Designing Optimum Tests for Sequential Detection of Changes

George Moustakides
Electrical and Computer Engineering
University of Patras, GREECE

Preview

Control Charts

Sequential Change Detection

Detecting changes in statistical behavior of a random process

Theoretical approach

Involve complicated criteria

$$\sup_{t>0}\mathbb{E}_1\big[T-t\,|\,T>t\big]\quad \text{(1983, Pollak)}$$

$$\sup_{t>0} \sup_{X_1,...,X_t} \mathbb{E}_1 \big[T - t \, | \, T > t, X_1, \ldots, X_t \big] \quad \text{(1971, Lorden)}$$

Outline

Sequential Detection of Changes - Problem Definition

Detection Strategies

Understanding Changes

Performance Criteria and Optimum Tests

Pollak Criterion and the SRP Test

Lorden Criterion and the CUSUM Test

Maximal Detection Probability and the Shewhart Test

Advanced Versions

Unknown Parameters

Data-Driven

Problem Definition

Observe sequentially a random process $\{X_t\}$ evolving in time

Detect change in statistical behavior as soon as possible

Quality Monitoring of Manufacturing Process

Medical Applications

Epidemic Detection

Early Detection of Epilepsy Episode

Financial Applications

Structural Change-detection in Exchange Rates Portfolio Monitoring

Electronic Communications

Seismology

Speech & Image Processing (segmentation)

Vibration Monitoring (Structural health monitoring)

Security Monitoring (fraud detection)

Spectrum Monitoring

Scene Monitoring

Network Monitoring (router failures, attack detection)

•

Detection Strategies

Sequential Test: At each time t use available observations $\{X_1,...,X_t\}$ to decide whether a change has occurred at t or before (no future information)

Common tests: Declare change if $S_t(X_1,...,X_t) \ge \nu_t$

Sequential Test equivalent to **Stopping Time**

 $X_1,\!X_2$

T-1 $X_1, X_2, ..., X_{T-1}$ $X_1, X_2, ..., X_T$

Was there a change? No, take one more sample Was there a change? No, take one more sample

Was there a change? No, take one more sample

Was there a change? Yes, Stop sampling (stopping time)

Premature Stopping ⇒ False Alarm (infrequent)

Successful Detection $\Rightarrow T - \tau$ Detection Delay (short)

For the theoretical design of $\,T\,$ need to quantify both

False Alarm

Average False Alarm Period (large):

 $\mathbb{E}_0[T] \ge \gamma$

Computable

Detection Delay

Average Detection Delay:

$$\mathbb{E}_1ig[\max\{T\!-\! au,0\}ig]$$

Biased due to false alarms

Extreme case:
$$T=0$$

Conditional Average Detection Delay (small):

$$\mathbb{E}_1 \big[T - \tau \, | \, T > \tau \big]$$

Computable?

What is change-time au ?

Understanding Changes

Change-time au random! Can this randomness be described by $\mathbb{P}_0\,,\,\mathbb{P}_1$?

Attack

Vibration measurements $\{X_t\}$ at sensors to detect structural changes

Change imposing mechanism does not use observations $\{X_t\}$ Relies on **independent** data (coordinates of the ball in football game)!

Attack

The system uses traffic measurements $\{X_t\}$ to detect attacks

The attacker has no access to $\{X_t\}$, therefore time of attack is **independent** from observations

Earthquake

Change imposing mechanism consults $\{Z_t\}$ which **depend** on observations $\{X_t\}$

Vibration measurements $\{X_t\}$ at sensors to detect structural changes

 $X_t = AZ_t + W_t$, Z_t state of the whole structure

Change (crack) when $||Z_t||^2 \ge \lambda$

In previous examples detection delay can be arbitrarily large

Power Grid

 $\{X_t\}$ measurements at major points

Change in statistical behavior must be detected between au and au+WAfter au+W change produces blackout!

