, \theta_0) \approx \omega\left(\frac{\mathsf{f}_1(X)}{\mathsf{f}_0(X)}\right)$$

Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9

Gray scale images 28 X 28 = 784 pixels. Design classifier using training data. Examine performance using testing data.

Neural network 784 X 300 X 1

Training set: 5500 "4" and 5500 "9". Testing set: 982 "4" and 1009 "9"

Detection in Time Series

More practically interesting case: Testing of time series { X_1 , X_2 ,..., X_n } The whole set of measurements under H_0 or H_1

For testing we need likelihood ratio

$$\frac{f_1(X_n, \dots, X_1)}{f_0(X_n, \dots, X_1)} = \frac{f_1(X_n | X_{n-1}, \dots, X_1)}{f_0(X_n | X_{n-1}, \dots, X_1)} \frac{f_1(X_{n-1} | X_{n-2}, \dots, X_1)}{f_0(X_{n-1} | x_{X-2}, \dots, X_1)} \cdots \frac{f_1(X_1)}{f_0(X_1)}$$

When i.i.d. under each hypothesis
$$\frac{f_1(X_n, \dots, X_1)}{f_0(X_n, \dots, X_1)} = \frac{f_1(X_n)}{f_0(X_n)} \cdots \frac{f_1(X_1)}{f_0(X_1)}$$

Test to be used

$$\sum_{i=1}^{n} \log \left(\frac{\mathsf{f}_1(X_i)}{\mathsf{f}_0(X_i)} \right) \overset{\mathsf{H}_1}{\underset{\mathsf{H}_0}{\overset{\geq}{\approx}}} \eta$$

Interested in estimating
$$\omega(\mathbf{r}(X)) = \omega\left(\frac{\mathbf{f}_1(X)}{\mathbf{f}_0(X)}\right)$$

We are given training data:

$$\{X_1^0, \dots, X_{n_0}^0\}$$
 following H_0
 $\{X_1^1, \dots, X_{n_1}^1\}$ following H_1

For each $\omega(\mathbf{r})$ of interest, minimize corresponding $J(\theta)$

$$\mathsf{J}(\theta) = \frac{1}{n_0} \sum_{i=1}^{n_0} \phi\bigl(\mathsf{u}(X_i^0, \theta)\bigr) + \frac{1}{n_1} \sum_{j=1}^{n_1} \psi\bigl(\mathsf{u}(X_j^1, \theta)\bigr)$$
$$\mathsf{u}(X, \theta_0) \approx \omega\left(\frac{\mathsf{f}_1(X)}{\mathsf{f}_0(X)}\right)$$

For
$$\omega(\mathbf{r}) = \mathbf{r}$$
, $\mathbf{u}_1(X, \theta_1) \approx \frac{f_1(X)}{f_0(X)}$, use $\log(\mathbf{u}_1(X, \theta_1))$ (Mean Square)

For
$$\omega(\mathbf{r}) = \log(\mathbf{r}), \ u_2(X, \theta_2) \approx \log\left(\frac{\mathsf{f}_1(X)}{\mathsf{f}_0(X)}\right), \ \text{use} \ u_2(X, \theta_2) \ \text{(Exponential)}$$

For
$$\omega(\mathbf{r}) = \frac{\mathbf{r}}{\mathbf{r}+1}, \ \mathbf{u}_3(X,\theta_3) \approx \frac{\frac{f_1(X)}{f_0(X)}}{\frac{f_1(X)}{f_0(X)}+1}, \ \text{use} \ \log\left(\frac{\mathbf{u}_3(X,\theta_3)}{1-\mathbf{u}_3(X,\theta_3)}\right)$$
 (Cross Entropy)

Markovian processes

Consider Markovian processes with "memory" \boldsymbol{m}

$$\frac{f_1(X_n|X_{n-1},\dots,X_1)}{f_0(X_n|X_{n-1},\dots,X_1)} = \frac{f_1(X_n|X_{n-1},\dots,X_{n-m})}{f_0(X_n|X_{n-1},\dots,X_{n-m})}$$
$$\frac{f_1(X_n,\dots,X_1)}{f_0(X_n,\dots,X_1)} = \frac{f_1(X_n|X_{n-1},\dots,X_{n-m})}{f_0(X_n|X_{n-1},\dots,X_{n-m})} \cdots \frac{f_1(X_{m+1}|X_m,\dots,X_1)}{f_0(X_{m+1}|X_m,\dots,X_1)}$$
$$\times \frac{f_1(X_m,\dots,X_1)}{f_0(X_m,\dots,X_1)}$$

Can we estimate likelihood ratio of conditional densities?

