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Outline

 Why likelihood ratios ?
 Data driven estimation of likelihood ratios

 (Generative models
* Design using likelihood ratio estimation
 (Generative models vs probability densities

* Application to inverse problems
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Why Likelihood Ratios ?
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@ For X, f(X_) expresses the likelihood that X
corresponds to a bird

Statistical similarity ?  f(X) = g(X) &
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Data Driven Estimation
of Likelihood Ratios
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THEOREM: Assume X follows density f(X), Y follows density g(Y).

Select strictly increasing function w(r) and strictly positive function p(z).
Compute ¢(z), ¥(z) from

¢'(z) = p(2), P'(z) = —w l(2)p(2)

For D(X) arbitrary function define cost

J(D) = E[¢(D(X))] + Eg|v(D(Y))]

Then the solution to optimization

m[e)axJ(D) = max {Ef[gb(D(X))} +E, W(D(Y))]} ~ Dy(X) = w (M
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Examples of functions

fw(r) = r (estimate likelihood ratio), if select p(z) =1 h
2
b(x) = -5, V(=) ==
- P
w(r) = logr (estimate log-likelihood ratio), if select p(z) = 6_0'52\
¢(Z) — —260527 w(z) _ —26_()'52
- P
O . 1\
w(r) = T (estimate posterior probability), if select p(z) = .
d(z) =log(l — z), (z) = log(z)
- Y,
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Data Driven Implementation

J(D) = E¢|¢(D(X))] + Eg | (D(Y))]

{1X,,X,,...,X } following f(X), {Y,,Y,, ..., Y } following g(Y)
Approximate: D(X) with neural network D(X,?), Expectations with sample means

m

mgaxJ { Zqﬁ (X;,0)) ;Z:lw(D(Yj,ﬁ))} = 9, = D(X, )
We expect D(X,9y) &~ Do(X) = w (%) = w ' (D(X,9,)) = f((—X))

Different w(r), ¢(z), ¥(z) produce approximation of different quality
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Summary
{1X,,X,,...,X } following f(X), {Y,,Y,, .., Y } following g(Y)
Select w(r), p(z), compute ¢(z), ¥ (z)

1 m
max{ qu (X;,0)) Ez:: D(Y;,9)) }
= ¥, = D(X,¥) = w ' (D(X,¥)) = 2=~

Compare w™* (D(X, 190)) to 1 to assess whether the two datasets
have the same statistical behavior or not

For new sample X compare w™ " (D(Xo, 9)) to threshold A to
decide whether X statistically follows the first or the second set
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Example: Classification Problem

From dataset MNIST isolate handwritten numerals 4 and 9

XXX

Q7797

Training set: 5500 “4” and 5500 “9”. Testing set: 982 “4” and 1009 “9”

0.25 '

2

1

5 0.16

=

R

i

-

]

a

]

D

=

o

Zx Mean equare

%

0.05 —— — e I
Exponenlial Cross-Enlrapy
U i 1 1
i 100 200 300 200 1

Numbar of itarations

1149

4 mistaken
for 9

RN

9 mistaken
for 4

Moustakides: Data driven estimation of likelihood ratios, application to GANs, Paris-Saclay, Paris, France, Feb. 2023



Generative Models
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Is it possible to generate synthetic data (realizations X) that follow f(X) ?
NOT an easy problem even if density f(X) is known!

Begin with density h(Z): Simple to generate realizations Z,
Find transformation G(Z): Such that X, = G(Z,) follows f(X)

Xi
THEOREM: Under general conditions
a transformation G exists !l N
L N
g

Pair {G(Z),h(Z)} Generative model
G(Z) Generator
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X follows f(X) andY follows g(Y)

_ _[(8(X)
m['gaxJ(D) — max {Ef[gb(D(X))} + E, [w(D(Y))]} = Do(X) =w (ﬁ)
Z follows h(Z), select G(Z), define Y= G(Z), check if likelihood ratio = 1

THEOREM (Goodfellow et al. 2014): Z follows h(Z), define Y= G(Z) and cost
J(G,D) = Ee[¢(D(X))] +En|:(D(6(2)) )

then the optimum solution to the adversarial problem

min max J(G, D) = min max {Ef[qb(D(X))} + Ky [w(D(G(Z)))”

G D G D

is such that Y= G, (Z) follows f(Y)

(& J
D(X) Discriminator G(Z) Generator
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Data Driven Implementation
{1X,,X,,...,X, } following f(X), $2,,2,,..., 7 } following h(Z)

Likelihood ratio D(X) approximated by neural network D(X,) (Discriminator)
Generator function G(Z) approximated by neural network G(Z,0) (Generator)

1 n
_gng( (X, ) Zw( G(Z;,0), ))
1=1
Adversarial optimization becomes

meinmng(H,ﬁ)—mmmax{ Zgb (X;,9)) %g: ( G(Z;,0), 19))}

= {90,190} = 0, = G(Z,6,) Generative
Adversarial
IFZ follows h(Z) THEN Y= G(Z,0,) follows f(Y) Networks