Detection delay is **hard limited**: $W \ge T - \tau > 0$

 $\{X_t\}$ Observations collected sequentially to detect the change

Change Imposing Mechanism

- ullet Mechanism applies changes based on information independent from $\{X_t\}$
- ullet Mechanism applies changes based on information dependent on $\{X_t\}$

Delay Constraint

- No hard limit on detection delay
- Detection delay is hard limited

Performance Criteria and Optimum Tests

Change Imposing Mechanisms Independent from Observations (no hard limit)

$$\mathbb{P}(au=t)=\pi_t$$
 sequence of numbers

If prior $\{\pi_t\}$ known we can compute $\mathbb{E}_1[T-\tau\,|\,T>\tau]$

$$\mathbb{E}_1[T- au\,|\,T> au]$$

When $\{\pi_t\}$ unknown follow a worst-case analysis

Pollak Criterion

$$J(T) = \sup_{\{\pi_t\}} \mathbb{E}_1 \big[T - \tau \, | \, T > \tau \big] \quad = \quad \sup_{t \ge 0} \mathbb{E}_1 \big[T - t \, | \, T > t \big]$$

Optimize T by solving constrained optimization (1983)

$$\inf_T J(T) = \inf_T \sup_{t \geq 0} \mathbb{E}_1 \big[T - t | T > t \big]$$

subject to:
$$\mathbb{E}_0[T] \geq \gamma$$

For i.i.d. observations before and after the change Pollak proposed the Shiryaev-Roberts-Pollak (SRP) Test

Specially design initial value S_0

At each time t with new sample X_t update statistic S_t

$$S_t = (1 + S_{t-1}) \frac{f_1(X_t)}{f_0(X_t)}$$

$$T_{\mathsf{SRP}} = \inf \left\{ t > 0 : S_t \ge \nu \right\}$$

Select $\,
u\,$ to satisfy false alarm constraint: $\mathbb{E}_0 \big[T_{\mathsf{SRP}} \big] = \gamma$

(1983) Asymptotically optimum for γ large (tending to infinity) Strongest sense of asymptotic optimality

NOT exactly optimum (2010 counterexample)

Change Imposing Mechanisms Dependent on Observations (no hard limit)

$$\mathbb{P}(\tau = t) = \pi_t(X_1, X_2, ..., X_t)$$

The probabilities depend on the realization

When $\{\pi_t(X_1, X_2, ..., X_t)\}$ unknown follow a worst-case analysis

$$J(T) = \sup_{\{\pi_t\}} \mathbb{E}_1 \big[T - \tau \, | \, T > \tau \big] \quad = \quad \sup_{t \geq 0} \sup_{X_1, \dots, X_t} \mathbb{E}_1 \big[T - t \, | \, T > t, X_1, \dots, X_t \big]$$

Lorden Criterion

Optimize T by solving constrained optimization (1971)

$$\inf_T J(T) = \inf_T \sup_{t \geq 0} \sup_{X_1, \dots, X_t} \mathbb{E}_1 \big[T - t | T > t, X_1, \dots, X_t \big]$$

subject to:
$$\mathbb{E}_0[T] \geq \gamma$$

For i.i.d. data before and after the change apply CUSUM Test

At each time t with new sample X_t update CUSUM statistic S

$$S_t = \max \{S_{t-1}, 0\} + \log \left(\frac{\mathsf{f}_1(X_t)}{\mathsf{f}_0(X_t)}\right), \quad S_0 = 0$$

$$T_{\mathsf{CUSUM}} = \inf\{t > 0: S_t \ge \nu\}$$

Select ν to safisfy false alarm constraint: $\mathbb{E}_0[T_{\text{CUSUM}}] = \gamma$

Exact optimality (1986)

CUSUM Test particularly successful in practice,

$$S_t = \max\left\{S_{t-1}, 0\right\} + \log\left(\frac{\mathsf{f}_1(X_t)}{\mathsf{f}_0(X_t)}\right)$$

$$\mathbb{E}_0 \Big[\log \Big(\frac{\mathsf{f}_1(X_t)}{\mathsf{f}_0(X_t)} \Big) \Big] < 0 < \mathbb{E}_1 \Big[\log \Big(\frac{\mathsf{f}_1(X_t)}{\mathsf{f}_0(X_t)} \Big) \Big]$$

WHY?