- a) Through data dynamics (classical)
- b) Directly (proposed)

Classical Approach

Most common model, Autoregressive

$$X_{t} = A_{1}^{i} X_{t-1} + \dots + A_{m}^{i} X_{t-m} + W_{t}, \quad i = 0, 1$$
$$X_{t} = G_{i} (X_{t-1}, \dots, X_{t-m}, \theta^{i}) + W_{t}$$

Use training data
$$\{X_{1}^{0}, \dots, X_{n_{0}}^{0}\}$$
 and $\{X_{1}^{1}, \dots, X_{n_{1}}^{1}\}$ to solve

$$\min_{\theta^{i}} \sum_{t=1}^{n_{i}} \left(X_{t}^{i} - G_{i}(X_{t-1}^{i}, \dots, X_{t-m}^{i}, \theta^{i})\right)^{2} \Rightarrow \theta_{0}^{i}$$
 $W_{t}^{i} = X_{t}^{i} - G_{i}(X_{t-1}^{i}, \dots, X_{t-m}^{i}, \theta_{0}^{i}), \ \Sigma_{i} = \frac{1}{n_{i}} \sum_{t=1}^{n_{i}} W_{t}^{i}(W_{t}^{i})^{T}$

Assume $\{W_t^i\}$ i.i.d. Gaussian $\mathcal{N}(0, \Sigma_i)$

 X_t given $\{X_{t-1}, \ldots, X_{t-m}\}$ under hypothesis H_i Gaussian with mean $G_i(X_{t-1}, \ldots, X_{t-m}, \theta_o^i)$ and covariance Σ_i

$$\begin{aligned} \text{Fo test} \left\{ X_1, \dots, X_n \right\} \\ & W_t^i = X_t - G_i(X_{t-1}, \dots, X_{t-m}, \theta_0^i) \\ & \frac{\mathsf{f}_1(X_t | X_{t-1}, \dots, X_{t-m})}{\mathsf{f}_0(X_t | X_{t-1}, \dots, X_{t-m})} = \frac{e^{-\frac{1}{2}(W_t^1)^\intercal \Sigma_1^{-1} W_t^1}}{e^{-\frac{1}{2}(W_t^0)^\intercal \Sigma_0^{-1} W_t^0}} \sqrt{\frac{|\Sigma_0|}{|\Sigma_1|}} \end{aligned}$$

Not purely data driven

Gaussian assumption arbitrary, not necessarily suitable for all data!

Proposed Approach

$$\log \left(\frac{f_{1}(X_{t}|X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t}|X_{t-1},\dots,X_{t-m})}\right) = \log \left(\frac{\frac{f_{1}(X_{t},X_{t-1},\dots,X_{t-m})}{f_{1}(X_{t-1},\dots,X_{t-m})}}{\frac{f_{0}(X_{t},X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t-1},\dots,X_{t-m})}}\right) = \log \left(\frac{f_{1}(X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t-1},\dots,X_{t-m})}\right) = \log \left(\frac{f_{1}(X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t-1},\dots,X_{t-m})}\right) = \log \left(\frac{f_{1}(X_{t}|X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t-1},\dots,X_{t-m})}\right) = \log \left(\frac{f_{1}(X_{t}|X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t}|X_{t-1},\dots,X_{t-m})}\right) = \log \left(\frac{f_{1}(X_{t}|X_{t-1},\dots,X_{t-m})}{f_{0}(X_{t}|X_{t-1},\dots,X_{t-m})}\right)$$

Example: Testing Markov sequences (proof of concept)

What is Missing from the Analysis ?

- For fixed $\omega(\mathbf{r})$ find $\rho(z)$ that produces best estimates for $\omega(\mathbf{r}(X))$ Requires analysis of estimation performance of neural networks for finite models (extremely challenging !!!).
- Rank functions $\omega(\mathbf{r})$ according to their approximation accuracy Is it possible to show that Mean Square is worse that Exponential or Cross Entropy?

Acknowledgements

Nokia Visiting Professor Scholarship

Department of Signal Processing and Acoustics Research Group of Professor Visa Koivunen