Moustakides: Data driven estimation of likelihood ratios, application to GANs, Paris-Saclay, Paris, France, Feb. 2023 15



Example (NVIDIA)
HD-CelebA (30 000 high definition images 1024 X 1024 of celebrities)

NVIDIA used progressive growing of GANs (4X4), (8X8),...,(1024X1024)

{ Y of size 3 X 1086, Z Gaussian vector of length 500 J
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Generative Models
VS
Probability Densities
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Points in N-D space can be random and lie on a lower dimensional surface

(manifold)
Example red points on sphere (2-D in 3-D space)

1 . Points are random with coordinates Y = [’!/p Yo yg]
satisfying the deterministic equation

yi Yy s =1

Then density has the form
f(y1,y2,93) = 6(y7 + 5 + 5 — r°)h(y1, y2)

as e - Dirac §(x) generalized function is defined as
[ 0 z#0 ) _
5(:1:)—{ o p—0 /_65(513)61:1:—1
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Generative model would describe the random data with input density
h(z,,2,) and generator vector function G(z,,z,)

Y1
Y = G(Zl,ZQ) — Y2

Y3

— Gl(Zl,ZQ) I Y1 = TCOS(27T21)Sin(7T22)
= GQ(Zl,ZQ) = Yo = rsin(27rz1)sin(7er)
— Gg(Zl,ZQ) 1 | Y3 = TCOS(TI'ZQ)

h(z,,2,) defined on [0,1]x|0,1] and G(z,,2,) is an ordinary function

Data are representable as Y = G(Z), Z follows h(Z). Many datasets satisfy

dim(Z) < dim(Y)

In HD CelebA:  dim(Y) = 3 X 1024 X 1024 = 3 X 106

Input to Generator G(Z2):

dim(Z) = 500 (independent Gaussians)

Moustakides: Data driven estimation of likelihood ratios, application to GANs, Paris-Saclay, Paris, France, Feb. 2023

19



Application to
Inverse Problems
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Several image restoration problems in Computer Vision can be formulated as

follows

Measurement =—X = T(Y) + W more general X = T(Y,a) + W

Known transfm ' Noise | Wparameters]

Problem: Recover (restore) ideal Y from measurements X

|deal Examples of transformations

Restore ®
) / !J
[ ¢

N

TR .
Inpainting Colorization Super-Res De-Noising De-Quantization

Recovering Y from measurements X is an ill posed problem
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J More unknowns
»  —— thanequations
Inpalntlng

Classical approach: Impose “smoothness” constraints to obtain a (unique)
solution

Available generative model {G(Z),h(2)}: Y = G(Z)

Since Y = G(Z), instead of estimating Y, estimate input to generator Z
then recover Y as the output of the generator

Because dim(Z) < dim(Y), significant computational gain and stable processing
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Ad-Hoc Approaches
Select Z so that measurement X and T(G(Z)) are “close”

mZinHX—T(G(Z))H2 = Zo = Y, = G(Z,)

Well defined optimization, computationally stable
Y X G(Zo)

F < Failure |
Generative model is a pair {G(Z),h(Z)}

Even for T(G(Z)) “close” to X, if likelihood h(Zo) is very small
then Y, = G(Z,) is a bad solution

Must take into account input density h(Z)
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Yeh et al. (2017), (2018)

(Z) =X - T(G(2))] ) Regularizer } { I?/g h(Z) }

ngos—DUKZD)—kg( «KZ»)—‘MZWE

mmJ ) = Zo = Y, =

Parameter needs tuning
@ - & Fﬂ

Asim et al. (2019) Success ?

W2) =X =T(G2)I*+AZ|? mind(Z) = Z, = Yo=G(Z

[Both methods require exact knowledge of T(Y)}
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Statistical Estimation

Following classical optimal Statistical estimation theory, in particular the
Maximum Aposteriori Probability (MAP) method we obtain

)(2.) = tog (X~ T(G(2),0) ) + 2], N =dim(X)

minJ(Z,a) = {Z,, a0} = Y, =G(Z)

Z,x
[ No parameters to tune }
Can accommodate unknown
parameters in transformation T(Y,«)
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Examples

Blurring with 3 X 3 mask Colorization (green channel)
Yeh Asim Known Unknown

Known Unknown Y

y X Yeh  Asim_
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De-Quantization

2 levels per RGB channel, 8 colors
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De-Quantization

3 levels per RGB channel, 27 colors

REERAROD:

[T N

3”“§,g~, 3¢

’ﬁhs é’l %‘fﬂ
D8 er?s > (8o 18

—HeEaat

Moustakides: Data driven estimation of likelihood ratios, appllcatlon to GANs, Paris-Saclay, Paris, France, Feb. 2023

X

R
-8-
’
E

Yeh :

o
v
i

Asim |
‘, ‘\
y

\'

28



De-Quantization and Colorization

RGB = Gray =2 BW (2 levels)

-
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Data Mixtures X =aY +dY’

Known Unknown

\
:
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