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Problem Definition



Observe sequentially a random process {X,} evolving in time
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| * N h
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Change-time

Control Charts In Control Out of Control

Sequential Change Pre-Change Post-Change
Detection Nominal Alternative

Detect change in statistical behavior as soon as possible
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Quality Monitoring of Manufacturing Process

Production Continuous
Line Measurements

Medical Applications
Epidemic Detection

Disease Rate Increase in
Measurements Rate?

Early Detection of Epilepsy Episode

EEG Divergence
Wearables from Normal

Quality
Assessment

Epidemic
Outbreak?

Episode?



Financial Applications
Structural Change-detection in Exchange Rates

Portfolio Monitoring

Electronic Communications

Seismology

Speech & Image Processing (segmentation)
Vibration Monitoring (Structural health monitoring)
Security Monitoring (fraud detection)

Spectrum Monitoring

Scene Monitoring

Network Monitoring (router failures, attack detection)



Detection Strategies



Sequential Test: At each time t use available observations { X},...,X,}
to decide whether a change has occurred at ¢ or before (no future information)

Common tests: Declare change if S,(X;,....X;) > v,

Xy
X1 _
Sequential Test
equivalent to
Stopping Time
X, X
T

1 X, Was there a change? No, take one more sample
2 XX Was there a change? No, take one more sample

1T-1 X,X,,....Xr; Wasthere achange? No, take one more sample
T X,X,,..X;, Wasthereachange? Yes, Stop sampling (stopping time)
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Main task: Design Stopping Time [’

Premature Stopping = False Alarm (infrequent)

T T
Successful Detection = 1'- 7 Detection Delay (short)

For the theoretical design of I’ need to quantify both
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- P (A X)) e P, (iid. Fy(X)) >

False Alarm

_— False Alarm Period T

Average False Alarm Period (large): Eo| T'] >~ Computable

Moustakides: Designing Optimum Tests for Sequential Detection of Changes, ENBIS 2025, Piraeus, GREECE 7



Detection Delay

Average Detection Delay: E,| max{#=7, 0} |

Biased due to false alarms Extremecase: T =0

Conditional Average Detection Delay (small):  Eq|T —7|T > 7|

Computable ?

What is change-time 7 ?
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Understanding Changes



T

Change-time 7 random! Can this randomness be described by P, , P; ?
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Vibration measurements { X, } at sensors to detect structural changes

Change imposing mechanism does not use observations { X, }
Relies on independent data (coordinates of the ball in football game)!
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Attack

f’ Attacker

/ 2" 4
Yé\mff"‘V

=B

| — Traffic {X,}

The system uses traffic measurements { X, } to detect attacks

The attacker has no access to { X, }, therefore time of attack is independent from

observations

Moustakides: Designing Optimum Tests for Sequential Detection of Changes, ENBIS 2025, Piraeus, GREECE 11



Earthquake

Change imposing
mechanism consults
{Z.} which depend on

observations { X,}

Vibration measurements { X, } at sensors to detect structural changes

X, =AZ, + W,, Z, state of the whole structure
Change (crack) when || Z;||? > A
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In previous examples
detection delay can be
arbitrarily large

Power Grid
{X,} measurements at

major points

Change in statistical behavior must be detected between 7 and 7+ W

After 7+ W change produces blackout!

Detection delay is hard limited: W >T-7>0
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{X,} Observations collected sequentially to detect the change

Change Imposing Mechanism
* Mechanism applies changes based on information independent from { X, }

* Mechanism applies changes based on information dependent on { X, }

Delay Constraint

* No hard limit on detection delay

 Detection delay is hard limited



Performance Criteria

and Optimum Tests



Change Imposing Mechanisms Independent from Observations
(no hard limit)

P(r =t) = m, sequence of numbers

If prior {m;} known we can compute  E;[T —7|T > 7]

When {m,} unknown follow a worst-case analysis Pollak Criterion

J(T)=supE,|T —7|T>7] = supEy|T —¢t|T >t
{7} t>0

Optimize 1’ by solving constrained optimization (1983)

inf J(T) = infsupE, [T — ¢|T
|9J() |:r}§;(|c)) | T —t|T > ¢

subjectto:  Eo|T| >~
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For i.i.d. observations before and after the change
Pollak proposed the Shiryaev-Roberts-Pollak (SRP) Test

Specially design initial value S,

At each time t with new sample X, update statistic .S,

f1 (X3)

fo(X3)

Tsrp = inf{t >0: 5 > V}

Select v to satisfy false alarm constraint: Eq |Tsgp| = v

St = (1‘|‘St—1)