Prototype for other data models

$$S_t = \max \left\{ S_{t-1}, 0 \right\} + \log \left(\frac{\mathsf{f}_1(X_t | X_{t-1}, \ldots)}{\mathsf{f}_0(X_t | X_{t-1}, \ldots)} \right), \quad S_0 = 0$$

No exact optimality

Asymptotic optimality for false alarm values γ large (tending to infinity)

Hard limited detection delay

In certain applications necessary to detected between $\ au$ and $\ au+W$ Stopping after $\ au+W$ is **no detection** (too late)

Interested in T such that $\tau < T \le \tau + W$

$$\mathbb{P}_1(\tau < T \le \tau + W \mid T > \tau) = \mathbb{P}_1(T \le \tau + W \mid T > \tau)$$

Change mechanism independent from observations

$$J(T) = \inf_{t \geq 0} \mathbb{P}_1 \big(T \leq t + W \, | \, T > t \big)$$
 Pollak-like Criterion

$$\sup_T J(T) = \sup_T \inf_{t \ge 0} \mathbb{P}_1 \left(T \le t + W | T > t \right)$$

subject to:
$$\mathbb{E}_0[T] \geq \gamma$$

Change mechanism dependent on observations

Lorden-like Criterion

$$J(T) = \inf_{t \ge 0} \inf_{X_1, \dots, X_t} \mathbb{P}_1 (T \le t + W \,|\, T > t, X_1, \dots, X_t)$$

$$\sup_T J(T) = \sup_T \inf_{t \geq 0} \inf_{X_1, \dots, X_t} \mathbb{P}_1 \big(T \leq t + W | T > t, X_1, \dots, X_t \big)$$

subject to:
$$\mathbb{E}_0[T] \geq \gamma$$

Solution for arbitrary W? NO

Only for W=1, Immediate detection with the first post-change sample

$$\sup_{T}\inf_{t\geq 0}\mathbb{P}_1\big(T=t+1\,|\,T>t\big)$$
 or
$$\sup_{T}\inf_{t\geq 0}\inf_{X_1,\dots,X_t}\mathbb{P}_1\big(T=t+1\,|\,T>t,X_1,\dots,X_t\big)$$
 subject to:
$$\mathbb{E}_0\big[T\big]\geq \gamma$$

For i.i.d. data before and after the change optimum is the **Shewhart Test**

$$T_{\mathsf{sh}} = \inf \left\{ t > 0 : \ \frac{\mathsf{f}_1(X_t)}{\mathsf{f}_0(X_t)} \ge \nu \right\}$$

Advanced Versions

Unknown Parameters

For i.i.d. data before and after the change: Probability densities $f_0(X)$, $f_1(X, \theta)$

At every time t use sliding window of previous data $X_{t ext{-}1}, \dots, X_{t ext{-}w}$ to estimate heta

$$S_t = \max\{S_{t-1}, 0\} + \log\left(\frac{\mathsf{f}_1(X_t, \hat{\theta}_{t-1})}{\mathsf{f}_0(X_t)}\right) \quad T_{\mathsf{WCUSUM}} = \inf\left\{t > 0: \ S_t \ge \nu\right\}$$

$$\mathbb{E}_0ig[T_{\mathsf{CUSUM}}ig] = \gamma o \infty$$
, $\mathbb{E}_1ig[T_{\mathsf{CUSUM}}ig] \sim \log \gamma o \infty$

Optimum
$$w \sim \sqrt{\log \gamma}$$
, $\mathbb{E}_1[T_{\text{WCUSUM}}] = \mathbb{E}_1[T_{\text{CUSUM}}] + O(\sqrt{\log \gamma})$

Data-Driven Version

Densities $f_0(X_t|X_{t-1},...)$, $f_1(X_t|X_{t-1},...)$ are completely unknown. Instead:

Training Data $\{X_1^0,\dots,X_{n_0}^0\} \quad \text{sampled from} \quad \mathsf{f}_0(X_t|X_{t-1},\dots) \\ \{X_1^1,\dots,X_{n_1}^1\} \quad \text{sampled from} \quad \mathsf{f}_1(X_t|X_{t-1},\dots)$

DO NOT estimate individual densities $f_0(X_t | X_{t-1},...)$, $f_1(X_t | X_{t-1},...)$

Use Machine Learning techniques (neural networks) to estimate directly

$$\mathsf{u}(X_t, X_{t-1}, \ldots) \approx \log \left(\frac{\mathsf{f}_1(X_t | X_{t-1}, \ldots)}{\mathsf{f}_0(X_t | X_{t-1}, \ldots)} \right)$$

Approximate CUSUM statistic: $S_t = \max\{S_{t-1}, 0\} + u(X_t, X_{t-1}, \ldots)$

Before and after change: Markovian process of unit memory

$$f_0(X_t | X_{t-1})$$
 $f_1(X_t | X_{t-1})$

No claim of optimality of any type Simulations suggest asymptotic optimality if n_0 , n_1 suitable functions of γ