(1983) Asymptotically optimum for ~y large (tending to infinity)
Strongest sense of asymptotic optimality
NOT exactly optimum (2010 counterexample)
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Change Imposing Mechanisms Dependent on Observations
(no hard limit)

]:P)(T — t) — ﬂ-t(XbXQ)”')Xt)

The probabilities depend on the realization

When {m,(X;,X5,...,X; ) } unknown follow a worst-case analysis

J(T)=supEs[T—7|T>7] = sup sup Ei|T—t|T>tXy,...,X¢
(70} £>0 X1,....X,

Lorden Criterion
Optimize 1' by solving constrained optimization (1971)

infJ(T) =infsup sup E{|T—¢T >t Xq,..., X
T T >0 Xq,...,X4

subjectto:  Eo|T| >~
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For i.i.d. data before and after the change apply CUSUM Test

At each time t with new sample X, update CUSUM statistic .S,
f1 (X3)

fo(X¢)
Tcusum = inf{t >0: S; > v}

St — max{St_1,0}+|og( ), S():O

Select v to safisfy false alarm constraint: Eg|Tcysum| =

Exact optimality (1986)
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CUSUM Test particularly successful in practice, WHY ?

Sy = max{S;_1,0} + Iog(::(l)gig)
e g ()] <0 < Ea e ()] V
A ™
t T TCUSUM

Prototype for other data models

Sy = max{S;_1,0} + Iog(
No exact optimality
Asymptotic optimality for false alarm values ~ large (tending to infinity)
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), Sy =0



Hard limited detection delay

T T+

In certain applications necessary to detected between 7 and 7+ W
Stopping after 7+ W is no detection (too late)

Interested in 1" such that T<T<71t+W
Pi(r<T<7+W|T>7) =P (T<7+W|T>r)
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Change mechanism independent from observations

Leads to J(T) = JQE P (T <t+WI|T >t) Pollak-like Criterion

— fP (T < 1
sng( ) = SUDtIQO (T <t+W|T >t)

subjectto:  Eo|T| >~

Change mechanism dependent on observations Lorden-like Criterion
Leads to J(T) = inf _inf Py(T<t+W|T>tXy,...,Xs)
£>0 X1..... X,

supJ(T) =sup inf _inf_ Py(T <t+WI|T >tXy,...,X;)
T T t>20Xq,..., X4

subjectto:  Eo|T| >~



Solution for arbitrary W ? NO

Only for W =1, Immediate detection with the first post-change sample

sup infP (T =t+1|T > t)
t>0
or

sup inf _inf_ Py(T=t+1|T >t X,...,X4)
T >0 X1,...,Xs

subjectto:  Eo|T| >~

For i.i.d. data before and after the change optimum is the Shewhart Test

. f1 (X3)
T :mf{t>o: zu}
" fo(X3)




Advanced Versions



Unknown Parameters
For i.i.d. data before and after the change: Probability densities f,(X), f;(X,0)

At every time t use sliding window of previous data X, 4,...,X,., to estimate 0

fy (X, ét—l)
fo(X3)

S = max{St_l,O} + |Og( ) Twecusum = iﬂf{t >0: 5 > V}

. n

T Tweusum
Eo|Tcusum| = v — 00, Eq|Tcusum| ~ logy — oo

Optimum w ~ \/logv, Eq|Twcusum| = E1|Tcusum]| + O(1/log)
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Data-Driven Version

Densities fy(X,| X;q,---), f1(X;]| X} q,...) @re completely unknown. Instead:
{X7,.... X, } sampled from fo(X;|X;_1,...)
{X{,..., X, } sampled from fi(X;|X;_1,...)

Training Data

DO NOT estimate individual densities fy(X,| X, {,...), f1 (X1 X} q,---)

Use Machine Learning techniques (neural networks) to estimate directly

(X Xy,
X, X, 1) ~ | ( )
u(Xe, Xe-1,...) ~ log fo (Xt Xy 1, )

Approximate CUSUM statistic: .S, = max{S;_1,0} + u (X, X;_1,...)



16 T L L T T T T T

Before and after change:
Markovian process of
unit memory

14 Approximate CUSUM ny=n;=2500 y

N
T
1

Approximate CUSUM ny=n;=500

9
©
fo(X¢ | Xy1) 2 ol |
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f (X ] Xp) o
D | Exact CUSUM
]
)
@ °f 1
2
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Average False Alarm Period

No claim of optimality of any type
Simulations suggest asymptotic optimality if n,, n, suitable functions of -y
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